Redefining Prostate Cancer Precision: Radiogenomics, Theragnostics, and AI-Driven Biomarkers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Molecular Imaging
3.1.1. Radiotracers
Prostate-Specific Membrane Antigen (PSMA) Ligands
Amino Acid Analogues
Choline-Based Tracers
Bone-Specific Tracers
18F-Fluorodeoxyglucose
3.1.2. PSMA Pitfalls
3.1.3. PSMA PET in Prostate Cancer Staging
3.1.4. PSMA PET in Biochemical Recurrence
3.1.5. Radiopharmaceuticals—Theragnostics
- Antibody–drug conjugates (ADCs):These consist of anti-PSMA monoclonal antibodies linked to cytotoxic agents. First-generation ADCs (e.g., MLN2704, PSMA-ADC, MEDI3726) achieved modest antitumor activity but were constrained by dose-limiting toxicities such as neuropathy and mucocutaneous effects. Current research focuses on small-molecule drug conjugates and optimized linkers to enhance selectivity and safety.
- PSMA-directed CAR-T cell therapy:PSMA-targeted CAR-T cells involve autologous T lymphocytes engineered to recognize PSMA on prostate cancer cells. Early trials in metastatic castration-resistant disease have shown PSA and radiologic responses in a subset of patients, confirming antitumor activity. However, efficacy is limited by cytokine-release syndrome, T-cell exhaustion, and antigen heterogeneity. Current efforts aim to improve persistence and safety through dual-target designs and checkpoint inhibitor combinations.
- PSMA-targeted bispecific T-cell engagers:Bispecific T-cell engagers (BiTEs) simultaneously bind PSMA on tumor cells and CD3 on T cells, triggering direct cytotoxicity. Agents such as AMG 212 and AMG 160 have demonstrated measurable PSA responses in advanced disease, but cytokine-release syndrome and dosing challenges remain major limitations. Ongoing trials seek to optimize pharmacokinetics and immune tolerability to enhance clinical applicability.
3.2. Multiparametric Imaging and Artificial Intelligence (AI)
3.2.1. Magnetic Resonance Imaging in Initial Staging
3.2.2. PET/MRI
3.2.3. Artificial Intelligence (AI)
3.3. Radiogenomics
3.4. Liquid Biopsy and Imaging Correlation in Prostate Cancer
3.5. Integrative Models and Personalised Medicine
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADC | Apparent Diffusion Coefficient |
| ADT | Androgen Deprivation Therapy |
| AI | Artificial Intelligence |
| AR | Androgen Receptor |
| ARPI | Androgen Receptor Pathway Inhibitor |
| AR-V7 | Androgen Receptor Splice Variant 7 |
| AS | Active Surveillance |
| ASCO | American Society of Clinical Oncology |
| AUC | Area Under the Curve |
| BCR | Biochemical Recurrence |
| BRCA1/2 | Breast Cancer Genes 1 and 2 |
| csPCa | Clinically Significant Prostate Cancer |
| CT | Computed Tomography |
| CTCs | Circulating Tumor Cells |
| ctDNA | Circulating Tumor DNA |
| DCE | Dynamic Contrast-Enhanced MRI |
| DNA | Deoxyribonucleic Acid |
| DRE | Digital Rectal Examination |
| DWI | Diffusion-Weighted Imaging |
| EAU | European Association of Urology |
| ePLND | Extended Pelvic Lymph Node Dissection |
| HR | Hazard Ratio |
| LNI | Lymph Node Invasion |
| mHSPC | Metastatic Hormone-Sensitive Prostate Cancer |
| mpMRI | Multiparametric Magnetic Resonance Imaging |
| MRI | Magnetic Resonance Imaging |
| MSKCC | Memorial Sloan Kettering Cancer Center |
| mCRPC | Metastatic Castration-Resistant Prostate Cancer |
| NCCN | National Comprehensive Cancer Network |
| PARP | Poly(ADP-ribose) Polymerase |
| PCa | Prostate Cancer |
| PET/CT | Positron Emission Tomography/Computed Tomography |
| PHI | Prostate Health Index |
| PI-RADS | Prostate Imaging Reporting and Data System |
| PFS | Progression-Free Survival |
| PLND | Pelvic Lymph Node Dissection |
| PPP | PSMA PET Progression |
| PSA | Prostate-Specific Antigen |
| PSMA | Prostate-Specific Membrane Antigen |
| PTEN | Phosphatase and Tensin Homolog |
| RECIP | Response Evaluation Criteria in PSMA-PET/CT |
| RLT | Radioligand therapies |
| RNA | Ribonucleic Acid |
| SPECT | Single-Photon Emission Computed Tomography |
| SRT | Salvage Radiotherapy |
| STAT6 | Signal Transducer and Activator of Transcription 6 |
| TFAP2A | Transcription Factor AP-2 Alpha |
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Lyon, France: International Agency for Research on Cancer. 2024. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.who.int/today (accessed on 25 July 2025).
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- Li, M.; Zelchan, R.; Orlova, A. The Performance of FDA-Approved PET Imaging Agents in the Detection of Prostate Cancer. Biomedicines 2022, 10, 2533. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, T.; Zhang, J.; Gao, F.; Yang, L.; Tao, W. The Application of Radiolabeled Targeted Molecular Probes for the Diagnosis and Treatment of Prostate Cancer. Korean J. Radiol. 2023, 24, 574–589. [Google Scholar] [CrossRef]
- Hofman, M.S.; Hicks, R.J.; Maurer, T.; Eiber, M. A Comprehensive Systematic Review and Meta-analysis of the Role of Prostate-specific Membrane Antigen Positron Emission Tomography for Prostate Cancer Diagnosis and Primary Staging before Definitive Treatment. Eur. Urol. 2025, 87, 654–671. [Google Scholar]
- Hofman, M.S.; Hicks, R.J.; Maurer, T.; Eiber, M. Prostate-specific Membrane Antigen PET: Clinical Utility in Prostate Cancer, Normal Patterns, Pearls, and Pitfalls. RadioGraphics 2018, 38, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ong, S.; McKenzie, D.; Mirabelli, A.; Chen, D.C.; Chengodu, T.; Murphy, D.G.; Hofman, M.S.; Lawrentschuk, N.; Perera, M. Comparison of 18F-based PSMA radiotracers with [68Ga]Ga-PSMA-11 in PET/CT imaging of prostate cancer—A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2024, 27, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Crawford, E.D.; Albala, D.M.; Harris, R.G.; Slovin, S.F.; Bryce, A.H.; Carroll, P.R.; Finkelstein, S.E.; Garnick, M.B.; Gomella, L.G.; Higano, C.S.; et al. A Clinician’s Guide to Targeted Precision Imaging in Patients with Prostate Cancer (RADAR VI). JU Open Plus 2023, 1, e00003. [Google Scholar] [CrossRef]
- Bitar, R.; Zurita, P.; Martiniova, L.; Zurita, A.J.; Ravizzini, G.C. Positron Emission Tomography Radiotracers for Identification of Site of Recurrence in Prostate Cancer After Primary Treatment Failure. Cancers 2025, 17, 1723. [Google Scholar] [CrossRef]
- Andriole, G.L.; Kostakoglu, L.; Chau, A.; Duan, F.; Mahmood, U.; Mankoff, D.A.; Schuster, D.M.; Siegel, B.A.; Adler, L.P.; Belkoff, L.H.; et al. The Impact of Positron Emission Tomography with 18F-Fluciclovine on the Treatment of Biochemical Recurrence of Prostate Cancer: Results from the LOCATE Trial. J. Urol. 2019, 201, 322–331. [Google Scholar] [CrossRef]
- Graziani, T.; Ceci, F.; Castellucci, P.; Polverari, G.; Lima, G.M.; Lodi, F.; Morganti, A.G.; Ardizzoni, A.; Schiavina, R.; Fanti, S. 11C-Choline PET/CT for restaging prostate cancer. Results from 4,426 scans in a single-centre patient series. Eur. J. Nucl. Med. 2016, 43, 1971–1979. [Google Scholar] [CrossRef]
- Voter, A.F.; Werner, R.A.; Savas, H.; Gafita, A.; Ross, A.E.; Gorin, M.A.; Solnes, L.B.; Pomper, M.G.; Rowe, S.P.; Sheikhbahaei, S. A Practical Guide to the Pearls and Pitfalls of PSMA PET Imaging. Semin. Nucl. Med. 2024, 54, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, T.; Wang, X.; Yu, Y.B.; Fan, Z.Y.; Li, D.X.; Luo, L.; Yang, X.C.; Jiao, W.; Niu, H.T. Diagnostic Performance of 68Gallium Labelled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging for Staging the Prostate Cancer with Intermediate or High Risk Prior to Radical Prostatectomy: A Systematic Review and Meta-analysis. World J. Men Health 2020, 38, 208–219. [Google Scholar]
- Chow, K.M.; So, W.Z.; Lee, H.J.; Lee, A.; Yap, D.W.T.; Takwoingi, Y.; Tay, K.J.; Tuan, J.; Thang, S.P.; Lam, W.; et al. Head-to-head Comparison of the Diagnostic Accuracy of Prostate-specific Membrane Antigen Positron Emission Tomography and Conventional Imaging Modalities for Initial Staging of Intermediate- to High-risk Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2023, 84, 36–48. [Google Scholar]
- Mookerji, N.; Pfanner, T.; Hui, A.; Huang, G.; Albers, P.; Mittal, R.; Broomfield, S.; Dean, L.; Martin, B.S.; Jacobsen, N.-E.; et al. Fluorine-18 Prostate-Specific Membrane Antigen-1007 PET/CT vs. Multiparametric MRI for Locoregional Staging of Prostate Cancer. JAMA Oncol. 2024, 10, 1097–1103. [Google Scholar] [CrossRef]
- Emmett, L.; Buteau, J.; Papa, N.; Moon, D.; Thompson, J.; Roberts, M.J.; Rasiah, K.; Pattison, D.A.; Yaxley, J.; Thomas, P.; et al. The Additive Diagnostic Value of Prostate-specific Membrane Antigen Positron Emission Tomography Computed Tomography to Multiparametric Magnetic Resonance Imaging Triage in the Diagnosis of Prostate Cancer (PRIMARY): A Prospective Multicentre Study. Eur. Urol. 2021, 80, 682–689. [Google Scholar] [CrossRef]
- Roberts, M.J.; Morton, A.; Papa, N.; Franklin, A.; Raveenthiran, S.; Yaxley, W.J.; Coughlin, G.; Gianduzzo, T.; Kua, B.; McEwan, L.; et al. Primary tumour PSMA intensity is an independent prognostic biomarker for biochemical recurrence-free survival following radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3289–3294. [Google Scholar] [CrossRef]
- Pienta, K.J.; Gorin, M.A.; Rowe, S.P.; Carroll, P.R.; Pouliot, F.; Probst, S.; Saperstein, L.; Preston, M.A.; Alva, A.S.; Patnaik, A.; et al. A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with 18F-DCFPyL in Prostate Cancer Patients (OSPREY). J. Urol. 2021, 206, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Jansen, B.H.E.; Bodar, Y.J.L.; Zwezerijnen, G.J.C.; Meijer, D.; van der Voorn, J.P.; Nieuwenhuijzen, J.A.; Wondergem, M.; Roeleveld, T.A.; Boellaard, R.; Hoekstra, O.S.; et al. Pelvic lymph-node staging with 18F-DCFPyL PET/CT prior to extended pelvic lymph-node dissection in primary prostate cancer—The SALT trial. Eur. J. Nucl. Med. 2021, 48, 509–520. [Google Scholar] [CrossRef]
- Hope, T.A.; Eiber, M.; Armstrong, W.R.; Juarez, R.; Murthy, V.; Lawhn-Heath, C.; Behr, S.C.; Zhang, L.; Barbato, F.; Ceci, F.; et al. Diagnostic Accuracy of 68Ga-PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection. JAMA Oncol. 2021, 7, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Stabile, A.; Pellegrino, A.; Mazzone, E.; Cannoletta, D.; de Angelis, M.; Barletta, F.; Scuderi, S.; Cucchiara, V.; Gandaglia, G.; Raggi, D.; et al. Can Negative Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Avoid the Need for Pelvic Lymph Node Dissection in Newly Diagnosed Prostate Cancer Patients? A Systematic Review and Meta-analysis with Backup Histology as Reference Standard. Eur. Urol. Oncol. 2022, 5, 1–17. [Google Scholar]
- Perera, M.; Papa, N.; Roberts, M.; Williams, M.; Udovicich, C.; Vela, I.; Christidis, D.; Bolton, D.; Hofman, M.S.; Lawrentschuk, N.; et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer—Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur. Urol. 2020, 77, 403–417. [Google Scholar]
- Mazzone, E.; Thomson, A.; Chen, D.C.; Cannoletta, D.; Quarta, L.; Pellegrino, A.; Gandaglia, G.; Moon, D.; Eapen, R.; Lawrentschuk, N.; et al. The Role of Prostate-specific Membrane Antigen Positron Emission Tomography for Assessment of Local Recurrence and Distant Metastases in Patients with Biochemical Recurrence of Prostate Cancer After Definitive Treatment: A Systematic Review and Meta-analysis. Eur. Urol. 2025, 88, 129–141. [Google Scholar] [CrossRef]
- Metser, U.; Zukotynski, K.; Mak, V.; Langer, D.; MacCrostie, P.; Finelli, A.; Kapoor, A.; Chin, J.; Lavallée, L.; Klotz, L.H.; et al. Effect of 18F-DCFPyL PET/CT on the Management of Patients with Recurrent Prostate Cancer: Results of a Prospective Multicenter Registry Trial. Radiology 2022, 303, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Cerci, J.J.; Fanti, S.; Lobato, E.E.; Kunikowska, J.; Alonso, O.; Medina, S.; Novruzov, F.; Lengana, T.; Granados, C.; Kumar, R.; et al. Diagnostic Performance and Clinical Impact of 68Ga-PSMA-11 PET/CT Imaging in Early Relapsed Prostate Cancer After Radical Therapy: A Prospective Multicenter Study (IAEA-PSMA Study). J. Nucl. Med. 2022, 63, 240–247. [Google Scholar] [CrossRef]
- Bukavina, L.; Luckenbaugh, A.N.; Hofman, M.S.; Hope, T.; Kamran, S.C.; Murphy, D.G.; Yamoah, K.; Ost, P. Incorporating Prostate-specific Membrane Antigen Positron Emission Tomography in Management Decisions for Men with Newly Diagnosed or Biochemically Recurrent Prostate Cancer. Eur. Urol. 2023, 83, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Kunst, N.; Long, J.B.; Westvold, S.; Sprenkle, P.C.; Kim, I.Y.; Saperstein, L.; Rabil, M.; Ghaffar, U.; Karnes, R.J.; Ma, X.; et al. Long-Term Outcomes of Prostate-Specific Membrane Antigen-PET Imaging of Recurrent Prostate Cancer. JAMA Netw. Open 2024, 7, e2440591. [Google Scholar] [CrossRef] [PubMed]
- Jani, A.B.; Schreibmann, E.; Goyal, S.; Halkar, R.; Hershatter, B.; Rossi, P.J.; Shelton, J.W.; Patel, P.R.; Xu, K.M.; Goodman, M.; et al. 18F-fluciclovine-PET/CT imaging versus conventional imaging alone to guide postprostatectomy salvage radiotherapy for prostate cancer (EMPIRE-1): A single centre, open-label, phase 2/3 randomised controlled trial. Lancet 2021, 397, 1895–1904. [Google Scholar] [CrossRef]
- Hoskin, P.; Sartor, O.; O’SUllivan, J.M.; Johannessen, D.C.; I Helle, S.; Logue, J.; Bottomley, D.; Nilsson, S.; Vogelzang, N.J.; Fang, F.; et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: A prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 2014, 15, 1397–1406. [Google Scholar]
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef]
- Smith, M.; Parker, C.; Saad, F.; Miller, K.; Tombal, B.; Ng, Q.S.; Boegemann, M.; Matveev, V.; Piulats, J.M.; Zucca, L.E.; et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 408–419. [Google Scholar] [CrossRef]
- Choudhury, A.D.; Kwak, L.; Cheung, A.; Allaire, K.M.; Marquez, J.; Yang, D.D.; Tripathi, A.; Kilar, J.M.; Flynn, M.; Maynard, B.; et al. Randomized Phase II Study Evaluating the Addition of Pembrolizumab to Radium-223 in Metastatic Castration-resistant Prostate Cancer. Cancer Immunol. Res. 2024, 12, 704–718. [Google Scholar] [CrossRef]
- Ramnaraign, B.; Sartor, O. PSMA-Targeted Radiopharmaceuticals in Prostate Cancer: Current Data and New Trials. Oncol. 2023, 28, 392–401. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Sartor, O.; de Bono, J.; Chi, K.; Fizazi, K.; Krause, B.J.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Saad, F.; et al. Association of Declining Prostate-specific Antigen Levels with Clinical Outcomes in Patients with Metastatic Castration-resistant Prostate Cancer Receiving [177Lu]Lu-PSMA-617 in the Phase 3 VISION Trial. Eur. Urol. 2024, 86, 552–562. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- von Eyben, F.E.; Virgolini, I.; Baum, R. Review on the Increasing Role for PSMA-Based Radioligand Therapy in Prostate Cancer. Cancers 2024, 16, 2520. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Armstrong, A.J.; Krause, B.J.; Herrmann, K.; Rahbar, K.; de Bono, J.S.; Adra, N.; Garje, R.; Michalski, J.M.; Kempel, M.M.; et al. Safety Analyses of the Phase 3 VISION Trial of [177Lu]Lu-PSMA-617 in Patients with Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2024, 85, 382–391. [Google Scholar] [CrossRef]
- Sadaghiani, M.S.; Sheikhbahaei, S.; Werner, R.A.; Pienta, K.J.; Pomper, M.G.; Solnes, L.B.; Gorin, M.A.; Wang, N.-Y.; Rowe, S.P. A Systematic Review and Meta-analysis of the Effectiveness and Toxicities of Lutetium-177–labeled Prostate-specific Membrane Antigen–targeted Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer. Eur. Urol. 2021, 80, 82–94. [Google Scholar] [CrossRef]
- Hofman, M.S.; Emmett, L.; Sandhu, S.; Iravani, A.; Joshua, A.M.; Goh, J.C.; Pattison, D.A.; Tan, T.H.; Kirkwood, I.D.; Ng, S.; et al. Overall survival with [177Lu]Lu-PSMA-617 versus cabazitaxel in metastatic castration-resistant prostate cancer (TheraP): Secondary outcomes of a randomized, open label, phase 2 trial. Lancet Oncol. 2024, 25, 99–107. [Google Scholar] [CrossRef]
- Emmett, L.; Subramaniam, S.; Crumbaker, M.; Nguyen, A.; Joshua, A.M.; Weickhardt, A.; Lee, S.-T.; Ng, S.; Francis, R.J.; Goh, J.C.; et al. [177Lu]Lu-PSMA-617 plus enzalutamide in patients with metastatic castration-resistant prostate cancer (ENZA-p): An open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 2024, 25, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Corpetti, M.; Müller, C.; Beltran, H.; de Bono, J.; Theurillat, J.-P. Prostate-Specific Membrane Antigen–Targeted Therapies for Prostate Cancer: Towards Improving Therapeutic Outcomes. Eur. Urol. 2024, 85, 193–204. [Google Scholar] [CrossRef]
- Song, H.; Guja, K.E.; Iagaru, A. PSMA theragnostics for metastatic castration resistant prostate cancer. Transl. Oncol. 2022, 22, 101438. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Sherry, A.D.; Bazyar, S.; Sutera, P.; Radwan, N.; Phillips, R.M.; Deek, M.P.; Lu, J.; Dipasquale, S.; Deville, C.; et al. Outcomes of Radium-223 and Stereotactic Ablative Radiotherapy Versus Stereotactic Ablative Radiotherapy for Oligometastatic Prostate Cancers: The RAVENS Phase II Randomized Trial. J. Clin. Oncol. 2025, 43, 2059–2068. [Google Scholar] [CrossRef] [PubMed]
- Tward, J.; Lloyd, S.; Johnson, S.; Dechet, C.; Nei, B.O.; Maughan, B.; Swami, U.; Gupta, S.; Sanchez, A.; Kokeny, K.; et al. A Phase 2 Trial of Radium223 and Stereotactic Ablative Radiation Therapy in Hormone-Naïve Men with Oligometastatic Prostate Cancer to Bone: The RadSABR Study. Int. J. Radiat. Oncol. Biol. Phys. 2025; in press. [Google Scholar] [CrossRef]
- Ma, T.M.; Czernin, J.; Felix, C.; Alano, R.; Wilhalme, H.; Valle, L.; Steinberg, M.L.; Dahlbom, M.; Reiter, R.E.; Rettig, M.B.; et al. LUNAR: A randomized Phase 2 study of 177Lutetium-PSMA Neoadjuvant to Ablative Radiotherapy for Oligorecurrent Prostate Cancer (clinical trial protocol). BJU Int. 2023, 132, 65–74. [Google Scholar] [CrossRef]
- Abdelaal, A.M.; Sohal, I.S.; Iyer, S.G.; Sudarshan, K.; Orellana, E.A.; Ozcan, K.E.; dos Santos, A.P.; Low, P.S.; Kasinski, A.L. Selective targeting of chemically modified miR-34a to prostate cancer using a small molecule ligand and an endosomal escape agent. Mol. Ther. Nucleic Acids 2024, 35, 102193. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Liu, X.; Wu, S.; Wang, M.; Turowski, S.G.; Spernyak, J.A.; Tracz, A.; Abdelaal, A.M.; Sudarshan, K.; et al. Developing Folate-Conjugated miR-34a Therapeutic for Prostate Cancer: Challenges and Promises. Int. J. Mol. Sci. 2024, 25, 2123. [Google Scholar] [CrossRef] [PubMed]
- Haj-Mirzaian, A.; Burk, K.S.; Lacson, R.; Glazer, D.I.; Saini, S.; Kibel, A.S.; Khorasani, R. Magnetic Resonance Imaging, Clinical, and Biopsy Findings in Suspected Prostate Cancer. JAMA Netw. Open 2024, 7, e244258. [Google Scholar] [CrossRef]
- Dell’Atti, L. Biparametric MRI for Local Staging of Prostate Cancer: Current Status and Future Applications. Anticancer Res. 2024, 44, 463–470. [Google Scholar] [CrossRef]
- Albers, P.; Kinnaird, A. Advanced Imaging for Localized Prostate Cancer. Cancers 2024, 16, 3490. [Google Scholar] [CrossRef]
- Inoue, T.; Shin, T. Current magnetic resonance imaging-based diagnostic strategies for prostate cancer. Int. J. Urol. 2023, 30, 1078–1086. [Google Scholar] [CrossRef]
- Li, T.; Nalavenkata, S.; Fainberg, J. Imaging in Diagnosis and Active Surveillance for Prostate Cancer: A Review. JAMA Surg. 2024, 160, 93–99. [Google Scholar] [CrossRef]
- Evangelista, L.; Zattoni, F.; Cassarino, G.; Artioli, P.; Cecchin, D.; dal Moro, F.; Zucchetta, P. PET/MRI in prostate cancer: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 859–873. [Google Scholar] [CrossRef]
- Buteau, J.P.; Moon, D.; Fahey, M.T.; Roberts, M.J.; Thompson, J.; Murphy, D.G.; Papa, N.; Mitchell, C.; De Abreu Lourenco, R.; Dhillon, H.M.; et al. Clinical Trial Protocol for PRIMARY2: A Multicentre, Phase 3, Randomised Controlled Trial Investigating the Additive Diagnostic Value of [68Ga]Ga-PSMA-11 Positron Emission Tomography/Computed Tomography in Men with Negative or Equivocal Multiparametric Magnetic Resonance Imaging for the Diagnosis of Clinically Significant Prostate Cancer. Eur. Urol. Oncol. 2024, 7, 544–552. [Google Scholar] [PubMed]
- Jannusch, K.; Bruckmann, N.M.; Morawitz, J.; Boschheidgen, M.; Quick, H.H.; Herrmann, K.; Fendler, W.P.; Umutlu, L.; Stuschke, M.; Hadaschik, B.; et al. Recurrent prostate cancer: Combined role for MRI and PSMA-PET in 68Ga-PSMA-11 PET/MRI. Eur. Radiol. 2024, 34, 4789–4800. [Google Scholar] [CrossRef]
- Ghezzo, S.; Mapelli, P.; Gajate, A.M.S.; Palmisano, A.; Cucchiara, V.; Brembilla, G.; Bezzi, C.; Suardi, N.; Scifo, P.; Briganti, A.; et al. Diagnostic accuracy of fully hybrid [68Ga]Ga-PSMA-11 PET/MRI and [68Ga]Ga-RM2 PET/MRI in patients with biochemically recurrent prostate cancer: A prospective single-center phase II clinical trial. Eur. J. Nucl. Med. 2024, 51, 907–918. [Google Scholar] [CrossRef]
- Abrahamsen, B.S.; Tandstad, T.; Aksnessæther, B.Y.; Bogsrud, T.V.; Castillejo, M.; Hernes, E.; Johansen, H.; Keil, T.M.I.; Knudtsen, I.S.; Langørgen, S.; et al. Added Value of [18F]PSMA-1007 PET/CT and PET/MRI in Patients With Biochemically Recurrent Prostate Cancer: Impact on Detection Rates and Clinical Management. J. Magn. Reson. Imaging 2024, 61, 466–477. [Google Scholar] [CrossRef]
- Mazrani, W.; Cook, G.J.R.; Bomanji, J. Role of 68Ga and 18F PSMA PET/CT and PET/MRI in biochemical recurrence of prostate cancer: A systematic review of prospective studies. Nucl. Med. Commun. 2022, 43, 631–637. [Google Scholar] [CrossRef]
- Esteban, L.M.; Borque-Fernando, Á.; Escorihuela, M.E.; Esteban-Escaño, J.; Abascal, J.M.; Servian, P.; Morote, J. Integrating radiological and clinical data for clinically significant prostate cancer detection with machine learning techniques. Sci. Rep. 2025, 15, 4261. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Jing, H.; Utt, K.L.; Vetter, J.M.; Weimholt, R.C.; Bullock, A.D.; Klim, A.P.; Bergeron, K.A.; Frankel, J.K.; Smith, Z.L.; et al. An Artificial Intelligence Model Using Diffusion Basis Spectrum Imaging Metrics Accurately Predicts Clinically Significant Prostate Cancer. J. Urol. 2025, 213, 777–785. [Google Scholar] [CrossRef]
- Hamm, C.A.; Baumgärtner, G.L.; Biessmann, F.; Beetz, N.L.; Hartenstein, A.; Savic, L.J.; Froböse, K.; Dräger, F.; Schallenberg, S.; Rudolph, M.; et al. Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI. Radiology 2023, 307, e222276. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Moon, H.W.; Choi, M.H.; Jung, S.E.; Park, Y.H.; Lee, J.Y.; Kim, D.H.; Rha, S.E.; Kim, S.H.; Lee, K.W.; et al. MRI-based Deep Learning Algorithm for Assisting Clinically Significant Prostate Cancer Detection: A Bicenter Prospective Study. Radiology 2025, 314, e232788. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yilmaz, E.C.; Belue, M.J.; Harmon, S.A.; Tetreault, J.; Phelps, T.E.; Merriman, K.M.; Hazen, L.; Garcia, C.; Yang, D.; et al. Evaluation of a Cascaded Deep Learning–based Algorithm for Prostate Lesion Detection at Biparametric MRI. Radiology 2024, 311, e230750. [Google Scholar] [CrossRef]
- Cai, J.C.; Nakai, H.; Kuanar, S.; Froemming, A.T.; Bolan, C.W.; Kawashima, A.; Takahashi, H.; Mynderse, L.A.; Dora, C.D.; Humphreys, M.R.; et al. Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI. Radiology 2024, 312, e232635. [Google Scholar] [CrossRef]
- Yu, R.; Jiang Kwen Bao, J.; Hou, Y.; Yi, Y.; Wu, D.; Song, Y.; Hu, C.H.; Yang, G.; Zhang, Y.D. PI-RADSAI: Introducing a new human-in-the-loop AI model for prostate cancer diagnosis based on MRI. Br. J. Cancer 2023, 128, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; van Ginneken, B.; Bjartell, A.; Bonekamp, D.; Villeirs, G.; Salomon, G.; Giannarini, G.; Kalpathy-Cramer, J.; Barentsz, J.; Rusu, M.; et al. Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): An international, paired, non-inferiority, confirmatory study. Lancet Oncol. 2024, 25, 879–887. Available online: https://pi-cai.grand-challenge.org/ (accessed on 1 September 2025). [CrossRef] [PubMed]
- Twilt, J.J.; Saha, A.; Bosma, J.S.; Padhani, A.R.; Bonekamp, D.; Giannarini, G.; Bergh, R.v.D.; Kasivisvanathan, V.; Yakar, D.; Elschot, M.; et al. AI-Assisted vs Unassisted Identification of Prostate Cancer in Magnetic Resonance Images. JAMA Netw. Open 2025, 8, e2515672. [Google Scholar] [CrossRef]
- Chaddad, A.; Tan, G.; Liang, X.; Hassan, L.; Rathore, S.; Desrosiers, C.; Katib, Y.; Niazi, T. Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. Cancers 2023, 15, 3839. [Google Scholar] [CrossRef]
- Taguelmimt, K.; Andrade-Miranda, G.; Harb, H.; Thanh, T.T.; Dang, H.-P.; Malavaud, B.; Bert, J. Towards more reliable prostate cancer detection: Incorporating clinical data and uncertainty in MRI deep learning. Comput. Biol. Med. 2025, 194, 110440. [Google Scholar] [CrossRef]
- Antolin, A.; Roson, N.; Mast, R.; Arce, J.; Almodovar, R.; Cortada, R.; Maceda, A.; Escobar, M.; Trilla, E.; Morote, J. The Role of Radiomics in the Prediction of Clinically Significant Prostate Cancer in the PI-RADS v2 and v2.1 Era: A Systematic Review. Cancers 2024, 16, 2951. [Google Scholar] [CrossRef]
- Ferro, M.; de Cobelli, O.; Vartolomei, M.D.; Lucarelli, G.; Crocetto, F.; Barone, B.; Sciarra, A.; Del Giudice, F.; Muto, M.; Maggi, M.; et al. Prostate Cancer Radiogenomics—From Imaging to Molecular Characterization. Int. J. Mol. Sci. 2021, 22, 9971. [Google Scholar] [CrossRef]
- Ogbonnaya, C.N.; Alsaedi, B.S.O.; Alhussaini, A.J.; Hislop, R.; Pratt, N.; Steele, J.D.; Kernohan, N.; Nabi, G. Radiogenomics Map-Based Molecular and Imaging Phenotypical Characterization in Localised Prostate Cancer Using Pre-Biopsy Biparametric MR Imaging. Int. J. Mol. Sci. 2024, 25, 5379. [Google Scholar] [CrossRef]
- Fernandes, C.D.; Schaap, A.; Kant, J.; van Houdt, P.; Wijkstra, H.; Bekers, E.; Linder, S.; Bergman, A.M.; van der Heide, U.; Mischi, M.; et al. Radiogenomics Analysis Linking Multiparametric MRI and Transcriptomics in Prostate Cancer. Cancers 2023, 15, 3074. [Google Scholar] [CrossRef]
- Hectors, S.J.; Cherny, M.; Yadav, K.K.; Beksaç, A.T.; Thulasidass, H.; Lewis, S.; Davicioni, E.; Wang, P.; Tewari, A.K.; Taouli, B. Radiomics Features Measured with Multiparametric Magnetic Resonance Imaging Predict Prostate Cancer Aggressiveness. J. Urol. 2019, 202, 498–505. [Google Scholar] [CrossRef]
- Skingen, V.E.; Hompland, T.; Fjeldbo, C.S.; Salberg, U.B.; Helgeland, H.; Ragnum, H.B.; Aarnes, E.-K.; Vlatkovic, L.; Hole, K.H.; Seierstad, T.; et al. Prostate cancer radiogenomics reveals proliferative gene expression programs associated with distinct MRI-based hypoxia levels. Radiother. Oncol. 2023, 188, 109875. [Google Scholar] [CrossRef]
- McCann, S.M.; Jiang, Y.; Fan, X.; Wang, J.; Antic, T.; Prior, F.; VanderWeele, D.; Oto, A. Quantitative Multiparametric MRI Features and PTEN Expression of Peripheral Zone Prostate Cancer: A Pilot Study. Am. J. Roentgenol. 2016, 206, 559–565. [Google Scholar] [CrossRef]
- Eineluoto, J.T.; Sandeman, K.; Pohjonen, J.; Sopyllo, K.; Nordling, S.; Stürenberg, C.; Malén, A.; Kilpeläinen, T.P.; Santti, H.; Petas, A.; et al. Associations of PTEN and ERG with Magnetic Resonance Imaging Visibility and Assessment of Non–organ-confined Pathology and Biochemical Recurrence After Radical Prostatectomy. Eur. Urol. Focus 2021, 7, 1316–1323. [Google Scholar] [CrossRef]
- Switlyk, M.D.; Salberg, U.B.; Geier, O.M.; Vlatkovic, L.; Lilleby, W.; Lyng, H.; Seierstad, T. PTEN Expression in Prostate Cancer: Relationship With Clinicopathologic Features and Multiparametric MRI Findings. Am. J. Roentgenol. 2019, 212, 1206–1214. [Google Scholar] [CrossRef]
- Li, P.; You, S.; Nguyen, C.; Wang, Y.; Kim, J.; Sirohi, D.; Ziembiec, A.; Luthringer, D.; Lin, S.-C.; Daskivich, T.; et al. Genes involved in prostate cancer progression determine MRI visibility. Theranostics 2018, 8, 1752–1765. [Google Scholar] [CrossRef] [PubMed]
- Kesch, C.; Radtke, J.-P.; Wintsche, A.; Wiesenfarth, M.; Luttje, M.; Gasch, C.; Dieffenbacher, S.; Pecqueux, C.; Teber, D.; Hatiboglu, G.; et al. Correlation between genomic index lesions and mpMRI and 68Ga-PSMA-PET/CT imaging features in primary prostate cancer. Sci. Rep. 2018, 8, 16708. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, N.M.; Maurice-Dror, C.; Herberts, C.; Tu, W.; Fan, W.; Murtha, A.J.; Kollmannsberger, C.; Kwan, E.M.; Parekh, K.; Schönlau, E.; et al. Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat. Commun. 2024, 15, 1828. [Google Scholar] [CrossRef] [PubMed]
- Conteduca, V.; Scarpi, E.; Rossi, A.; Ferroni, F.; Gurioli, G.; Bleve, S.; Gianni, C.; Schepisi, G.; Brighi, N.; Lolli, C.; et al. Changing metastatic patterns associate with dynamics of circulating tumor DNA in metastatic castration-resistant prostate cancer. Oncol. 2025, 30, oyaf107. [Google Scholar] [CrossRef]
- Sharp, A.; Welti, J.C.; Lambros, M.B.; Dolling, D.; Rodrigues, D.N.; Pope, L.; Aversa, C.; Figueiredo, I.; Fraser, J.; Ahmad, Z.; et al. Clinical Utility of Circulating Tumour Cell Androgen Receptor Splice Variant-7 Status in Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2019, 76, 676–685. [Google Scholar] [CrossRef]
- Kluge, K.; Einspieler, H.; Haberl, D.; Spielvogel, C.; Stoiber, S.; Vraka, C.; Papp, L.; Wunsch, S.; Egger, G.; Kramer, G.; et al. Examining the Relationship and Prognostic Significance of Cell-Free DNA Levels and the PSMA-Positive Tumor Volume in Men with Prostate Cancer: A Retrospective–Prospective [68Ga]Ga-PSMA-11 PET/CT Study. J. Nucl. Med. 2024, 65, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Morrison, G.; Buckley, J.; Ostrow, D.; Varghese, B.; Cen, S.Y.; Werbin, J.; Ericson, N.; Cunha, A.; Lu, Y.-T.; George, T.; et al. Non-Invasive Profiling of Advanced Prostate Cancer via Multi-Parametric Liquid Biopsy and Radiomic Analysis. Int. J. Mol. Sci. 2022, 23, 2571. [Google Scholar] [CrossRef]
- Scher, H.I.; Lu, D.; Schreiber, N.A.; Louw, J.; Graf, R.P.; Vargas, H.A.; Johnson, A.; Jendrisak, A.; Bambury, R.; Danila, D.; et al. Association of AR-V7 on Circulating Tumor Cells as a Treatment-Specific Biomarker With Outcomes and Survival in Castration-Resistant Prostate Cancer. JAMA Oncol. 2016, 2, 1441–1449. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Kienzle, A.; Woo, S.; Vargas, H.A. Update on Liquid Biopsy. Radiology 2025, 315, e241030. [Google Scholar] [CrossRef]
- Meijer, D.; van Leeuwen, P.J.; Roberts, M.J.; Siriwardana, A.R.; Morton, A.; Yaxley, J.W.; Samaratunga, H.; Emmett, L.; van de Ven, P.M.; van der Poel, H.G.; et al. External Validation and Addition of Prostate-specific Membrane Antigen Positron Emission Tomography to the Most Frequently Used Nomograms for the Prediction of Pelvic Lymph-node Metastases: An International Multicenter Study. Eur. Urol. 2021, 80, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Gandaglia, G.; Barletta, F.; Robesti, D.; Scuderi, S.; Rajwa, P.; Rivas, J.G.; Ibanez, L.; Soeterik, T.F.; Bianchi, L.; Afferi, L.; et al. Identification of the Optimal Candidates for Nodal Staging with Extended Pelvic Lymph Node Dissection Among Prostate Cancer Patients Who Underwent Preoperative Prostate-specific Membrane Antigen Positron Emission Tomography. External Validation of the Memorial Sloan Kettering Cancer Center and Briganti Nomograms and Development of a Novel Tool. Eur. Urol. Oncol. 2023, 6, 543–552. [Google Scholar] [CrossRef]
- Wang, H.; Xia, Z.; Xu, Y.; Sun, J.; Wu, J. The predictive value of machine learning and nomograms for lymph node metastasis of prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2023, 26, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.R.; Li, E.V.; Kumar, S.K.; Busza, A.; Lin, J.S.; Mahenthiran, A.K.; Aguiar, J.A.; Shah, P.V.; Ansbro, B.; Rich, J.M. Optimizing detection of clinically significant prostate cancer through nomograms incorporating mri, clinical features, and advanced serum biomarkers in biopsy naïve men. Prostate Cancer Prostatic Dis. 2023, 26, 588–595. [Google Scholar] [CrossRef]
- Zhou, Y.; Fu, Q.; Shao, Z.; Zhang, K.; Qi, W.; Geng, S.; Wang, W.; Cui, J.; Jiang, X.; Li, R.; et al. Nomograms Combining PHI and PI-RADS in Detecting Prostate Cancer: A Multicenter Prospective Study. J. Clin. Med. 2023, 12, 339. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Guo, S.; Xu, Y.; Liu, L.; Jiang, X. Development and validation of biopsy free nomograms for predicting clinically significant prostate cancer in men with PI-RADS 4 and 5 lesions. Sci. Rep. 2025, 15, 2506. [Google Scholar] [CrossRef]
- Seifert, R.; Emmett, L.; Rowe, S.P.; Herrmann, K.; Hadaschik, B.; Calais, J.; Giesel, F.L.; Reiter, R.; Maurer, T.; Heck, M.; et al. Second Version of the Prostate Cancer Molecular Imaging Standardized Evaluation Framework Including Response Evaluation for Clinical Trials (PROMISE V2). Eur. Urol. 2023, 83, 405–412. [Google Scholar] [CrossRef]
- Seifert, R.; Gafita, A.; Telli, T.; Voter, A.; Herrmann, K.; Pomper, M.; Hadaschik, B.; Rowe, S.P.; Fendler, W.P. Standardized PSMA-PET Imaging of Advanced Prostate Cancer. Semin. Nucl. Med. 2024, 54, 60–68. [Google Scholar] [CrossRef]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Calais, J.; Ceci, F.; Cho, S.Y.; Fanti, S.; Giesel, F.L.; Goffin, K.; et al. PSMA PET/CT: Joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur. J. Nucl. Med. 2023, 50, 1466–1486. [Google Scholar] [CrossRef]
- Karpinski, M.J.; Rahbar, K.; Bögemann, M.; Nikoukar, L.R.; Schäfers, M.; Hoberück, S.; Miederer, M.; Hölscher, T.; Rasul, S.; Miszczyk, M.; et al. Updated Prostate Cancer Risk Groups by Prostate-specific Membrane Antigen Positron Emission Tomography Prostate Cancer Molecular Imaging Standardized Evaluation (PPP2): Results from an International Multicentre Registry Study. Eur. Urol. 2025, 88, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Fendler, W.P.; Karpinski, M.J.; Hoberück, S.; Rauscher, I.; Unterrainer, L.; Rasul, S.; Bjartell, A.; Lanfranchi, F.; Di Giorgio, A.; Pfob, C.H.; et al. Updated prostate cancer risk groups by PSMA-PET PROMISE (PPP2): Results from an international multi-centre registry study. J. Clin. Oncol. 2025, 43 (Suppl. S16), 5045. [Google Scholar] [CrossRef]
- Pan, J.F.; Chen, Y.Z.; Wang, S.Y.; Zhao, Z.Y.; Ren, D.W.; Su, R.; Jia, X.L.; Jiang, J.H.; Ma, Q. The combination of prostate health index and multiparametric magnetic resonance imaging in prostate cancer diagnosis: Efficacy analysis in different PSA ranges and its clinical decision-guiding value. World J. Urol. 2025, 43, 622. [Google Scholar] [CrossRef] [PubMed]
- Viti, A.; Quarta, L.; Zaurito, P.; Santangelo, A.; Cosenza, A.; Barletta, F.; Scuderi, S.; Stabile, A.; Cucchiara, V.; Montorsi, F.; et al. The Role of Genomic Scores in the Management of Prostate Cancer Patients: A Comprehensive Narrative Review. Cancers 2025, 17, 2334. [Google Scholar] [CrossRef] [PubMed]
- Heetman, J.G.; Lavalaye, J.; Polm, P.D.; Soeterik, T.F.W.; Wever, L.; Paulino Pereira, L.J.; van der Hoeven, E.J.R.J.; van Melick, H.H.E.; van den Bergh, R.C.N. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography in Active Surveillance for Prostate Cancer Trial (PASPoRT). Eur. Urol. Oncol. 2024, 7, 204–210. [Google Scholar] [CrossRef]
- Carll, J.; Bonaddio, J.; Lawrentschuk, N. PSMA PET as a Tool for Active Surveillance of Prostate Cancer—Where Are We at? J. Clin. Med. 2025, 14, 3580. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.B.; Giganti, F.; Kasivisvanathan, V. Artificial Intelligence in Prostate Cancer Diagnosis on Magnetic Resonance Imaging: Time for a New PARADIGM. Eur. Urol. 2025, 88, 4–7. [Google Scholar] [CrossRef] [PubMed]
| Clinical Question | Do novel molecular imaging modalities, theragnostics, radiogenomics, and liquid-biopsy biomarkers improve detection, staging, treatment selection, and monitoring compared with standard of care in patients with prostate cancer? |
| Population | (1) Humans; (2) Adults; (3) Patients with primary localized, recurrent, or advanced/metastatic prostate cancer |
| Intervention | PSMA PET/CT, PET/MRI, mpMRI, radiomics, radiogenomics; PSMA-targeted radioligand therapies (e.g., 177Lu-PSMA-617, 225Ac-PSMA); ctDNA, CTCs, AR-V7, multi-omics; AI-assisted imaging interpretation. |
| Comparison | Conventional imaging (CT, bone scintigraphy, MRI, [18F]FDG PET/CT); expert interpretation without AI support; standard clinical staging and monitoring protocols. |
| Outcomes | Primary: sensitivity/specificity, accuracy in T/N/M staging, detection rate, change-in-management, minimal residual disease detection (ctDNA/CTCs), radiographic/biochemical response, PFS, OS, therapy selection. Secondary: workflow impact, reproducibility, inter-reader agreement, cost-effectiveness, feasibility, safety |
| Study types | Prospective or retrospective clinical studies, clinical trials, systematic reviews, meta-analyses, pilot feasibility studies |
| Databases searched | PubMed, Embase, Cochrane Library |
| Search keywords | Prostate cancer AND (PSMA/PET-CT/PET-MRI/radiomics/radiogenomics) OR (radioligand therapy/theragnostic) OR (liquid biopsy/ctDNA/circulating tumor cells/biomarker) OR (artificial intelligence/integrative models) OR (personalized medicine). |
| Manual search | Screening reference lists and journal issues by hand |
| Inclusion criteria | Adult prostate cancer patients (localized, recurrent, or metastatic) Studies assessing advanced imaging (PSMA PET, mpMRI, PET/MRI), radioligand therapy, radiogenomics, liquid biopsy, or AI in diagnosis, staging, or treatment monitoring English/Spanish publications; years 2015–2025 |
| Exclusion criteria | Preclinical/animal studies; case reports; conference abstracts without full text; editorials; narrative opinion pieces without patient-level or aggregated data. |
| Tracer Type | Examples | Biological Target/Mechanism | Clinical Utility | Limitations |
|---|---|---|---|---|
| PSMA ligands | 68Ga-PSMA-11 18F-DCFPyL 18F-PSMA-1007 | PSMA—transmembrane glycoprotein overexpressed on prostate cancer cells | Primary staging and restaging Detection of biochemical recurrence Selection/monitoring for PSMA-targeted radioligand therapy (177Lu-PSMA-617, 225Ac-PSMA-617) | Limited availability; heterogeneity of uptake; potential false positives (e.g., sympathetic ganglia, fractures, inflammatory lesions). |
| Amino acid analogs | 18F-fluciclovine | Increased amino acid transport in malignant cells | FDA-approved for detection of recurrent disease after curative therapy | Less sensitive than PSMA PET, particularly at very low PSA levels. |
| Choline-based tracers | 11C-choline 18F-choline | Increased phospholipid synthesis in cell membranes | Detection of recurrence and metastases | Inferior to PSMA PET; low sensitivity at PSA < 1 ng/mL; 11C short half-life limits distribution. |
| Bone-specific tracers | 18F-NaF | Incorporation into hydroxyapatite during bone remodeling | Detection of bone metastases: high sensitivity and specificity for skeletal lesions; useful for therapy response in selected cases. | Restricted to bone imaging; no soft-tissue assessment. Less specificity than PSMA PET, uptake in benign osteoblastic processes. |
| FDG | 18F-FDG | Glucose metabolism—elevated in aggressive or neuroendocrine variants | Complementary to PSMA PET in low-PSMA-expressing (dedifferentiated, neuroendocrine) or high-grade disease; prognostic value in mCRPC. | Poor sensitivity in typical adenocarcinoma; intense urinary excretion limits pelvic evaluation. |
| Biomarker | Definition | Applications |
|---|---|---|
| ctDNA | DNA fragments released into the bloodstream by tumor cells | Reflects tumor burden (metastatic disease, high volume, proliferation). Identification of genetic alterations (AR, BRCA, TP53). Monitoring treatment response. Early detection of progression. |
| CTCs | Intact tumor cells detectable in peripheral blood | Indicate active disease. Allow for phenotypic and genomic studies. |
| AR-V7 | Splice variant of the androgen receptor gene that produces a constitutively active receptor, independent of androgens. | Associated with resistance to androgen-axis inhibitors (abiraterone, enzalutamide). May guide treatment changes (e.g., toward chemotherapy). |
| Nomogram | Clinical Variables Included | AUC Without PSMA PET | AUC with PSMA PET |
|---|---|---|---|
| MSCKK | Total PSA, biopsy Gleason score, % of positive cores, clinical T stage, total number of cores. | 0.71 (0.65–0.77) | 0.77 (0.72–0.83) |
| Briganti 2017 | PSA, clinical stage, biopsy Gleason grade group, % cores with highest-grade PCa, % cores with lower-grade PCa | 0.70 (0.64–0.77) | 0.76 (0.70–0.82) |
| Briganti 2019 | PSA, clinical stage at mpMRI, Grade group at MRI-targeted biopsy, maximum diameter of the index lesion at mpMRI(mm), % cores with csPCa at systematic biopsy. | 0.76 (0.71–0.82) | 0.82 (0.76–0.87) |
| Score | Description |
|---|---|
| 1 | No dominant intraprostatic pattern and low-grade activity. |
| 2 | Diffuse TZ activity or symmetric CZ activity without focal uptake (including diffuse TZ activity with irregular focal uptake not clearly above background) |
| 3 | Focal TZ activity (visually greater than twice background TZ activity) |
| 4 | Focal PZ activity. |
| 5 | Any pattern with an SUVmax ≥ 12 |
| Criteria | Definition | |
|---|---|---|
| PPP | (1) Appearance of ≥2 new PSMA-positive distant lesions Or (2) Single new lesion accompanied by consistent clinical and/or laboratory changes (e.g., PSA, LDH, ALP, ECOG score) Or (3) ≥30% increase in size or uptake of an existing lesion with supporting clinical/laboratory evidence | |
| RECIP | Complete response | Absence of any PSMA-uptake on follow-up PET |
| Partial response | ≥30% reduction in PSMA-VOL without new lesions | |
| Progressive disease | ≥20% increase in PSMA-VOL with new lesion | |
| Stable disease | Does not meet the above criteria | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorado, C.Q.; Ramírez, A.S.; Pérez, M.P.; Centeno, M.S.; Mici, L.P.; Güemez, C.M.; Albers Acosta, E.; Luis, G.C.; Costal, M.; Diez, P.T.; et al. Redefining Prostate Cancer Precision: Radiogenomics, Theragnostics, and AI-Driven Biomarkers. Cancers 2025, 17, 3747. https://doi.org/10.3390/cancers17233747
Dorado CQ, Ramírez AS, Pérez MP, Centeno MS, Mici LP, Güemez CM, Albers Acosta E, Luis GC, Costal M, Diez PT, et al. Redefining Prostate Cancer Precision: Radiogenomics, Theragnostics, and AI-Driven Biomarkers. Cancers. 2025; 17(23):3747. https://doi.org/10.3390/cancers17233747
Chicago/Turabian StyleDorado, Cristina Quicios, Ana Sánchez Ramírez, Marta Pérez Pérez, Manuel Saavedra Centeno, Lira Pelari Mici, Carlos Márquez Güemez, Eduardo Albers Acosta, Guillermo Celada Luis, Martin Costal, Patricia Toquero Diez, and et al. 2025. "Redefining Prostate Cancer Precision: Radiogenomics, Theragnostics, and AI-Driven Biomarkers" Cancers 17, no. 23: 3747. https://doi.org/10.3390/cancers17233747
APA StyleDorado, C. Q., Ramírez, A. S., Pérez, M. P., Centeno, M. S., Mici, L. P., Güemez, C. M., Albers Acosta, E., Luis, G. C., Costal, M., Diez, P. T., Laorden, N. R., Díaz, R. J., Velasco Balanza, C., & Manso, L. S. J. (2025). Redefining Prostate Cancer Precision: Radiogenomics, Theragnostics, and AI-Driven Biomarkers. Cancers, 17(23), 3747. https://doi.org/10.3390/cancers17233747

