Circulating Biomarkers and Targeted Therapy in Pleural Mesothelioma
Simple Summary
Abstract
1. Introduction
2. Methods
3. Circulating Diagnostic Biomarkers
3.1. Mesothelin and Soluble Mesothelin-Related Proteins
3.2. Megakaryocyte Potentiating Factor
3.3. Fibulin-3
3.4. High-Mobility Group Box 1
3.5. CD157
3.6. Circulating Tumor DNA
3.7. Calretinin
3.8. Micro-RNA
3.9. Cytokeratin 19 Fragment Antigen 21-1
3.10. Activin A
3.11. Podoplanin
3.12. What Remains to Be Addressed
4. Circulating Prognostic Biomarkers
4.1. Mesothelin and Soluble Mesothelin-Related Proteins
4.2. KL-6
4.3. Micro-RNA
4.4. Eosinophils
4.5. What Remains to Be Addressed
5. Targeted Therapy
5.1. Mesothelin Targeting Therapies
5.2. BRCA-1 Associated Protein 1 Targeting Therapies
5.3. NF2 Targeting Therapies
5.4. Other Molecular Targeting Therapies
5.5. What Remains to Be Addressed
6. Translational and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
| ADI-PEG20 | Pegylated arginine deiminase |
| ASS1 | Arginine succinate synthetase 1 |
| ATR | Ataxia telangiectasia and rad3-related |
| AXL | Anexelekto |
| BAP1 | BRCA-1 associated protein |
| BARD1 | BRCA-1 associated ring domain protein |
| BMI | Body mass index |
| CAR | Chimeric antigen receptor |
| CD3 ζ | Cluster of differentiation 3 zeta |
| CD3ε | Cluster of differentiation 3 epsilon |
| CDK | Cyclin-dependent kinase |
| CEA | Carcinoembryonic antigen |
| cfDNA | Cell-free DNA |
| CtDNA | Circulating tumor DNA |
| CTLA-4 | Anti-cytotoxic T-lymphocyte-associated antigen 4 |
| CYFRA-21-1 | Cytokeratin 19 fragment antigen 21-1 |
| DCR | Disease control rate |
| DFS | Disease-free survival |
| ERK | Extracellular signal-regulated kinase |
| EZH2 | Enhancer of zeste-homolog |
| FDA | Food and drug administration |
| Gavo-cel | Gavocabtagene autoleucel |
| GPC3 | Glypican-3 |
| GPS | Galinpepimut-S |
| HDAC1 | Histone deacetylase 1 |
| HMGB1 | High-mobility group box 1 |
| IHC | Immunohistochemical |
| KL-6 | Krebs von del Lungan-6 |
| MAPK | Mitogen-activated protein kinase |
| MAPS | Mesothelioma avastin pemetrexed study |
| MiRNA | Micro-RNA |
| MPF | Megakaryocyte potentiating factor |
| MRD | Minimal residual disease |
| MTA | Methylthioadenosine |
| MTAP | S-methyl-5′-thioadenosine phosphorylase |
| NSCLC | Non-small cell lung cancer |
| ORR | Overall response rate |
| OS | Overall survival |
| PARP | Poly ADP-ribose |
| PD-1 | Programmed cell death 1 |
| PFS | Progression-free survival |
| PM | Pleural mesothelioma |
| PRMT5 | Protein arginine methyltransferase 5 |
| RECIST | Response evaluation criteria in solid tumors |
| ScFv | Single-chain variable fragment |
| SMRP | Soluble mesothelin-related protein |
| STAT | Signal transducer and activator of transcription |
| TAZ | Tafazzin |
| TCR- ζ | T cell receptor zeta |
| TEAD | Transcriptional enhanced associated domain |
| TME | Tumor microenvironment |
| TRuC | T cell receptor fusion construct |
| WT1 | Wilm’s tumor gene 1 |
| YAP | Yes-associated protein |
References
- Syed, H.A.; Wallen, J.M. Malignant Mesothelioma; StatPearls: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519530/ (accessed on 7 September 2025).
- Incidence of Malignant Mesothelioma|U.S. Cancer Statistics|CDC. Available online: https://www.cdc.gov/united-states-cancer-statistics/publications/mesothelioma.html (accessed on 7 September 2025).
- Cardillo, G.; Waller, D.; Tenconi, S.; Di Noia, V.; Ricciardi, S. Malignant Pleural Mesothelioma: A 2025 Update. J. Clin. Med. 2025, 14, 1004. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11818641/ (accessed on 7 September 2025). [CrossRef]
- Survival Rates for Mesothelioma|American Cancer Society. Available online: https://www.cancer.org/cancer/types/malignant-mesothelioma/detection-diagnosis-staging/survival-statistics.html (accessed on 7 September 2025).
- Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A randomised, controlled, open-label, phase 3 trial. Lancet 2016, 387, 1405–1414. Available online: https://www.thelancet.com/action/showFullText?pii=S0140673615012386 (accessed on 7 September 2025). [CrossRef]
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): A multicentre, randomised, open-label, phase 3 trial. Lancet 2021, 397, 375–386. Available online: https://www.thelancet.com/action/showFullText?pii=S0140673620327148 (accessed on 7 September 2025). [CrossRef] [PubMed]
- Chu, Q.; Perrone, F.; Greillier, L.; Tu, W.; Piccirillo, M.C.; Grosso, F.; Lo Russo, G.; Florescu, M.; Mencoboni, M.; Morabito, A.; et al. Pembrolizumab plus chemotherapy versus chemotherapy in untreated advanced pleural mesothelioma in Canada, Italy, and France: A phase 3, open-label, randomised controlled trial. Lancet 2023, 402, 2295–2306. Available online: https://www.thelancet.com/action/showFullText?pii=S0140673623016136 (accessed on 7 September 2025). [CrossRef] [PubMed]
- Product Classification. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm?id=3368 (accessed on 8 September 2025).
- Rossi, G.; Davoli, F.; Poletti, V.; Cavazza, A.; Lococo, F. When the Diagnosis of Mesothelioma Challenges Textbooks and Guidelines. J. Clin. Med. 2021, 10, 2434. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC8198453/ (accessed on 12 October 2025). [CrossRef]
- Johnen, G.; Burek, K.; Raiko, I.; Wichert, K.; Pesch, B.; Weber, D.G.; Lehnert, M.; Casjens, S.; Hagemeyer, O.; Taeger, D.; et al. Prediagnostic detection of mesothelioma by circulating calretinin and mesothelin—A case-control comparison nested into a prospective cohort of asbestos-exposed workers. Sci. Rep. 2018, 8, 14321. Available online: https://pubmed.ncbi.nlm.nih.gov/30254313/ (accessed on 12 September 2025). [CrossRef]
- Hollevoet, K.; Reitsma, J.B.; Creaney, J.; Grigoriu, B.D.; Robinson, B.W.; Scherpereel, A.; Cristaudo, A.; Pass, H.I.; Nackaerts, K.; Rodríguez Portal, J.A.; et al. Serum mesothelin for diagnosing malignant pleural mesothelioma: An individual patient data meta-analysis. J. Clin. Oncol. 2012, 30, 1541–1549. Available online: https://pubmed.ncbi.nlm.nih.gov/22412141/ (accessed on 11 September 2025). [CrossRef]
- Goricar, K.; Kovac, V.; Dodic-Fikfak, M.; Dolzan, V.; Franko, A. Evaluation of soluble mesothelin-related peptides and MSLN genetic variability in asbestos-related diseases. Radiol. Oncol. 2020, 54, 86–95. [Google Scholar] [CrossRef]
- Ferrari, L.; Iodice, S.; Cantone, L.; Dallari, B.; Dioni, L.; Bordini, L.; Palleschi, A.; Mensi, C.; Pesatori, A.C. Identification of a new potential plasmatic biomarker panel for the diagnosis of malignant pleural mesothelioma. Med. Lav. 2022, 113, e2022052. Available online: https://pubmed.ncbi.nlm.nih.gov/36475505/ (accessed on 11 September 2025). [CrossRef]
- Sriram, K.B.; Relan, V.; Clarke, B.E.; Duhig, E.E.; Windsor, M.N.; Matar, K.S.; Naidoo, R.; Passmore, L.; McCaul, E.; Courtney, D.; et al. Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas. BMC Cancer 2012, 12, 428. Available online: https://pubmed.ncbi.nlm.nih.gov/23009708/ (accessed on 12 September 2025). [CrossRef] [PubMed]
- Zhang, N.; Li, Y.; Sun, Z.; Dong, Y.; Zhou, L.; Zhang, C.; Liu, Z.; Zhang, Q.; Li, K.; Xu, F.; et al. Combined detection of SHOX2 and PTGER4 methylation with serum marker CYFRA21-1 for improved diagnosis of malignant pleural mesothelioma. J. Clin. Pathol. 2024, 78, 836–842. Available online: https://jcp.bmj.com/content/early/2024/07/26/jcp-2024-209592 (accessed on 11 September 2025). [CrossRef]
- Tian, L.; Zeng, R.; Wang, X.; Shen, C.; Lai, Y.; Wang, M.; Che, G.; Tian, L.; Zeng, R.; Wang, X.; et al. Prognostic significance of soluble mesothelin in malignant pleural mesothelioma: A meta-analysis. Oncotarget 2017, 8, 46425–46435. Available online: https://www.oncotarget.com/article/17436/text/ (accessed on 12 September 2025). [CrossRef]
- Levallet, G.; Creveuil, C.; Léger-Vigot, A.; Brosseau, S.; Danel, C.; Scherpereel, A.; Lantuejoul, S.; Mazières, J.; Greillier, L.; Audigier-Valette, C.; et al. MiR-193b-3p and miR-132-3p as prognostic biomarkers of survival in pleural mesothelioma patients treated with first-line bevacizumab plus pemetrexed-platinum chemotherapy in the IFCT-0701 MAPS phase 3 trial. Transl. Oncol. 2025, 61, 102520. Available online: https://www.sciencedirect.com/science/article/pii/S1936523325002517?via%3Dihub#bib0006 (accessed on 8 September 2025). [CrossRef]
- Created with BioRender Grant. 2026. Available online: https://BioRender.com/8gvjmoj (accessed on 16 November 2025).
- Servais, E.L.; Colovos, C.; Rodriguez, L.; Bograd, A.J.; Nitadori, J.I.; Sima, C.; Rusch, V.W.; Sadelain, M.; Adusumilli, P.S. Mesothelin overexpression promotes mesothelioma cell invasion and MMP-9 secretion in an orthotopic mouse model and in epithelioid pleural mesothelioma patients. Clin. Cancer Res. 2012, 18, 2478. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3759995/ (accessed on 13 November 2025). [CrossRef] [PubMed]
- Creaney, J.; Segal, A.; Olsen, N.; Dick, I.M.; Musk, A.W.; Skates, S.J.; Robinson, B.W. Pleural Fluid Mesothelin as an Adjunct to the Diagnosis of Pleural Malignant Mesothelioma. Dis. Markers 2014, 2014, 413946. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4258360/ (accessed on 16 October 2025). [CrossRef] [PubMed]
- Chang, K.; Pai, L.H.; Pass, H.; Pogrebniak, H.W.; Tsao, M.S.; Pastan, I.; Willingham, M.C. Monoclonal antibody K1 reacts with epithelial mesothelioma but not with lung adenocarcinoma. Am. J. Surg. Pathol. 1992, 16, 259–268. Available online: https://pubmed.ncbi.nlm.nih.gov/1599018/ (accessed on 8 September 2025). [CrossRef] [PubMed]
- Ordóñez, N.G. Value of mesothelin immunostaining in the diagnosis of mesothelioma. Mod. Pathol. 2003, 16, 192–197. Available online: https://pubmed.ncbi.nlm.nih.gov/12640097/ (accessed on 11 September 2025). [CrossRef]
- Felten, M.K.; Khatab, K.; Knoll, L.; Schettgen, T.; Müller-Berndorff, H.; Kraus, T. Changes of mesothelin and osteopontin levels over time in formerly asbestos-exposed power industry workers. Int. Arch. Occup. Environ. Health 2014, 87, 195–204. Available online: https://link.springer.com/article/10.1007/s00420-013-0853-1 (accessed on 11 September 2025). [CrossRef]
- Filiberti, R.; Marroni, P.; Spigno, F.; Merlo, D.F.; Mortara, V.; Caruso, P.; Cioè, A.; Michelazzi, L.; Bruzzone, A.; Bobbio, B.; et al. Is soluble mesothelin-related protein an upfront predictive marker of pleural mesothelioma? A prospective study on Italian workers exposed to asbestos. Oncology 2014, 86, 33–43. Available online: https://pubmed.ncbi.nlm.nih.gov/24401539/ (accessed on 11 September 2025). [CrossRef]
- Cristaudo, A.; Bonotti, A.; Simonini, S.; Vivaldi, A.; Guglielmi, G.; Ambrosino, N.; Chella, A.; Lucchi, M.; Mussi, A.; Foddis, R. Combined serum mesothelin and plasma osteopontin measurements in malignant pleural mesothelioma. J. Thorac. Oncol. 2011, 6, 1587–1593. Available online: https://pubmed.ncbi.nlm.nih.gov/21642872/ (accessed on 12 September 2025). [CrossRef]
- Chang, K.; Pastan, I.; Willingham, M.C. Isolation and characterization of a monoclonal antibody, K1, reactive with ovarian cancers and normal mesothelium. Int. J. Cancer 1992, 50, 373–381. Available online: https://pubmed.ncbi.nlm.nih.gov/1735605/ (accessed on 12 September 2025). [CrossRef] [PubMed]
- Yamaguchi, N.; Hattori, K.; Oh-Eda, M.; Kojima, T.; Imai, N.; Ochi, N. A novel cytokine exhibiting megakaryocyte potentiating activity from a human pancreatic tumor cell line HPC-Y5. J. Biol. Chem. 1994, 269, 805–808. Available online: https://www.sciencedirect.com/science/article/pii/S0021925817421806 (accessed on 13 November 2025). [CrossRef] [PubMed]
- Creaney, J.; Sneddon, S.; Dick, I.M.; Dare, H.; Boudville, N.; Musk, A.W.; Skates, S.J.; Robinson, B.W.S. Comparison of the Diagnostic Accuracy of the MSLN Gene Products, Mesothelin and Megakaryocyte Potentiating Factor, as Biomarkers for Mesothelioma in Pleural Effusions and Serum. Dis. Markers 2013, 35, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, I.; Uversky, V.N.; Furniss, D.; Wiberg, A. The Pathophysiological Significance of Fibulin-3. Biomolecules 2020, 10, 1294. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC7563619/ (accessed on 11 September 2025). [CrossRef]
- Roshini, A.; Goparaju, C.; Kundu, S.; Nandhu, M.S.; Longo, S.L.; Longo, J.A.; Chou, J.; Middleton, F.A.; Pass, H.I.; Viapiano, M.S. The extracellular matrix protein fibulin-3/EFEMP1 promotes pleural mesothelioma growth by activation of PI3K/Akt signaling. Front. Oncol. 2022, 12, 1014749. Available online: https://pubmed.ncbi.nlm.nih.gov/36303838/ (accessed on 13 November 2025). [CrossRef]
- Pass, H.I.; Levin, S.M.; Harbut, M.R.; Melamed, J.; Chiriboga, L.; Donington, J.; Huflejt, M.; Carbone, M.; Chia, D.; Goodglick, L.; et al. Fibulin-3 as a Blood and Effusion Biomarker for Pleural Mesothelioma. N. Engl. J. Med. 2012, 367, 1417–1427. Available online: https://www.nejm.org/doi/pdf/10.1056/NEJMoa1115050 (accessed on 11 September 2025). [CrossRef]
- Katz, S.I.; Roshkovan, L.; Berger, I.; Friedberg, J.S.; Alley, E.W.; Simone, C.B.; Haas, A.R.; Cengel, K.A.; Sterman, D.H.; Albelda, S.M. Serum soluble mesothelin-related protein (SMRP) and fibulin-3 levels correlate with baseline malignant pleural mesothelioma (MPM) tumor volumes but are not useful as biomarkers of response in an immunotherapy trial. Lung Cancer 2021, 154, 5–12. Available online: https://www.lungcancerjournal.info/action/showFullText?pii=S0169500221000295 (accessed on 12 September 2025). [CrossRef]
- Battolla, E.; Canessa, P.A.; Ferro, P.; Franceschini, M.C.; Fontana, V.; Dessanti, P.; Pinelli, V.; Morabito, A.; Fedeli, F.; Pistillo, M.P.; et al. Comparison of the Diagnostic Performance of Fibulin-3 and Mesothelin in Patients with Pleural Effusions from Malignant Mesothelioma. Anticancer Res. 2017, 37, 1387–1391. Available online: https://pubmed.ncbi.nlm.nih.gov/28314308/ (accessed on 11 September 2025).
- Lu, Z.; Zhang, W.; Huang, K.; Zhu, M.; Gu, X.; Wei, D.; Shi, M.; Chen, Y.; Wang, H. Systematic Review, Meta-Analysis and Bioinformatic Analysis of Biomarkers for Prognosis of Malignant Pleural Mesothelioma. Diagnostics 2022, 12, 2210. Available online: https://www.mdpi.com/2075-4418/12/9/2210/htm (accessed on 11 September 2025). [CrossRef]
- Suarez, J.S.; Novelli, F.; Goto, K.; Ehara, M.; Steele, M.; Kim, J.H.; Zolondick, A.A.; Xue, J.; Xu, R.; Saito, M.; et al. HMGB1 released by mesothelial cells drives the development of asbestos-induced mesothelioma. Proc. Natl. Acad. Sci. USA 2023, 120, e2307999120. Available online: https://pubmed.ncbi.nlm.nih.gov/37729199/ (accessed on 13 November 2025). [CrossRef]
- Novelli, F.; Bononi, A.; Wang, Q.; Bai, F.; Patergnani, S.; Kricek, F.; Haglund, E.; Suarez, J.S.; Tanji, M.; Xu, R.; et al. BAP1 forms a trimer with HMGB1 and HDAC1 that modulates gene × environment interaction with asbestos. Proc. Natl. Acad. Sci. USA 2021, 118, e2111946118. [Google Scholar] [CrossRef]
- Ying, S.; Jiang, Z.; He, X.; Yu, M.; Chen, R.; Chen, J.; Ru, G.; Chen, Y.; Chen, W.; Zhu, L.; et al. Serum HMGB1 as a Potential Biomarker for Patients with Asbestos-Related Diseases. Dis. Markers 2017, 2017, 5756102. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5350493/ (accessed on 11 September 2025). [CrossRef] [PubMed]
- Augeri, S.; Capano, S.; Morone, S.; Fissolo, G.; Giacomino, A.; Peola, S.; Drace, Z.; Rapa, I.; Novello, S.; Volante, M.; et al. Soluble CD157 in pleural effusions: A complementary tool for the diagnosis of malignant mesothelioma. Oncotarget 2018, 9, 22785–22801. Available online: https://www.oncotarget.com/article/25237/text/ (accessed on 12 September 2025). [CrossRef] [PubMed]
- Santarelli, L.; Staffolani, S.; Strafella, E.; Nocchi, L.; Manzella, N.; Grossi, P.; Bracci, M.; Pignotti, E.; Alleva, R.; Borghi, B.; et al. Combined circulating epigenetic markers to improve mesothelin performance in the diagnosis of malignant mesothelioma. Lung Cancer 2015, 90, 457–464. Available online: https://pubmed.ncbi.nlm.nih.gov/26431916/ (accessed on 12 September 2025). [CrossRef]
- Blum, W.; Pecze, L.; Rodriguez, J.W.; Steinauer, M.; Schwaller, B. Regulation of calretinin in malignant mesothelioma is mediated by septin 7 binding to the CALB2 promoter. BMC Cancer 2018, 18, 475. Available online: https://pubmed.ncbi.nlm.nih.gov/29699512/ (accessed on 11 September 2025). [CrossRef]
- Casjens, S.; Johnen, G.; Raiko, I.; Pesch, B.; Taeger Di Töpfer, C.; Schonefeld, S.; Moebus, S.; Jöckel, K.H.; Brüning, T.; Weber, D. Re-evaluation of potential predictors of calretinin and mesothelin in a population-based cohort study using assays for the routine application in clinical medicine. BMJ Open 2021, 11, e039079. Available online: https://pubmed.ncbi.nlm.nih.gov/33602699/ (accessed on 11 September 2025). [CrossRef]
- Zupanc, C.; Franko, A.; Štrbac, D.; Fikfak, M.D.; Kovač, V.; Dolžan, V.; Goričar, K. Serum calretinin as a biomarker in malignant mesothelioma. J. Clin. Med. 2021, 10, 4875. Available online: https://www.mdpi.com/2077-0383/10/21/4875/htm (accessed on 11 September 2025). [CrossRef]
- Zupanc, C.; Franko, A.; Štrbac, D.; Kovač, V.; Dolžan, V.; Goričar, K. Serum Calretinin and Genetic Variability as a Prognostic and Predictive Factor in Malignant Mesothelioma. Int. J. Mol. Sci. 2024, 25, 190. Available online: https://www.mdpi.com/1422-0067/25/1/190/htm (accessed on 11 September 2025). [CrossRef] [PubMed]
- Miska, E.A. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev. 2005, 15, 563–568. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0959437X05001346 (accessed on 8 September 2025). [CrossRef]
- Zhu, L.; Ying, S.; Su, X.; Yu, W.; Yan, K.; Shen, W.; Hu, S.; Jiang, Z.; Xia, H.; Feng, L.; et al. A four-miRNA signature as a potential biomarker of malignant mesothelioma patients from hand-spinning asbestos exposed area in Eastern China. Ecotoxicol. Environ. Saf. 2025, 299, 118357. Available online: https://www.sciencedirect.com/science/article/pii/S0147651325006931?via%3Dihub (accessed on 11 September 2025). [CrossRef]
- Kim, K.; Ko, Y.; Oh, H.; Ha, M.; Kang, J.; Kwon, E.J.; Kang, J.W.; Kim, Y.; Heo, H.J.; Kim, G.; et al. MicroRNA-98 is a prognostic factor for asbestos-induced mesothelioma. J. Toxicol. Environ. Health A 2020, 83, 126–134. Available online: https://pubmed.ncbi.nlm.nih.gov/32114955/ (accessed on 12 September 2025). [CrossRef]
- Marukawa, M.; Hiyama, J.; Shiota, Y.; Ono, T.; Sasaki, N.; Taniyama, K.; Mashiba, H. The usefulness of CYFRA 21-1 in diagnosing and monitoring malignant pleural mesothelioma. Acta Med. Okayama 1998, 52, 119–123. Available online: https://pubmed.ncbi.nlm.nih.gov/9588228/ (accessed on 11 September 2025).
- Paganuzzi, M.; Onetto, M.; Marroni, P.; Filiberti, R.; Tassara, E.; Parodi, S.; Felletti, R. Diagnostic value of CYFRA 21-1 tumor marker and CEA in pleural effusion due to mesothelioma. Chest 2001, 119, 1138–1142. Available online: https://journal.chestnet.org/action/showFullText?pii=S0012369215520722 (accessed on 11 September 2025). [CrossRef]
- Jones, K.L.; Mansell, A.; Patella, S.; Scott, B.J.; Hedger, M.P.; De Kretser, D.M.; Phillips, D.J. Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia. Proc. Natl. Acad. Sci. USA 2007, 104, 16239. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC2042191/ (accessed on 12 September 2025). [CrossRef]
- Halder, S.K.; Beauchamp, R.D.; Datta, P.K. A Specific Inhibitor of TGF-β Receptor Kinase, SB-431542, as a Potent Antitumor Agent for Human Cancers. Neoplasia 2005, 7, 509–521. Available online: https://www.sciencedirect.com/science/article/pii/S1476558605800570 (accessed on 13 November 2025). [CrossRef] [PubMed]
- Hoda, M.A.; Dong, Y.; Rozsas, A.; Klikovits, T.; Laszlo, V.; Ghanim, B.; Stockhammer, P.; Ozsvar, J.; Jakopovic, M.; Samarzija, M.; et al. Circulating activin A is a novel prognostic biomarker in malignant pleural mesothelioma—A multi-institutional study. Eur. J. Cancer 2016, 63, 64–73. Available online: https://pubmed.ncbi.nlm.nih.gov/27288871/ (accessed on 12 September 2025). [CrossRef] [PubMed]
- Vanderbilt, J.N.; Allen, L.; Gonzalez, R.F.; Tigue, Z.; Edmondson, J.; Ansaldi, D.; Gillespie, A.M.; Dobbs, L.G. Directed expression of transgenes to alveolar type I cells in the mouse. Am. J. Respir. Cell Mol. Biol. 2008, 39, 253–262. Available online: https://pubmed.ncbi.nlm.nih.gov/18367724/ (accessed on 13 November 2025). [CrossRef] [PubMed]
- Kimura, N.; Kimura, I. Podoplanin as a marker for mesothelioma. Pathol. Int. 2005, 55, 83–86. Available online: https://pubmed.ncbi.nlm.nih.gov/15693854/ (accessed on 13 November 2025). [CrossRef]
- Abe, S.; Morita, Y.; Kaneko, M.K.; Hanibuchi, M.; Tsujimoto, Y.; Goto, H.; Kakiuchi, S.; Aono, Y.; Huang, J.; Sato, S.; et al. A Novel Targeting Therapy of Malignant Mesothelioma Using Anti-Podoplanin Antibody. J. Immunol. 2013, 190, 6239–6249. [Google Scholar] [CrossRef]
- Byrne, M.J.; Nowak, A.K. Modified RECIST criteria for assessment of response in malignant pleural mesothelioma. Ann. Oncol. 2004, 15, 257–260. Available online: https://www.annalsofoncology.org/action/showFullText?pii=S0923753419656218 (accessed on 16 October 2025). [CrossRef]
- Tsao, A.S.; Gladish, G.W.; Gill, R.R. Revised Modified RECIST Criteria in Malignant Pleural Mesothelioma (Version 1.1): A Step Forward in a Long Race. J. Thorac. Oncol. 2018, 13, 871–873. Available online: https://www.jto.org/action/showFullText?pii=S1556086418306014 (accessed on 17 October 2025). [CrossRef] [PubMed]
- Armato, S.G.; Nowak, A.K. Revised Modified Response Evaluation Criteria in Solid Tumors for Assessment of Response in Malignant Pleural Mesothelioma (Version 1.1). J. Thorac. Oncol. 2018, 13, 1012–1021. Available online: https://www.jto.org/action/showFullText?pii=S1556086418305963 (accessed on 17 October 2025). [CrossRef]
- Hollevoet, K.; Nackaerts, K.; Thas, O.; Thimpont, J.; Germonpré, P.; De Vuyst, P.; Bosquée, L.; Legrand, C.; Kellen, E.; Kishi, Y.; et al. The effect of clinical covariates on the diagnostic and prognostic value of soluble mesothelin and megakaryocyte potentiating factor. Chest 2012, 141, 477–484. Available online: https://journal.chestnet.org/action/showFullText?pii=S0012369212600877 (accessed on 12 September 2025). [CrossRef]
- Lynch, G.A.; Symonds, J.; Morley, A.; Azubuike-Dyer, E.; Cooper, W.; Edey, A.; Fonseka DDe Tsim, S.; Blyth, K.; White, P.; Maskell, N.A.; et al. Serum mesothelin as a response biomarker in pleural mesothelioma. Lung Cancer 2025, 206, 108670. Available online: https://www.lungcancerjournal.info/action/showFullText?pii=S0169500225005628 (accessed on 11 September 2025). [CrossRef] [PubMed]
- Hassan, R.; Remaley, A.T.; Sampson, M.L.; Zhang, J.; Cox, D.D.; Pingpank, J.; Alexander, R.; Willingham, M.; Pastan, I.; Onda, M. Detection and quantitation of serum mesothelin, a tumor marker for patients with mesothelioma and ovarian cancer. Clin. Cancer Res. 2006, 12, 447–453. Available online: https://pubmed.ncbi.nlm.nih.gov/16428485/ (accessed on 12 September 2025). [CrossRef]
- Hassan, R.; Butler, M.; O’Cearbhaill, R.E.; Oh, D.Y.; Johnson, M.; Zikaras, K.; Smalley, M.; Ross, M.; Tanyi, J.L.; Ghafoor, A.; et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: Phase 1/2 trial interim results. Nat. Med. 2023, 29, 2099–2109. Available online: https://www.nature.com/articles/s41591-023-02452-y (accessed on 12 September 2025). [CrossRef] [PubMed]
- Study Details|NCT02414269|Malignant Pleural Disease Treated with Autologous T Cells Genetically Engineered to Target the Cancer-Cell Surface Antigen Mesothelin|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT02414269?cond=Pleural%20Mesothelioma&term=SMRP&rank=2 (accessed on 12 September 2025).
- Mitra, S.; Jang, H.J.; Kuncheria, A.; Kang, S.W.; Choi, J.M.; Shim, J.S.; Lee, C.; Ranchod, P.; Jindra, P.; Ramineni, M.; et al. Soluble mesothelin-related peptide as a prognosticator in pleural mesothelioma patients receiving checkpoint immunotherapy. J. Thorac. Cardiovasc. Surg. 2025, 169, 1082–1095.e4. Available online: https://www.jtcvs.org/action/showFullText?pii=S0022522324009140 (accessed on 11 September 2025). [CrossRef]
- Xue, C.; Wu, N.; Li, X.; Qiu, M.; Du, X.; Ye, Q. Serum concentrations of Krebs von den Lungen-6, surfactant protein D, and matrix metalloproteinase-2 as diagnostic biomarkers in patients with asbestosis and silicosis: A case–control study. BMC Pulm. Med. 2017, 17, 144. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5693552/ (accessed on 13 November 2025). [CrossRef]
- Stockhammer, P.; Baumeister, H.; Ploenes, T.; Bonella, F.; Theegarten, D.; Dome, B.; Pirker, C.; Berger, W.; Hegedüs, L.; Baranyi, M.; et al. Krebs von den Lungen 6 (KL-6) is a novel diagnostic and prognostic biomarker in pleural mesothelioma. Lung Cancer 2023, 185, 107360. Available online: https://pubmed.ncbi.nlm.nih.gov/37713954/ (accessed on 11 September 2025). [CrossRef]
- Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol. 2020, 30, R921–R925. Available online: https://pubmed.ncbi.nlm.nih.gov/32810447/ (accessed on 13 November 2025). [CrossRef] [PubMed]
- Ghaffari, S.; Rezaei, N. Eosinophils in the tumor microenvironment: Implications for cancer immunotherapy. J. Transl. Med. 2023, 21, 551. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10433623/ (accessed on 13 November 2025). [CrossRef] [PubMed]
- Willems, M.; Scherpereel, A.; Wasielewski, E.; Raskin, J.; Brossel, H.; Fontaine, A.; Grégoire, M.; Halkin, L.; Jamakhani, M.; Heinen, V.; et al. Excess of blood eosinophils prior to therapy correlates with worse prognosis in mesothelioma. Front. Immunol. 2023, 14, 1148798. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10070849/ (accessed on 13 November 2025). [CrossRef]
- Hassan, R.; Kindler, H.L.; Jahan, T.; Bazhenova, L.; Reck, M.; Thomas, A.; Pastan, I.; Parno, J.; O’Shannessy, D.J.; Fatato, P.; et al. Phase II clinical trial of amatuximab, a chimeric antimesothelin antibody with pemetrexed and cisplatin in advanced unresectable pleural mesothelioma. Clin. Cancer Res. 2014, 20, 5927–5936. Available online: https://clincancerres/article/20/23/5927/13824/Phase-II-Clinical-Trial-of-Amatuximab-a-Chimeric (accessed on 14 September 2025). [CrossRef]
- Adusumilli, P.S.; Zauderer, M.G.; Rivière, I.; Solomon, S.B.; Rusch, V.W.; O’Cearbhaill, R.E.; Zhu, A.; Cheema, W.; Chintala, N.K.; Halton, E.; et al. A phase i trial of regional mesothelin-targeted car t-cell therapy in patients with malignant pleural disease, in combination with the anti–pd-1 agent pembrolizumab. Cancer Discov. 2021, 11, 2748–2763. Available online: https://cancerdiscovery/article/11/11/2748/666400/A-Phase-I-Trial-of-Regional-Mesothelin-Targeted (accessed on 14 September 2025). [CrossRef]
- Liu, Z.; Xia, Y.; Li, L.; Sun, Y.; Lin, Z.; Rong, L.; Zhu, Z.; Song, Z.; Xue, H.; Duan, J.; et al. Abstract CT134: Non-viral mesothelin-targeted CAR-T cells armored with IFNg-induced secretion of PD-1 nanobody in treatment of malignant mesothelioma in phase I clinical trial. Cancer Res. 2023, 83 (Suppl. S8), CT134. Available online: https://cancerres/article/83/8_Supplement/CT134/725317/Abstract-CT134-Non-viral-mesothelin-targeted-CAR-T (accessed on 19 September 2025). [CrossRef]
- Smalley, M.; Ross, M.; Fowler, S.F.; McLaughlin, L.; Jeter, E.; Zikaras, K.; Bardwell, P.D.; Quintás-Cardama, A.; Tighe, R. Abstract CT197: Profiling of tumor infiltrating T cells in malignant pleural/peritoneal mesothelioma (MPM) and ovarian cancer patients as part of a Phase 1 clinical trial of gavo-cel (TC-210). Cancer Res. 2023, 83 (Suppl. S8), CT197. Available online: https://cancerres/article/83/8_Supplement/CT197/725443/Abstract-CT197-Profiling-of-tumor-infiltrating-T (accessed on 19 September 2025). [CrossRef]
- Ghafoor, A.; Mian, I.; Wagner, C.; Mallory, Y.; Agra, M.G.; Morrow, B.; Wei, J.S.; Khan, J.; Thomas, A.; Sengupta, M.; et al. Phase 2 Study of Olaparib in Malignant Mesothelioma and Correlation of Efficacy with Germline or Somatic Mutations in BAP1 Gene. JTO Clin. Res. Rep. 2021, 2, 100231. Available online: https://pubmed.ncbi.nlm.nih.gov/34661178/ (accessed on 17 September 2025). [CrossRef]
- Yap, T.A.; Kwiatkowski, D.J.; Desai, J.; Dagogo-Jack, I.; Millward, M.; Kindler, H.L.; Tolcher, A.W.; Frentzas, S.; Thurston, A.W.; Post, L.; et al. Abstract CT006: First-in-class, first-in-human phase 1 trial of VT3989, an inhibitor of yes-associated protein (YAP)/transcriptional enhancer activator domain (TEAD), in patients (pts) with advanced solid tumors enriched for malignant mesothelioma and other tumors with neurofibromatosis 2 (NF2) mutations. Cancer Res. 2023, 83 (Suppl. S8), CT006. Available online: https://cancerres/article/83/8_Supplement/CT006/725200/Abstract-CT006-First-in-class-first-in-human-phase (accessed on 17 September 2025).
- Szlosarek, P.W.; Creelan, B.C.; Sarkodie, T.; Nolan, L.; Taylor, P.; Olevsky, O.; Grosso, F.; Cortinovis, D.; Chitnis, M.; Roy, A.; et al. Pegargiminase Plus First-Line Chemotherapy in Patients with Nonepithelioid Pleural Mesothelioma: The ATOMIC-Meso Randomized Clinical Trial. JAMA Oncol. 2024, 10, e236789. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10870227/ (accessed on 17 September 2025). [CrossRef] [PubMed]
- Zauderer, M.G.; Tsao, A.S.; Dao, T.; Panageas, K.; Lai, W.V.; Rimner, A.; Rusch, V.W.; Adusumilli, P.S.; Ginsberg, M.S.; Gomez, D.; et al. A Randomized Phase II Trial of Adjuvant Galinpepimut-S, WT-1 Analogue Peptide Vaccine, After Multimodality Therapy for Patients with Malignant Pleural Mesothelioma. Clin. Cancer Res. 2017, 23, 7483–7489. Available online: https://pubmed.ncbi.nlm.nih.gov/28972039/ (accessed on 19 September 2025). [CrossRef]
- Study Details|NCT03907852|Phase 1/2 Trial of Gavo-cel (TC-210) in Patients with Advanced Mesothelin-Expressing Cancer|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03907852 (accessed on 14 September 2025).
- Study Details|NCT06756035|CT-95 in Advanced Cancers Associated with Mesothelin Expression|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT06756035?cond=Mesothelioma&term=Targeted%20Therapy&rank=88 (accessed on 19 September 2025).
- Study Details|NCT06196294|GPC3/Mesothelin-CAR-γδT Cells Against Cancers|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT06196294?cond=Mesothelioma&term=Targeted%20Therapy&rank=41 (accessed on 19 September 2025).
- Study Details|NCT06885697|Anti-Mesothelin TNaive/SCM hYP218 (TNhYP218) CAR T Cells in Participants with Mesothelin-Expressing Solid Tumors Including Mesothelioma|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT06885697?cond=Mesothelioma&term=Targeted%20Therapy&rank=92 (accessed on 19 September 2025).
- Study Details|NCT05451849|A Phase 1/2 Trial of TC-510 In Patients with Advanced Mesothelin-Expressing Cancer|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT05451849?cond=Mesothelioma&term=Targeted%20Therapy&intr=NCT05451849&rank=1 (accessed on 14 September 2025).
- Study Details|NCT03872206|Study of HPN536 in Patients with Advanced Cancers Associated with Mesothelin Expression|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03872206 (accessed on 17 September 2025).
- Study Details|NCT04665206|Study to Evaluate VT3989 in Patients with Metastatic Solid Tumors|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04665206?cond=Mesothelioma&term=Targeted%20Therapy&rank=59 (accessed on 19 September 2025).
- Study Details|NCT04857372|A Phase I Study of IAG933 in Patients with Advanced Mesothelioma and Other Solid Tumors|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04857372 (accessed on 17 September 2025).
- Study Details|NCT06251310|SW-682 in Advanced Solid Tumors|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT06251310?cond=Mesothelioma&term=Targeted%20Therapy&rank=16 (accessed on 19 September 2025).
- Study Details|NCT05275478|Safety and Tolerability of TNG908 in Patients with MTAP-deleted Solid Tumors|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT05275478 (accessed on 17 September 2025).
- Study Details|NCT05245500|Phase 1 Study of MRTX1719 in Solid Tumors with MTAP Deletion|ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/study/NCT05245500 (accessed on 17 September 2025).
- Study Details|NCT02357147|Study of the Safety and Efficacy of Amatuximab in Combination with Pemetrexed and Cisplatin in Subjects with Unresectable Malignant Pleural Mesothelioma (MPM)|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT02357147 (accessed on 14 September 2025).
- Golfier, S.; Kopitz, C.; Kahnert, A.; Heisler, I.; Schatz, C.A.; Stelte-Ludwig, B.; Mayer-Bartschmid, A.; Unterschemmann, K.; Bruder, S.; Linden, L.; et al. Anetumab ravtansine: A novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol. Cancer Ther. 2014, 13, 1537–1548. Available online: https://pubmed.ncbi.nlm.nih.gov/24714131/ (accessed on 14 September 2025). [CrossRef] [PubMed]
- Kindler, H.L.; Novello, S.; Bearz, A.; Ceresoli, G.L.; Aerts, J.G.J.V.; Spicer, J.; Taylor, P.; Nackaerts, K.; Greystoke, A.; Jennens, R.; et al. Anetumab ravtansine versus vinorelbine in patients with relapsed, mesothelin-positive malignant pleural mesothelioma (ARCS-M): A randomised, open-label phase 2 trial. Lancet Oncol. 2022, 23, 540–552. Available online: https://pubmed.ncbi.nlm.nih.gov/35358455/ (accessed on 14 September 2025). [CrossRef] [PubMed]
- Mansfield, A.S.; Vivien Yin, J.; Bradbury, P.; Kwiatkowski, D.J.; Patel, S.; Bazhenova, L.A.; Forde, P.; Lou, Y.; Dizona, P.; Villaruz, L.C.; et al. Randomized trial of anetumab ravtansine and pembrolizumab compared to pembrolizumab for mesothelioma. Lung Cancer 2024, 195, 107928. Available online: https://pubmed.ncbi.nlm.nih.gov/39197359/ (accessed on 14 September 2025). [CrossRef]
- Luke, J.J.; Barlesi, F.; Chung, K.; Tolcher, A.W.; Kelly, K.; Hollebecque, A.; Le Tourneau, C.; Subbiah, V.; Tsai, F.; Kao, S.; et al. Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. J. Immunother. Cancer 2021, 9, 2015. Available online: https://jitc.bmj.com/content/9/2/e002015 (accessed on 14 September 2025). [CrossRef]
- Chowdhury, P.S.; Viner, J.L.; Beers, R.; Pastan, I. Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. Proc. Natl. Acad. Sci. USA 1998, 95, 669–674. Available online: https://pubmed.ncbi.nlm.nih.gov/9435250/ (accessed on 19 September 2025). [CrossRef]
- Hassan, R.; Bullock, S.; Premkumar, A.; Kreitman, R.J.; Kindler, H.; Willingham, M.C.; Pastan, I. Phase I Study of SS1P, a Recombinant Anti-Mesothelin Immunotoxin Given as a Bolus I.V. Infusion to Patients with Mesothelin-Expressing Mesothelioma, Ovarian, and Pancreatic Cancers. Clin. Cancer Res. 2007, 13, 5144–5149. Available online: https://clincancerres/article/13/17/5144/164104/Phase-I-Study-of-SS1P-a-Recombinant-Anti (accessed on 19 September 2025). [CrossRef]
- Hassan, R.; Sharon, E.; Thomas, A.; Zhang, J.; Ling, A.; Miettinen, M.; Kreitman, R.J.; Steinberg, S.M.; Hollevoet, K.; Pastan, I. Phase 1 study of the antimesothelin immunotoxin SS1P in combination with pemetrexed and cisplatin for front-line therapy of pleural mesothelioma and correlation of tumor response with serum mesothelin, megakaryocyte potentiating factor, and cancer antigen 125. Cancer 2014, 120, 3311–3319. [Google Scholar] [CrossRef]
- Hassan, R.; Alewine, C.; Mian, I.; Spreafico, A.; Siu, L.L.; Gomez-Roca, C.; Delord, J.P.; Italiano, A.; Lassen, U.; Soria, J.C.; et al. Phase 1 study of the immunotoxin LMB-100 in patients with mesothelioma and other solid tumors expressing mesothelin. Cancer 2020, 126, 4936–4947. [Google Scholar] [CrossRef] [PubMed]
- Study Details|NCT03644550|Anti-Mesothelin Immunotoxin LMB-100 Followed by Pembrolizumab in Malignant Mesothelioma|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03644550?term=AREA%5BBasicSearch%5D(AREA%5BBasicSearch%5D(%22KEYTRUDA%22%20AND%20%22Mesothelioma%22))&rank=7 (accessed on 19 September 2025).
- Beatty, G.L.; Haas, A.R.; Maus, M.V.; Torigian, D.A.; Soulen, M.C.; Plesa, G.; Chew, A.; Zhao, Y.; Levine, B.L.; Albelda, S.M.; et al. Mesothelin-specific Chimeric Antigen Receptor mRNA-Engineered T cells Induce Anti-Tumor Activity in Solid Malignancies. Cancer Immunol. Res. 2013, 2, 112. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3932715/ (accessed on 14 September 2025). [CrossRef]
- Haas, A.R.; Tanyi, J.L.; O’Hara, M.H.; Gladney, W.L.; Lacey, S.F.; Torigian, D.A.; Soulen, M.C.; Tian, L.; McGarvey, M.; Nelson, A.M.; et al. Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Mol. Ther. 2019, 27, 1919. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6838875/ (accessed on 14 September 2025). [CrossRef]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef] [PubMed]
- Baeuerle, P.A.; Ding, J.; Patel, E.; Thorausch, N.; Horton, H.; Gierut, J.; Scarfo, I.; Choudhary, R.; Kiner, O.; Krishnamurthy, J.; et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 2019, 10, 2087. Available online: https://www.nature.com/articles/s41467-019-10097-0 (accessed on 14 September 2025). [CrossRef]
- Ding, J.; Guyette, S.; Schrand, B.; Geirut, J.; Horton, H.; Guo, G.; Delgoffe, G.; Menk, A.; Baeuerle, P.A.; Hofmeister, R.; et al. Mesothelin-targeting T cells bearing a novel T cell receptor fusion construct (TRuC) exhibit potent antitumor efficacy against solid tumors. Oncoimmunology 2023, 12, 2182058. Available online: https://pubmed.ncbi.nlm.nih.gov/36875551/ (accessed on 14 September 2025). [CrossRef]
- Hassan, R.; Butler, M.O.; Oh, D.Y.; O’Cearbhaill, R.E.; MacMullen, L.; Jeter, E.; Guha, U.; Muzithras, V.P.; Zikaras, K.; Johnson, M.L.; et al. Phase 1 trial of gavocabtagene autoleucel (gavo-cel, TC-210) in patients (pts) with treatment refractory mesothelioma and other mesothelin-expressing solid tumors. J. Clin. Oncol. 2023, 41 (Suppl. S16), 8537. Available online: https://ascopubs.org/doi/pdf/10.1200/JCO.2023.41.16_suppl.8537 (accessed on 14 September 2025). [CrossRef]
- Tomar, S.; Zhang, J.; Khanal, M.; Hong, J.; Venugopalan, A.; Jiang, Q.; Sengupta, M.; Miettinen, M.; Li, N.; Pastan, I.; et al. Development of Highly Effective Anti-Mesothelin hYP218 Chimeric Antigen Receptor T Cells with Increased Tumor Infiltration and Persistence for Treating Solid Tumors. Mol. Cancer Ther. 2022, 21, 1195–1206. Available online: https://pubmed.ncbi.nlm.nih.gov/35499461/ (accessed on 19 September 2025). [CrossRef]
- McCarthy, D.; Lofgren, M.; Watt, A.; Horton, H.; Kieffer-Kwon, P.; Ding, J.; Kobold, S.; Baeuerle, P.A.; Hofmeister, R.; Gutierrez, D.A.; et al. Functional enhancement of mesothelin-targeted TRuC-T cells by a PD1-CD28 chimeric switch receptor. Cancer Immunol. Immunother. 2023, 72, 4195–4207. Available online: https://pubmed.ncbi.nlm.nih.gov/37848682/ (accessed on 14 September 2025). [CrossRef]
- Kutle, I.; Polten, R.; Stalp, J.L.; Hachenberg, J.; Todzey, F.; Hass, R.; Zimmermann, K.; von der Ohe, J.; von Kaisenberg, C.; Neubert, L.; et al. Anti-Mesothelin CAR-NK cells as a novel targeted therapy against cervical cancer. Front. Immunol. 2024, 15, 1485461. [Google Scholar] [CrossRef]
- Molloy, M.E.; Austin, R.J.; Lemon, B.D.; Aaron, W.H.; Ganti, V.; Jones, A.; Jones, S.D.; Strobel, K.L.; Patnaik, P.; Sexton, K.; et al. Preclinical characterization of HPN536, a Trispecific, T-Cell-Activating protein construct for the treatment of mesothelin-expressing solid tumors. Clin. Cancer Res. 2021, 27, 1452–1462. [Google Scholar] [CrossRef]
- Nishikawa, H.; Wu, W.; Koike, A.; Kojima, R.; Gomi, H.; Fukuda, M.; Ohta, T. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res. 2009, 69, 111–119. Available online: https://pubmed.ncbi.nlm.nih.gov/19117993/ (accessed on 17 September 2025). [CrossRef] [PubMed]
- Elsayed, A.M.; Kittaneh, M.; Cebulla, C.M.; Abdel-Rahman, M.H. An overview of BAP1 Biological Functions and Current Therapeutics. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189267. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC12337360/ (accessed on 17 September 2025). [CrossRef] [PubMed]
- Krug, L.M.; Curley, T.; Schwartz, L.; Richardson, S.; Marks, P.; Chiao, J.; Kelly, W.K. Potential role of histone deacetylase inhibitors in mesothelioma: Clinical experience with suberoylanilide hydroxamic acid. Clin. Lung Cancer 2006, 7, 257–261. Available online: https://pubmed.ncbi.nlm.nih.gov/16512979/ (accessed on 17 September 2025). [CrossRef] [PubMed]
- Sacco, J.J.; Kenyani, J.; Butt, Z.; Carter, R.; Chew, H.Y.; Cheeseman, L.P.; Darling, S.; Denny, M.; Urbé, S.; Clague, M.J.; et al. Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors. Oncotarget 2015, 6, 13757–13771. Available online: https://pubmed.ncbi.nlm.nih.gov/25970771/ (accessed on 17 September 2025). [CrossRef] [PubMed]
- Pastorino, S.; Yoshikawa, Y.; Pass, H.I.; Emi, M.; Nasu, M.; Pagano, I.; Takinishi, Y.; Yamamoto, R.; Minaai, M.; Hashimoto-Tamaoki, T.; et al. A Subset of Mesotheliomas with Improved Survival Occurring in Carriers of BAP1 and Other Germline Mutations. J. Clin. Oncol. 2018, 36, 3485–3494. Available online: https://pubmed.ncbi.nlm.nih.gov/30376426/ (accessed on 17 September 2025). [CrossRef]
- Dias, M.P.; Moser, S.C.; Ganesan, S.; Jonkers, J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2021, 18, 773–791. Available online: https://pubmed.ncbi.nlm.nih.gov/34285417/ (accessed on 17 September 2025). [CrossRef]
- Fennell, D.A.; King, A.; Mohammed, S.; Branson, A.; Brookes, C.; Darlison, L.; Dawson, A.G.; Gaba, A.; Hutka, M.; Morgan, B.; et al. Rucaparib in patients with BAP1-deficient or BRCA1-deficient mesothelioma (MiST1): An open-label, single-arm, phase 2a clinical trial. Lancet Respir. Med. 2021, 9, 593–600. Available online: https://www.thelancet.com/action/showFullText?pii=S2213260020303908 (accessed on 17 September 2025). [CrossRef]
- George, T.J.; Lee, J.H.; DeRemer, D.L.; Hosein, P.J.; Staal, S.; Markham, M.J.; Jones, D.; Daily, K.C.; Chatzkel, J.A.; Ramnaraign, B.H.; et al. Phase II Trial of the PARP Inhibitor, Niraparib, in BAP1 and Other DNA Damage Response Pathway-Deficient Neoplasms. JCO Precis. Oncol. 2024, 8, e2400406. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11616782/ (accessed on 17 September 2025). [CrossRef]
- Zauderer, M.G.; Szlosarek, P.W.; Le Moulec, S.; Popat, S.; Taylor, P.; Planchard, D.; Scherpereel, A.; Koczywas, M.; Forster, M.; Cameron, R.B.; et al. EZH2 inhibitor tazemetostat in patients with relapsed or refractory, BAP1-inactivated malignant pleural mesothelioma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2022, 23, 758–767. Available online: https://pubmed.ncbi.nlm.nih.gov/35588752/ (accessed on 17 September 2025). [CrossRef]
- Krug, L.M.; Kindler, H.L.; Calvert, H.; Manegold, C.; Tsao, A.S.; Fennell, D.; Öhman, R.; Plummer, R.; Eberhardt, W.E.E.; Fukuoka, K.; et al. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): A phase 3, double-blind, randomised, placebo-controlled trial. Lancet Oncol. 2015, 16, 447–456. Available online: https://pubmed.ncbi.nlm.nih.gov/25800891/ (accessed on 17 September 2025). [CrossRef]
- Sato, T.; Sekido, Y. NF2/Merlin Inactivation and Potential Therapeutic Targets in Mesothelioma. Int. J. Mol. Sci. 2018, 19, 988. Available online: https://www.mdpi.com/1422-0067/19/4/988/htm (accessed on 17 September 2025). [CrossRef]
- Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP/TAZ at the Roots of Cancer. Cancer Cell 2016, 29, 783–803. Available online: https://pubmed.ncbi.nlm.nih.gov/27300434/ (accessed on 17 September 2025). [CrossRef] [PubMed]
- Meiller, C.; Montagne, F.; Hirsch, T.Z.; Caruso, S.; de Wolf, J.; Bayard, Q.; Assié, J.B.; Meunier, L.; Blum, Y.; Quetel, L.; et al. Multi-site tumor sampling highlights molecular intra-tumor heterogeneity in malignant pleural mesothelioma. Genome Med. 2021, 13, 113. Available online: https://pubmed.ncbi.nlm.nih.gov/34261524/ (accessed on 13 November 2025). [CrossRef]
- Yap, T.A.; Kwiatkowski, D.J.; Dagogo-Jack, I.; Offin, M.; Zauderer, M.G.; Kratzke, R.; Desai, J.; Body, A.; Millward, M.; Tolcher, A.W.; et al. YAP/TEAD inhibitor VT3989 in solid tumors: A phase 1/2 trial. Nat. Med. 2025, 2025, 1–10. Available online: https://www.nature.com/articles/s41591-025-04029-3 (accessed on 14 November 2025). [CrossRef]
- Study Details|NCT05228015|Oral TEAD Inhibitor Targeting the Hippo Pathway in Subjects with Advanced Solid Tumors|ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/study/NCT05228015 (accessed on 19 September 2025).
- Chen, L.; de Marval, P.M.; Powell, K.; Johnson, M.; Falls, G.; Lawhorn, B.; Candi, A.; Kilonda, A.; Vanderhoydonck, B.; Marchand, A.; et al. Abstract 4964: SW-682: A novel TEAD inhibitor for the treatment of cancers bearing mutations in the Hippo signaling pathway. Cancer Res. 2023, 83 (Suppl. S7), 4964. Available online: https://cancerres/article/83/7_Supplement/4964/723638/Abstract-4964-SW-682-A-novel-TEAD-inhibitor-for (accessed on 19 September 2025). [CrossRef]
- Sherr, C.J. The INK4a/ARF network in tumour suppression. Nat. Rev. Mol. Cell Biol. 2001, 2, 731–737. Available online: https://pubmed.ncbi.nlm.nih.gov/11584300/ (accessed on 17 September 2025). [CrossRef]
- Rubin, S.M. Deciphering the retinoblastoma protein phosphorylation code. Trends Biochem. Sci. 2013, 38, 12–19. Available online: https://pubmed.ncbi.nlm.nih.gov/23218751/ (accessed on 17 September 2025). [CrossRef] [PubMed]
- Aliagas, E.; Alay, A.; Martínez-Iniesta, M.; Hernández-Madrigal, M.; Cordero, D.; Gausachs, M.; Pros, E.; Saigí, M.; Busacca, S.; Sharkley, A.J.; et al. Efficacy of CDK4/6 inhibitors in preclinical models of malignant pleural mesothelioma. Br. J. Cancer 2021, 125, 1365–1376. Available online: https://www.nature.com/articles/s41416-021-01547-y (accessed on 17 September 2025). [CrossRef] [PubMed]
- Marshall, K.; Jackson, S.; Jones, J.; Holme, J.; Lyons, J.; Barrett, E.; Taylor, P.; Bishop, P.; Hodgson, C.; Green, M.; et al. Homozygous deletion of CDKN2A in malignant mesothelioma: Diagnostic utility, patient characteristics and survival in a UK mesothelioma centre. Lung Cancer 2020, 150, 195–200. Available online: https://pubmed.ncbi.nlm.nih.gov/33197684/ (accessed on 17 September 2025). [CrossRef] [PubMed]
- Fennell, D.A.; King, A.; Mohammed, S.; Greystoke, A.; Anthony, S.; Poile, C.; Nusrat, N.; Scotland, M.; Bhundia, V.; Branson, A.; et al. Abemaciclib in patients with p16ink4A-deficient mesothelioma (MiST2): A single-arm, open-label, phase 2 trial. Lancet Oncol. 2022, 23, 374–381. Available online: https://www.thelancet.com/action/showFullText?pii=S1470204522000626 (accessed on 17 September 2025). [CrossRef]
- Terenziani, R.; Galetti, M.; La Monica, S.; Fumarola, C.; Zoppi, S.; Alfieri, R.; Digiacomo, G.; Cavazzoni, A.; Cavallo, D.; Corradi, M.; et al. CDK4/6 Inhibition Enhances the Efficacy of Standard Chemotherapy Treatment in Malignant Pleural Mesothelioma Cells. Cancers 2022, 14, 5925. Available online: https://www.mdpi.com/2072-6694/14/23/5925/htm (accessed on 17 September 2025). [CrossRef]
- Bonelli, M.A.; Digiacomo, G.; Fumarola, C.; Alfieri, R.; Quaini, F.; Falco, A.; Madeddu, D.; La Monica, S.; Cretella, D.; Ravelli, A.; et al. Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR Pathways Induces a Synergistic Anti-Tumor Effect in Malignant Pleural Mesothelioma Cells. Neoplasia 2017, 19, 637–648. Available online: https://www.sciencedirect.com/science/article/pii/S1476558617301537 (accessed on 17 September 2025). [CrossRef]
- Alhalabi, O.; Chen, J.; Zhang, Y.; Lu, Y.; Wang, Q.; Ramachandran, S.; Tidwell, R.S.; Han, G.; Yan, X.; Meng, J.; et al. MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers. Nat. Commun. 2022, 13, 1797. Available online: https://www.nature.com/articles/s41467-022-29397-z (accessed on 17 September 2025). [CrossRef]
- Kryukov, G.V.; Wilson, F.H.; Ruth, J.R.; Paulk, J.; Tsherniak, A.; Marlow, S.E.; Vazquez, F.; Weir, B.A.; Fitzgerald, M.E.; Tanaka, M.; et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 2016, 351, 1214–1218. Available online: https://pubmed.ncbi.nlm.nih.gov/26912360/ (accessed on 17 September 2025). [CrossRef]
- Marjon, K.; Cameron, M.J.; Quang, P.; Clasquin, M.F.; Mandley, E.; Kunii, K.; McVay, M.; Choe, S.; Kernytsky, A.; Gross, S.; et al. MTAP Deletions in Cancer Create Vulnerability to Targeting of the MAT2A/PRMT5/RIOK1 Axis. Cell Rep. 2016, 15, 574–587. Available online: https://www.sciencedirect.com/science/article/pii/S2211124716302996 (accessed on 11 October 2025). [CrossRef]
- Briggs, K.J.; Cottrell, K.M.; Tonini, M.R.; Tsai, A.; Zhang, M.; Whittington, D.A.; Zhang, W.; Lombardo, S.A.; Yoda, S.; Wilker, E.W.; et al. TNG908 is a brain-penetrant, MTA-cooperative PRMT5 inhibitor developed for the treatment of MTAP-deleted cancers. Transl. Oncol. 2025, 52, 102264. [Google Scholar] [CrossRef] [PubMed]
- Bhadresha, K.; Mirza, S.; Penny, C.; Mughal, M.J. Targeting AXL in mesothelioma: From functional characterization to clinical implication. Crit. Rev. Oncol. Hematol. 2023, 188, 104043. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1040842823001312?via%3Dihub (accessed on 17 September 2025). [CrossRef] [PubMed]
- Krebs, M.G.; Branson, A.; Barber, S.; Poile, C.; King, A.; Greystoke, A.; Moody, S.; Nolan, L.; Scotland, M.; Darlison, L.; et al. Bemcentinib and pembrolizumab in patients with relapsed mesothelioma: MIST3, a phase IIa trial with cellular and molecular correlates of efficacy. J. Clin. Oncol. 2023, 41 (Suppl. S16), 8511. Available online: https://ascopubs.org/doi/pdf/10.1200/JCO.2023.41.16_suppl.8511 (accessed on 17 September 2025). [CrossRef]
- Hirai, S.; Yamada, T.; Katayama, Y.; Ishida, M.; Kawachi, H.; Matsui, Y.; Nakamura, R.; Morimoto, K.; Horinaka, M.; Sakai, T.; et al. Effects of Combined Therapeutic Targeting of AXL and ATR on Pleural Mesothelioma Cells. Mol. Cancer Ther. 2024, 23, 212–222. Available online: https://mct/article/23/2/212/733945/Effects-of-Combined-Therapeutic-Targeting-of-AXL (accessed on 11 October 2025). [CrossRef]
- Szlosarek, P.W.; Klabatsa, A.; Pallaska, A.; Sheaff, M.; Smith, P.; Crook, T.; Grimshaw, M.J.; Steele, J.P.; Rudd, R.M.; Balkwill, F.R.; et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin. Cancer Res. 2006, 12, 7126–7131. Available online: https://pubmed.ncbi.nlm.nih.gov/17145837/ (accessed on 17 September 2025). [CrossRef]
- Szlosarek, P.W.; Steele, J.P.; Nolan, L.; Gilligan, D.; Taylor, P.; Spicer, J.; Lind, M.; Mitra, S.; Shamash, J.; Phillips, M.M.; et al. Arginine Deprivation with Pegylated Arginine Deiminase in Patients with Argininosuccinate Synthetase 1–Deficient Malignant Pleural Mesothelioma: A Randomized Clinical Trial. JAMA Oncol. 2017, 3, 58–66. Available online: https://jamanetwork.com/journals/jamaoncology/fullarticle/2546657 (accessed on 17 September 2025). [CrossRef] [PubMed]
- Langerak, A.W.; Williamson, K.A.; Miyagawa, K.; Hagemeijer, A.; Versnel, M.A.; Hastie, N.D. Expression of the Wilms’ tumor gene WT1 in human malignant mesothelioma cell lines and relationship to platelet-derived growth factor A and insulin-like growth factor 2 expression. Genes Chromosomes Cancer 1995, 12, 87–96. Available online: https://pubmed.ncbi.nlm.nih.gov/7535092/ (accessed on 11 October 2025). [CrossRef]
- Keilholz, U.; Menssen, H.D.; Gaiger, A.; Menke, A.; Oji, Y.; Oka, Y.; Scheibenbogen, C.; Stauss, H.; Thiel, H.; Sugiyama, H. Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia 2005, 19, 1318–1323. Available online: https://pubmed.ncbi.nlm.nih.gov/15920488/ (accessed on 19 September 2025). [CrossRef]
- Nian, Q.; Lin, Y.; Zeng, J.; Zhang, Y.; Liu, R. Multifaceted functions of the Wilms tumor 1 protein: From its expression in various malignancies to targeted therapy. Transl. Oncol. 2025, 52, 102237. Available online: https://www.sciencedirect.com/science/article/pii/S1936523324003632 (accessed on 15 November 2025). [CrossRef]
- Pinilla-Ibarz, J.; May, R.J.; Korontsvit, T.; Gomez, M.; Kappel, B.; Zakhaleva, V.; Zhang, R.H.; Scheinberg, D.A. Improved human T-cell responses against synthetic HLA-0201 analog peptides derived from the WT1 oncoprotein. Leukemia 2006, 20, 2025–2033. Available online: https://pubmed.ncbi.nlm.nih.gov/16990779/ (accessed on 11 October 2025). [CrossRef] [PubMed]
- Agrawal, P.; Offin, M.; Lai, V.; Ginsberg, M.S.; Adusumilli, P.S.; Rusch, V.W.; Sauter, J.L.; Ho, T.; Wong, P.; Zauderer, M.G. Combining a WT1 Vaccine (Galinpepimut-S) with Checkpoint Inhibition (Nivolumab) in Patients with WT1–Expressing Diffuse Pleural Mesothelioma: A Phase 1 Study. JTO Clin. Res. Rep. 2024, 6, 100756. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11721428/ (accessed on 19 September 2025). [CrossRef] [PubMed]
- Yamamoto, Y.; Nishiura, A.; Yano, K.; Matsuda, N.; Takahashi Ru Tsutani, Y.; Okada, M.; Tahara, H. Abstract 1402: Preclinical evaluation of a novel senescence-associated miRNA miR-3140-3p for malignant pleural mesothelioma. Cancer Res. 2020, 80 (Suppl. S16), 1402. Available online: https://cancerres/article/80/16_Supplement/1402/641277/Abstract-1402-Preclinical-evaluation-of-a-novel (accessed on 13 November 2025). [CrossRef]
- Hiroshima University Starts Human Trial of miRNA Drug vs Treatment-Resistant Cancer Linked to Asbestos|Hiroshima University. Available online: https://www.hiroshima-u.ac.jp/en/news/69997 (accessed on 13 November 2025).
- Nakamura, A.; Takuwa, T.; Hashimoto, M.; Kuroda, A.; Nakamichi, T.; Matsumoto, S.; Kondo, N.; Kijima, T.; Yamakado, K.; Hasegawa, S. Clinical Outcomes with Recurrence After Pleurectomy/Decortication for Malignant Pleural Mesothelioma. Ann. Thorac. Surg. 2020, 109, 1537–1543. Available online: https://pubmed.ncbi.nlm.nih.gov/31962118/ (accessed on 13 November 2025). [CrossRef]
- Parikh, K.; Harris, F.R.; Karagouga, G.; Schrandt, A.; Mandrekar, J.; Johnson, S.; McCune, A.; Sadeghian, D.; Roy, D.; Polonis, K.; et al. Individualized Cell-Free DNA Monitoring with Chromosomal Junctions for Mesothelioma. JTO Clin. Res. Rep. 2024, 5, 100692. Available online: https://www.sciencedirect.com/science/article/pii/S2666364324000626?utm_source=chatgpt.com#sec3 (accessed on 19 November 2025). [CrossRef]
- Durvalumab Plus Chemo Yields Inconclusive Results in Advanced Pleural Mesothelioma|OncLive. Available online: https://www.onclive.com/view/durvalumab-plus-chemo-yields-inconclusive-results-in-advanced-pleural-mesothelioma (accessed on 13 November 2025).
- FDA Approves Pembrolizumab with Chemotherapy for Unresectable Advanced or Metastatic Malignant Pleural Mesothelioma|FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-chemotherapy-unresectable-advanced-or-metastatic-malignant-pleural (accessed on 16 October 2025).
- Drug Approval Package: Alimta (Pemetrexed) NDA #021677. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/021677s000_alimtatoc.cfm (accessed on 16 October 2025).
- FDA Approves Nivolumab and Ipilimumab for Unresectable Malignant Pleural Mesothelioma|FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-and-ipilimumab-unresectable-malignant-pleural-mesothelioma (accessed on 16 October 2025).
- Solbes, E.; Harper, R.W. Biological responses to asbestos inhalation and pathogenesis of asbestos-related benign and malignant disease. J. Investig. Med. 2018, 66, 721–727. Available online: https://pubmed.ncbi.nlm.nih.gov/29306869/ (accessed on 11 October 2025). [CrossRef]
- Congedo, M.T.; West, E.C.; Evangelista, J.; Mattingly, A.A.; Calabrese, G.; Sassorossi, C.; Nocera, A.; Chiappetta, M.; Flamini, S.; Abenavoli, L.; et al. The genetic susceptibility in the development of malignant pleural mesothelioma: Somatic and germline variants, clinicopathological features and implication in practical medical/surgical care: A narrative review. J. Thorac. Dis. 2024, 16, 671–687. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10894363/ (accessed on 11 October 2025). [CrossRef]
- FDA Grants Fast Track Designation to VT3989 for Unresectable Mesothelioma|OncLive. Available online: https://www.onclive.com/view/fda-grants-fast-track-designation-to-vt3989-for-unresectable-mesothelioma (accessed on 11 October 2025).
- Carrano, R.; Zucca, C.; Cristina, N.; Grande, M.; Maggio, E.L.; Bei, R.; Infante, A.; Focaccetti, C.; Lucarini, V.; Cifaldi, L.; et al. Combining Chemotherapeutic Agents, Targeted Therapies, Vaccines and Natural Bioactive Compounds for Mesothelioma: Advances and Perspectives. Oncol. Res. 2025, 33, 2181–2204. Available online: https://www.techscience.com/or/v33n9/63639/html (accessed on 17 September 2025). [CrossRef] [PubMed]

| Biomarker | Study | Matrix | N | Diagnostic/Prognostic Biomarker | Results |
|---|---|---|---|---|---|
| Mesothelin | Johnen [10] | Serum | 23 | Diagnostic | Sensitivity 23%, specificity 99% at cutoff 2.00 nmol/L |
| SMRP | Hollevoet [11] | Serum | 4491 | Diagnostic | Average study sensitivity 47%, specificity 96% when all studies were recalculated at standardized cutoff 2.00 nmol/L |
| SMRP + Mesothelin rs1057147 positive | Goricar [12] | Serum | 154 | Diagnostic | Sensitivity 59.3%, specificity 93% at cutoff 1.5 nmol/L |
| Fibulin-3 + Mesothelin + HMGB1 | Ferrari [13] | Serum | 26 | Diagnostic | Sensitivity 96%, specificity 93% without defined cutoffs for each biomarker reported |
| DNA repeats 115 bp, 247 bp, 247/115 bp ratio | Sriram [14] | Pleural/Serum Matched | 52 | Diagnostic | Sensitivity 81%, specificity 87% in combined index |
| CYFRA-21-1+ SHOX2 methylation + PTGER4 methylation | Zhang [15] | Serum | 42 | Diagnostic | Sensitivity 91.3%, specificity 97.6% without defined cutoff |
| SMRP | Tian [16] | Serum | 579 | Prognostic | Shorter overall survival (HR 1.958, 95% CI 1.531–2.504, p = 0.000) |
| MiR-193b-3p + MiR-132-3p | Levallet [17] | Serum | 236 | Prognostic | Shorter overall survival (HR 0.87 95% CI 0.81–0.93, p < 0.001) in those with low expression levels without defined cutoffs |
| Target | Study | Phase | N | Drug (s) | Efficacy |
|---|---|---|---|---|---|
| Mesothelin | Hassan [69] | II | 89 | Amatuximab + Cisplatin/Pemetrexed | 40% PR; 51% SD; mPFS 6.1 months; mOS 14.8 months |
| Mesothelin | Adusmilli [70] | I | 18 | Mesothelin CAR T cell therapy administered intrapleurally + intravenous Pembrolizumab | 44.4% SD at 6 months; OS 83% at 12 months |
| Mesothelin | Liu [71] | I | 11 | BZDS1901 (armored CAR T cell therapy with PD-1 nanoantibody secretion) | 63.64% ORR; 54.5% PR; 9.1% CR |
| Mesothelin | Smalley [72] | I | 23 | Gavocabtagene autoleucel | 21% ORR; mPFS 5.6 months; mOS 8.1 months |
| BAP-1 | Ghafoor [73] | II | 23 | Olaparib | 78% SD at 6 weeks; overall PFS 3.6 months; overall OS 8.7 months |
| NF2 | Yap [74] | II | 22 | VT3989 | 32% ORR, 54.5% SD, mPFS 10 months when accounting for urine albumin:creatinine ratio at clinically optimized doses |
| ASS1 | Szlosarek [75] | II/III | 249 | ADI-PEG20 + Platinum-based/Pemetrexed | mPFS 6.2 months; mOS 9.3 months |
| WT1 | Zauderer [76] | II | 41 | Galinpepimut-S peptide vaccine after resection | mPFS 10.1 months; mOS 22.8 months |
| Target | Study | Phase | Anticipated Accrual | Drug (s) | Primary Endpoint (s) |
|---|---|---|---|---|---|
| Mesothelin | NCT03907852 [77] | I/II | 57 | Gavocabtagene autoleucel + Nivolumab or Ipilimumab | Dose-limiting toxicity; ORR + SD at 8 weeks; ORR at 3 months |
| Mesothelin | NCT06756035 [78] | I | 70 | CT-95 (mesothelin/CD3 bispecific T cell) | Dose-limiting toxicity |
| Mesothelin | NCT06196294 [79] | I | 30 | Mesothelin and Glypican-3 targeted CAR T cell | Dose-limiting toxicity, response rate at 6 months, T cell persistence |
| Mesothelin | NCT06885697 [80] | I | 100 | TNhYP218 (CAR T cell) | Dose limiting toxicity, response rate at 4, 8, 12 weeks, and until progression |
| Mesothelin | NCT05451849 [81] | I/II | 6 | TC-510 (TRuC PD-1/CD28 chimeric switch receptor) | Dose limiting toxicity, ORR at 8 weeks and until progression |
| Mesothelin | NCT03872206 [82] | I/II | 95 | HPN536 (Tri-specific CD3/anti-albumin/anti-mesothelin antibody) | Maximal tolerated dose, ORR at 1 year |
| NF2 | NCT04665206 [83] | I/II | 336 | VT3989 (oral inhibitor of TEAD) + nivolumab + ipilimumab | Incidence of adverse events, tumor response |
| NF2 | NCT04857372 [84] | I | 137 | IAG933 (small molecule inhibitor of YAP/TEAD) | Safety and maximally tolerated dose |
| NF2 | NCT06251310 [85] | I | 186 | SW-682 (small molecule pan-TEAD inhibitor) | Safety and maximally tolerated dose, ORR |
| MTAP | NCT05275478 [86] | I/II | 192 | TNG908-C101 (oral small molecule inhibitor of PRMT5) | Safety and maximally tolerated dose |
| MTAP | NCT05245500 [87] | I | 320 | MRTX1719 (oral small molecule binding to PRMT5/MTA complex) | Dose limiting toxicity, ORR, duration of response, PFS, and OS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grant, C.R.; Bazhenova, L.; Yun, K.M. Circulating Biomarkers and Targeted Therapy in Pleural Mesothelioma. Cancers 2025, 17, 3863. https://doi.org/10.3390/cancers17233863
Grant CR, Bazhenova L, Yun KM. Circulating Biomarkers and Targeted Therapy in Pleural Mesothelioma. Cancers. 2025; 17(23):3863. https://doi.org/10.3390/cancers17233863
Chicago/Turabian StyleGrant, Christopher R., Lyudmila Bazhenova, and Karen M. Yun. 2025. "Circulating Biomarkers and Targeted Therapy in Pleural Mesothelioma" Cancers 17, no. 23: 3863. https://doi.org/10.3390/cancers17233863
APA StyleGrant, C. R., Bazhenova, L., & Yun, K. M. (2025). Circulating Biomarkers and Targeted Therapy in Pleural Mesothelioma. Cancers, 17(23), 3863. https://doi.org/10.3390/cancers17233863

