Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = dehydrochlorination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5455 KiB  
Article
Features of Thermal Stabilization of PVC Modified with Microstructured Titanium Phosphate
by Irina N. Vikhareva, Anton Abramian, Dragan Manojlović and Oleg Bol’shakov
Polymers 2025, 17(15), 2140; https://doi.org/10.3390/polym17152140 - 5 Aug 2025
Viewed by 329
Abstract
Poly(vinyl chloride) (PVC) undergoes thermal degradation during processing and operation, which necessitates the use of effective thermal stabilizers. The purpose of this work is to comprehensively evaluate the potential of new hierarchically structured titanium phosphates (TiP) with controlled morphology as thermal stabilizers of [...] Read more.
Poly(vinyl chloride) (PVC) undergoes thermal degradation during processing and operation, which necessitates the use of effective thermal stabilizers. The purpose of this work is to comprehensively evaluate the potential of new hierarchically structured titanium phosphates (TiP) with controlled morphology as thermal stabilizers of plasticized PVC, focusing on the effect of morphology and Ti/P ratio on their stabilizing efficiency. The thermal stability of the compositions was studied by thermogravimetric analysis (TGA) in both inert (Ar) and oxidizing (air) atmospheres. The effect of TiP concentration and its synergy with industrial stabilizers was analyzed. An assessment of the key degradation parameters is given: the temperature of degradation onset, the rate of decomposition, exothermic effects, and the carbon residue yield. In an inert environment, TiPMSI/TiPMSII microspheres demonstrated an optimal balance by increasing the temperature of degradation onset and the residual yield while suppressing the rate of decomposition. In an oxidizing environment, TiPR rods and TiPMSII microspheres provided maximum stability, enhancing resistance to degradation onset and reducing the degradation rate by 10–15%. Key factors of effectiveness include ordered morphology (spheres, rods); the Ti-deficient Ti/P ratio (~0.86), which enhances HCl binding; and crystallinity. The stabilization mechanism of titanium phosphates is attributed to their high affinity for hydrogen chloride (HCl), which catalyzes PVC chain scission, a catalyst for the destruction of the PVC chain. The unique microstructure of titanium phosphate provides a high specific surface area and, as a result, greater activity in the HCl neutralization reaction. The formation of a sol–phosphate framework creates a barrier to heat and oxygen. An additional contribution comes from the inhibition of oxidative processes and the possible interaction with unstable chlorallyl groups in PVC macromolecules. Thus, hierarchically structured titanium phosphates have shown high potential as multifunctional PVC thermostabilizers for modern polymer materials. Potential applications include the development of environmentally friendly PVC formulations with partial or complete replacement of toxic stabilizers, the optimization of thermal stabilization for products used in aggressive environments, and the use of hierarchical TiP structures in flame-resistant and halogen-free PVC-based compositions. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

19 pages, 3827 KiB  
Article
Pyrolysis Kinetics and Gas Evolution of Flame-Retardant PVC and PE: A TG-FTIR-GC/MS Study
by Wen-Wei Su, Yang Li, Peng-Rui Man, Ya-Wen Sheng and Jian Wang
Fire 2025, 8(7), 262; https://doi.org/10.3390/fire8070262 - 30 Jun 2025
Viewed by 559
Abstract
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene [...] Read more.
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene (PE) insulation materials using advanced TG-FTIR-GC/MS techniques. Distinct pyrolysis stages were identified through thermogravimetric analysis (TGA) at heating rates of 10–40 K/min, while the KAS model-free method and Málek fitting function quantified activation energies and reaction mechanisms. Results revealed that flame-retardant PVC undergoes two major stages: (1) dehydrochlorination, characterized by the rapid release of HCl and low activation energy, and (2) main-chain scission, producing aromatic compounds that contribute to fire toxicity. In contrast, flame-retardant PE demonstrates a more stable pyrolysis process dominated by random chain scission and the formation of a dense char layer, significantly enhancing its flame-retardant performance. FTIR and GC/MS analyses further highlighted distinct gas evolution behaviors: PVC primarily generates HCl and aromatic hydrocarbons, whereas PE releases olefins and alkanes with significantly lower toxicity. Additionally, the application of a classification and regression tree (CART) model accurately predicted mass loss behavior under various heating rates, achieving exceptional fitting accuracy (R2 > 0.98). This study provides critical insights into the pyrolysis mechanisms of flame-retardant cable insulation and offers a robust data framework for optimizing fire modeling and improving material design. Full article
Show Figures

Figure 1

13 pages, 2801 KiB  
Article
Unraveling the Kinetics and Mechanism of Ethane Chlorination in the Gas Phase
by Zihan Zhu, Yuting Li, Xia Wu, Jinming Xu, Xiaohui Sun and Qinggang Liu
Molecules 2025, 30(8), 1756; https://doi.org/10.3390/molecules30081756 - 14 Apr 2025
Viewed by 721
Abstract
The selective chlorination of ethane to 1,2-dichloroethane offers a promising route for upgrading ethane, yet its efficiency remains constrained by limited mechanistic insights into gas-phase chlorine-radical-mediated pathways, which govern target product selectivity and competing dehydrochlorination side reactions. This work systematically decouples the kinetics [...] Read more.
The selective chlorination of ethane to 1,2-dichloroethane offers a promising route for upgrading ethane, yet its efficiency remains constrained by limited mechanistic insights into gas-phase chlorine-radical-mediated pathways, which govern target product selectivity and competing dehydrochlorination side reactions. This work systematically decouples the kinetics of ethane chlorination and chloroethane functionalization under varying Cl2 concentrations, revealing that chlorine radicals govern product distribution through thermodynamically favored pathways. This results in an interesting phenomenon whereby the product ratio between 1,1-C2H4Cl2 and 1,2-C2H4Cl2 maintains a constant 2:1 stoichiometry regardless of Cl2 concentration variation. A critical observation is that the rate of all chlorination steps remains independent of alkane concentrations, highlighting the dominant role of chlorine radicals in rate-determining steps. Furthermore, ethylene byproducts are demonstrated to originate from the dechlorination of chlorine-radical-induced 2-chloroethyl radicals derived from chloroethane, rather than the direct dehydrochlorination of chloroethane itself. These insights into the dual role of chlorine radicals—mediating both the chlorination and dehydrochlorination pathways—establish a foundational framework for integrating gas-phase radical chemistry with catalytic engineering strategies to suppress undesired side reactions and enable scalable, selective ethane chlorination. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

16 pages, 2239 KiB  
Article
Effects of Copper(II) Oxide on the Co-Pyrolysis of Waste Polyester Enameled Wires and Poly(vinyl chloride)
by Xiaolu Wang, Bingyi Li, Zhidong Xia, Wei Zhou, Yufeng Wu, Zhaoxi Zhu and Guangze Zhu
Polymers 2024, 16(1), 27; https://doi.org/10.3390/polym16010027 - 20 Dec 2023
Cited by 6 | Viewed by 1820
Abstract
The emission of chlorinated pollutants is one of the main problems when recovering copper (Cu) via pyrolysis from waste enameled wires. This is mainly attributed to other wastes which possess high poly(vinyl chloride) content, such as electrical wires and cables, which are often [...] Read more.
The emission of chlorinated pollutants is one of the main problems when recovering copper (Cu) via pyrolysis from waste enameled wires. This is mainly attributed to other wastes which possess high poly(vinyl chloride) content, such as electrical wires and cables, which are often recycled together with enameled copper wires. In this research, to control the chlorinated pollutants, copper(II) oxide (CuO) was chosen and demonstrated to be an efficient dechlorinating agent, and CuO did not introduce any impurities that influence the quality of the recovered Cu. The pyrolysis and co-pyrolysis of polyester enameled wires, PVC, and CuO were investigated, and special attention was paid to chlorinated compounds in released pyrolytic products. In particular, the co-pyrolysis of this ternary mixture was studied for the first time, and some new pyrolysis behaviors were discovered. For example, the results of Py-GC/MS analyses showed that the addition of CuO removed about 75% of the chloro-organic products, the main types of which were chloroaromatic compounds rather than the more toxic chloroesters. Moreover, pyrolysis gases were collected and characterized via ion chromatography, and the results showed that the chlorine content in the pyrolysis gases decreased by about 71%. TG analysis indicated that CuO only minimally affected the pyrolysis of polyester paint. However, through the chlorine fixation effect, CuO influenced the dechlorination and dehydrochlorination of PVC, as well as secondary reactions between HCl and pyrolysis products of polyester paint, therefore changing the products and behaviors of co-pyrolysis. Mechanism of reducing chlorine-containing pollutants and reaction mechanism of forming typical pyrolysis products closely correlated to the effects of CuO were also proposed, providing theoretical guidance for the recycling of waste enameled wires. Full article
(This article belongs to the Special Issue Chemical Recycling of Polymers)
Show Figures

Figure 1

13 pages, 2573 KiB  
Article
Degradation of DDT by a Novel Bacterium, Arthrobacter globiformis DC-1: Efficacy, Mechanism and Comparative Advantage
by Xiaoxu Wang, Belay Tafa Oba, Hui Wang, Qing Luo, Jiaxin Liu, Lanxin Tang, Miao Yang, Hao Wu and Lina Sun
Water 2023, 15(15), 2723; https://doi.org/10.3390/w15152723 - 28 Jul 2023
Cited by 7 | Viewed by 4184
Abstract
A novel bacterium, Arthrobacter globiformis DC-1, capable of degrading DDT as its sole carbon and energy source, was isolated from DDT-contaminated agricultural soil. The bacterium can degrade up to 76.3% of the DDT at a concentration of 10 mg/L in the mineral salt [...] Read more.
A novel bacterium, Arthrobacter globiformis DC-1, capable of degrading DDT as its sole carbon and energy source, was isolated from DDT-contaminated agricultural soil. The bacterium can degrade up to 76.3% of the DDT at a concentration of 10 mg/L in the mineral salt medium (MSM) within 1 day of incubation. The effects of various environmental conditions, such as the concentration of DDT, temperature, pH and additional carbon sources, on its growth and biodegrading capacity of DDT were investigated in the MSM. The A. globiformis DC-1 strain could efficiently grow and degrade DDT at a wide range of concentrations, with the maximum growth and degradation rate at 10 mg/LDDT, followed by inhibitory effects at higher concentrations (20 and 30 mg/LDDT). Mesophilic temperatures (25–30 °C) and a pH of 7–7.5 were the most suitable conditions for the growth and biodegradation. The presence of carbon sources significantly increased the growth of the DC-1 strain; however, degradation was inhibited in the present of glucose, sucrose and fructose, and peptone was determined to be the most appropriate carbon source for A. globiformis DC-1. The optimal DDT degradation (84.2%) was observed at 10 mg/LDDT, peptone as carbon source in pH 7.5 at 30 °C with 1 day of incubation. This strain could also degrade DDE, DDD and DDT simultaneously as the sole carbon and energy source, with degradation rates reaching 70.61%, 64.43% and 60.24% in 10 days, respectively. The biodegradation pathway by A. globiformis DC-1 revealed that DDT was converted to DDD and DDE via dechlorination and dehydrochlorination, respectively; subsequently, both DDD and DDE transformed to DDMU through further dechlorination, and finally, after ring opening, DDMU was mineralized to carbon dioxide. No intermediate metabolites accumulation was observed during the GC/MS analysis, demonstrating that the A. globiformis DC-1 strain can be used for the bioremediation of DDT residues in the environment. Full article
(This article belongs to the Special Issue Rainfall and Water Flow-Induced Soil Erosion-Volume 2.0)
Show Figures

Figure 1

13 pages, 3280 KiB  
Article
The Field-Effect Transistor Based on a Polyyne–Polyene Structure Obtained via PVDC Dehydrochlorination
by Oleg A. Streletskiy, Ilya A. Zavidovskiy, Islam F. Nuriahmetov, Abdusame A. Khaidarov, Alexander V. Pavlikov and Kashif F. Minnebaev
J. Compos. Sci. 2023, 7(7), 264; https://doi.org/10.3390/jcs7070264 - 22 Jun 2023
Cited by 13 | Viewed by 2343
Abstract
We report on the formation of the field-effect transistor based on a polyyne–polyene structure. Polyvinylidene chloride (PVDC) drop casting and its subsequent dehydrochlorination in KOH solution allowed for the formation of porous polyyne–polyene material, which was analyzed via transmission electron microscopy, Fourier-transform infrared [...] Read more.
We report on the formation of the field-effect transistor based on a polyyne–polyene structure. Polyvinylidene chloride (PVDC) drop casting and its subsequent dehydrochlorination in KOH solution allowed for the formation of porous polyyne–polyene material, which was analyzed via transmission electron microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy, revealing the presence of sp- and sp2-hybridized chained fragments in the structure. The polyyne–polyene-based field-effect transistor showed a transconductance of 3.2 nA/V and a threshold voltage of −0.3 V. The obtained results indicate that polyyne–polyene-based transistors can be used as discrete elements of molecular electronics and that subsequent studies can be aimed toward the development of selective polyyne–polyene-based gas sensors with tunable sensitivity. Full article
(This article belongs to the Special Issue Recent Progress and Future of Polymer Composites)
Show Figures

Figure 1

15 pages, 4128 KiB  
Article
Porous Carbon–Carbon Composite Materials Obtained by Alkaline Dehydrochlorination of Polyvinyl Chloride
by Yury G. Kryazhev, Irina V. Anikeeva, Mikhail V. Trenikhin, Tatiana I. Gulyaeva, Valeriy P. Melnikov, Vladimir A. Likholobov and Olga B. Belskaya
Materials 2022, 15(21), 7636; https://doi.org/10.3390/ma15217636 - 30 Oct 2022
Cited by 2 | Viewed by 2592
Abstract
Porous carbon–carbon composite materials (PCCCM) were synthesized by the alkaline dehydrochlorination of polyvinyl chloride solutions in dimethyl sulfoxide containing the modifying additives of a nanostructured component (NC): graphite oxide (GO), reduced graphite oxide (RGO) or nanoglobular carbon (NGC), with subsequent two-step thermal treatment [...] Read more.
Porous carbon–carbon composite materials (PCCCM) were synthesized by the alkaline dehydrochlorination of polyvinyl chloride solutions in dimethyl sulfoxide containing the modifying additives of a nanostructured component (NC): graphite oxide (GO), reduced graphite oxide (RGO) or nanoglobular carbon (NGC), with subsequent two-step thermal treatment of the obtained polyvinylene–NC composites (carbonization at 400 °C and carbon dioxide activation at 900 °C). The focus of the study was on the analysis and digital processing of transmission electron microscopy images to study local areas of carbon composite materials, as well as to determine the distances between graphene layers. TEM and low-temperature nitrogen adsorption studies revealed that the structure of the synthesized PCCCM can be considered as a porous carbon matrix in which either carbon nanoglobules (in the case of NGC) or carbon particles with the “crumpled sheet” morphology (in the case of GO or RGO used as the modifying additives) are distributed. Depending on the features of the introduced 5–7 wt.% nanostructured component, the fraction of mesopores was shown to vary from 11% to 46%, and SBET—from 791 to 1115 m2 g−1. The synthesis of PCCNC using graphite oxide and reduced graphite oxide as the modifying additives can be considered as a method for synthesizing a porous carbon material with the hierarchical structure containing both the micro- and meso/macropores. Such materials are widely applied and can serve as adsorbents, catalyst supports, elements of power storage systems, etc. Full article
(This article belongs to the Special Issue Nanocarbon-Based Composites and Their Applications)
Show Figures

Graphical abstract

13 pages, 2691 KiB  
Article
Dehydrochlorination of PCDDs on SWCN-Supported Ni10 and Ni13 Clusters, a DFT Study
by Silvia González, Martha Porras, Arianna Jimbo and Cesar H. Zambrano
Molecules 2022, 27(16), 5074; https://doi.org/10.3390/molecules27165074 - 10 Aug 2022
Cited by 1 | Viewed by 1914
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) are known to be a group of compounds of high toxicity for animals and, particularly, for humans. Given that the most common method to destroy these compounds is by high-temperature combustion, finding other routes to render them less toxic is [...] Read more.
Polychlorinated dibenzo-p-dioxins (PCDDs) are known to be a group of compounds of high toxicity for animals and, particularly, for humans. Given that the most common method to destroy these compounds is by high-temperature combustion, finding other routes to render them less toxic is of paramount importance. Taking advantage of the physisorption properties of nanotubes, we studied the reactions of atomic hydrogen on physisorbed PCDDs using DFT; likewise, we investigated the reaction of molecular hydrogen on PCDDs aided by Ni10 and Ni13 clusters adsorbed on single-wall carbon nanotubes. Because dihydrogen is an easily accessible reactant, we found these reactions to be quite relevant as dehydrohalogenation methods to address PCDD toxicity. Full article
(This article belongs to the Special Issue Molecules at Interfaces)
Show Figures

Figure 1

25 pages, 14670 KiB  
Article
Durability and Degradation of PVC-P Roofing Membrane—Example of Dynamic Fatigue Testing
by Andrej Ivanič and Samo Lubej
Polymers 2022, 14(7), 1312; https://doi.org/10.3390/polym14071312 - 24 Mar 2022
Cited by 4 | Viewed by 4514
Abstract
This paper presents a study of PVC-P waterproofing membrane Specimens. The Specimens were taken from different segments of a flat roof after a service life of 11 years. The reason for analysing the condition of the Specimens was the apparent degradation of the [...] Read more.
This paper presents a study of PVC-P waterproofing membrane Specimens. The Specimens were taken from different segments of a flat roof after a service life of 11 years. The reason for analysing the condition of the Specimens was the apparent degradation of the waterproofing, which no longer guaranteed the watertightness of the roof. The analysis of the performance of the Specimens was based on the control of the mechanical properties, which were compared with the declared values. The mechanical properties of the degraded PVC-P waterproofing membranes with a polyester mesh backing, which are prescribed by the standards, do not usually deviate from the declared properties. This often poses a problem for liability and warranty claims due to the poor quality of the waterproofing membrane. There may be several causes of degradation of PVC-P. For this reason, in this paper, we present the possibility of controlling the properties of PVC-P waterproofing membranes using cyclic dynamic fatigue, microstructure analysis using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that the cause of the deterioration of the PVC-P waterproofing membranes is often related to dehydrochlorination of the polymer. However, the deterioration of the mechanical properties of the PVC-P waterproofing membranes can be successfully demonstrated by cyclic dynamic fatigue. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials)
Show Figures

Figure 1

16 pages, 2955 KiB  
Article
Effects of Organic Based Heat Stabilizer on Properties of Polyvinyl Chloride for Pipe Applications: A Comparative Study with Pb and CaZn Systems
by Chanchira Jubsilp, Aran Asawakosinchai, Phattarin Mora, Duangporn Saramas and Sarawut Rimdusit
Polymers 2022, 14(1), 133; https://doi.org/10.3390/polym14010133 - 30 Dec 2021
Cited by 24 | Viewed by 5825
Abstract
In this paper, the effects of organic based stabilizers (OBS) are investigated and compared with traditional lead (Pb) and calcium zinc (CaZn) heat stabilizers regarding their processability, mechanical property, and thermal degradation behaviors in rigid PVC pipe applications. In addition, the effects of [...] Read more.
In this paper, the effects of organic based stabilizers (OBS) are investigated and compared with traditional lead (Pb) and calcium zinc (CaZn) heat stabilizers regarding their processability, mechanical property, and thermal degradation behaviors in rigid PVC pipe applications. In addition, the effects of repeated processing cycles on the degree of gelation and the impact strength of the PVC/OBS, PVC/CaZn, and PVC/Pb are also examined. A repeated processing cycle of those three types of the heat stabilizers up to four cycles was found to increase the degree of gelation and proved no significant effect on the impact strength and heat resistance of the resulting PVC samples. The OBS showed a positive effect on preventing the autocatalytic-typed thermal degradation of the PVC samples. This leads to a longer retention time for the initial color change of the PVC/OBS compared to PVC/Pb or PVC/CaZn systems. This characteristic was related to a more uniform fusion behavior of the PVC/OBS, i.e., the lowest gelation speed and the longest fusion time. The non-isothermal kinetic parameter determined by the Kissinger and Flynn–Wall–Ozawa methods of the dehydrochlorination stage of the PVC/OBS was in satisfactory agreement and continued to compare with the PVC/Pb and PVC/CaZn systems. The results indicated that the OBS might decrease the dehydrochlorination rate of PVC, implying that PVC/OBS was more stable than PVC/Pb and PVC/CaZn systems. Full article
Show Figures

Figure 1

10 pages, 3208 KiB  
Article
BaF(p-BDC)0.5 as the Catalyst Precursor for the Catalytic Dehydrochlorination of 1-Chloro-1,1-Difluoroethane to Vinylidene Fluoride
by Shucheng Wang, Chuanzhao Wang, Houlin Yu, Wei Yu, Yongnan Liu, Wucan Liu, Feixiang Zhou, Wanjin Yu, Jiuju Wang, Jianjun Zhang and Wenfeng Han
Catalysts 2021, 11(11), 1268; https://doi.org/10.3390/catal11111268 - 21 Oct 2021
Viewed by 2325
Abstract
A BaF(p-BDC)0.5 catalyst was prepared by solid state reaction at room temperature with Ba(OH)2 as precursor, NH4F as F source, and H2(p-BDC) as organic ligand. The calcined samples were used as catalysts for [...] Read more.
A BaF(p-BDC)0.5 catalyst was prepared by solid state reaction at room temperature with Ba(OH)2 as precursor, NH4F as F source, and H2(p-BDC) as organic ligand. The calcined samples were used as catalysts for dehydrochlorination of 1-chloro-1,1-difluoroethane to generate vinylidene fluoride (VDF) at 350 °C. Commercial production of VDF is carried out at 600–700 °C. Clearly, pyrolysis of the BaF(p-BDC)0.5 catalyst provided a promising way to prepare VDF at low temperatures. Prior to calcination, the activity of the BaF(p-BDC)0.5 catalyst was low. Following calcination at high temperatures, BaF(p-BDC)0.5 decomposed to BaF2 and BaCO3, and then the catalyst was chlorinated and fluorinated to BaClF, which showed high activity and stable VDF selectivity for dehydrochlorination of 1-Chloro-1,1-Difluoroethane to VDF. Full article
(This article belongs to the Special Issue Nanocatalysis for Green Chemicals Synthesis)
Show Figures

Figure 1

17 pages, 5524 KiB  
Article
Tin Complexes of 4-(Benzylideneamino)benzenesulfonamide: Synthesis, Structure Elucidation and Their Efficiency as PVC Photostabilizers
by Hassan Ghani, Emad Yousif, Dina S. Ahmed, Benson M. Kariuki and Gamal A. El-Hiti
Polymers 2021, 13(15), 2434; https://doi.org/10.3390/polym13152434 - 23 Jul 2021
Cited by 14 | Viewed by 2827
Abstract
Poly(vinyl chloride) (PVC) suffers from photo-oxidation and photodegradation when exposed to harsh conditions. Application of PVC thus relies on the development of ever more efficient photostabilizers. The current research reports the synthesis of new complexes of tin and their assessment as poly(vinyl chloride) [...] Read more.
Poly(vinyl chloride) (PVC) suffers from photo-oxidation and photodegradation when exposed to harsh conditions. Application of PVC thus relies on the development of ever more efficient photostabilizers. The current research reports the synthesis of new complexes of tin and their assessment as poly(vinyl chloride) photostabilizers. The three new complexes were obtained in high yields from reaction of 4-(benzylideneamino)benzenesulfonamide and tin chlorides. Their structures were elucidated using different tools. The complexes were mixed with poly(vinyl chloride) at a very low concentration and thin films were made from the blends. The effectiveness of the tin complexes as photostabilizers has been established using a variety of methods. The new tin complexes led to a decrease in weight loss, formation of small residues, molecular weight depression, and surface alteration of poly(vinyl chloride) after irradiation. The additives act by absorption of ultraviolet light, removal the active chlorine produced through a dehydrochlorination process, decomposition of peroxides, and coordination with the polymeric chains. The triphenyltin complex showed the greatest stabilizing effect against PVC photodegradation as a result of its high aromaticity. Full article
(This article belongs to the Special Issue Polymer Composites for Structural Applications)
Show Figures

Graphical abstract

18 pages, 1618 KiB  
Article
Thermal Stability of Nanosilica-Modified Poly(vinyl chloride)
by Jolanta Tomaszewska, Tomasz Sterzyński and Damian Walczak
Polymers 2021, 13(13), 2057; https://doi.org/10.3390/polym13132057 - 23 Jun 2021
Cited by 23 | Viewed by 4696
Abstract
The thermal stability of PVC with 1 wt % of spherical porous nanosilica, prepared by roll milling at processing time varied from 1 to 20 min, was investigated by means of visual color changes, Congo red, and thermogravimetric tests (TGA and DTG), as [...] Read more.
The thermal stability of PVC with 1 wt % of spherical porous nanosilica, prepared by roll milling at processing time varied from 1 to 20 min, was investigated by means of visual color changes, Congo red, and thermogravimetric tests (TGA and DTG), as a function of rolling time and composition of PVC matrix. The melt flow rate (MFR) measurements were realized to identify the degradation-induced changes of processing properties. A high level of gelation of the PVC matrix for all samples was verified by DSC (differential scanning calorimetry). It was found that the addition of porous nanosilica to absorb a certain volume of HCl, produced by dehydrochlorination reaction, leads to an improvement of thermal stability, an effect observed in a form of minor color changes of the samples, lower evolution of gas hydrogen chloride, and slight changes of the MFR value. It was demonstrated that the TGA measurements are not sufficiently sensible to detect the degradation of PVC at the processing conditions, i.e., at the temperature equal to 220 °C and below this temperature. Full article
(This article belongs to the Special Issue Polymer-SiO₂ Composites)
Show Figures

Graphical abstract

17 pages, 5490 KiB  
Article
Tin-Naphthalene Sulfonic Acid Complexes as Photostabilizers for Poly(vinyl chloride)
by Hadeer Jasem, Angham G. Hadi, Gamal A. El-Hiti, Mohammed A. Baashen, Hassan Hashim, Ahmed A. Ahmed, Dina S. Ahmed and Emad Yousif
Molecules 2021, 26(12), 3629; https://doi.org/10.3390/molecules26123629 - 14 Jun 2021
Cited by 13 | Viewed by 4469
Abstract
Poly(vinyl chloride) degrades when exposed to ultraviolet light for long durations; therefore, the photostability of polymeric materials should be enhanced through the application of additives. New organotin complexes containing 4-aminonaphthalene-1-sulfonic acid were synthesized and their role as poly(vinyl chloride) photostabilizers were evaluated. The [...] Read more.
Poly(vinyl chloride) degrades when exposed to ultraviolet light for long durations; therefore, the photostability of polymeric materials should be enhanced through the application of additives. New organotin complexes containing 4-aminonaphthalene-1-sulfonic acid were synthesized and their role as poly(vinyl chloride) photostabilizers were evaluated. The reaction of 4-amino-3-hydroxynaphthalene-1-sulfonic acid and appropriate di- or trisubstituted tin chloride (triphenyltin chloride, tributyltin chloride, dibutyltin dichloride, and dimethyltin dichloride) in methanol under reflux gave the corresponding tin-naphthalene complexes with yields of 75%–95%. Elemental analyses and spectroscopic techniques including infrared and nuclear magnetic resonance (proton and tin) were used to confirm their structures. The tin complexes were added to poly(vinyl chloride) to produce thin films that irradiated with ultraviolet light. Various parameters were assessed, such as the weight loss, formation of specific functional groups, changes in the surface due to photoirradiation, and rate constant of photodegradation, to test the role played by the organotin complexes to reduce photodegradation in polymeric films. The results proved that organotin complexes acted as photostabilizers in these circumstances. The weight loss, formation of fragments containing specific functional groups, and undesirable changes in the surface of polymeric films were limited in the presence of organotin complexes. Organotin complexes containing three phenyl groups showed the most desirable stabilization effect. These act as efficient primary and secondary photostabilizers, and as decomposers for peroxides. In addition, such an additive inhibits the dehydrochlorination process, which is the main cause of poly(vinyl chloride) photodegradation. Full article
Show Figures

Graphical abstract

12 pages, 2785 KiB  
Article
Experimental and Theoretical Mechanistic Study on the Thermal Decomposition of 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline
by Karolina Kula, Agnieszka Kącka-Zych, Agnieszka Łapczuk-Krygier, Zbigniew Wzorek, Anna K. Nowak and Radomir Jasiński
Molecules 2021, 26(5), 1364; https://doi.org/10.3390/molecules26051364 - 4 Mar 2021
Cited by 27 | Viewed by 3067
Abstract
The present paper is a continuation of comprehensive study regarding to synthesis and properties of pyrazoles and their derivatives. In its framework an experimental and theoretical studies of thermal decomposition of the 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline were performed. It was found, that the decompositions of the [...] Read more.
The present paper is a continuation of comprehensive study regarding to synthesis and properties of pyrazoles and their derivatives. In its framework an experimental and theoretical studies of thermal decomposition of the 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline were performed. It was found, that the decompositions of the mentioned pyrazoline system in the solution and at the melted state proceed via completely different molecular mechanisms. These mechanisms have been explained in the framework of the Molecular Electron Density Theory (MEDT) with the computational level of B3LYP/6-31G(d). A Bonding Evolution Theory (BET) examination of dehydrochlorination of the 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline permits elucidation of the molecular mechanism. It was found, that on the contrary for most known HCl extrusion processes in solution, this reaction is realised via single-step mechanism. Full article
Show Figures

Figure 1

Back to TopTop