A Joint Model Based on Post-Treatment Longitudinal Prognostic Nutritional Index to Predict Survival in Nasopharyngeal Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Enrollment and Demographics
3.2. Joint Modeling
3.3. Cut-Off Value Determination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.P.; Chan, A.T.C.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet 2019, 394, 64–80. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.fr/today (accessed on 11 March 2023).
- Luo, W. Nasopharyngeal carcinoma ecology theory: Cancer as multidimensional spatiotemporal “unity of ecology and evolution” pathological ecosystem. Theranostics 2023, 13, 1607–1631. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Head and Neck Cancers (Version 1.2023). Available online: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf (accessed on 11 March 2023).
- Chan, A.T.; Leung, S.F.; Ngan, R.K.; Teo, P.M.; Lau, W.H.; Kwan, W.H.; Hui, E.P.; Yiu, H.Y.; Yeo, W.; Cheung, F.Y.; et al. Overall survival after concurrent cisplatin-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma. J. Natl. Cancer Inst. 2005, 97, 536–539. [Google Scholar] [CrossRef]
- Lin, J.C.; Jan, J.S.; Hsu, C.Y.; Liang, W.M.; Jiang, R.S.; Wang, W.Y. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: Positive effect on overall and progression-free survival. J. Clin. Oncol. 2003, 21, 631–637. [Google Scholar] [CrossRef]
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xu, D.; Song, H.; Qiu, B.; Tian, D.; Li, Z.; Ji, Y.; Wang, J. Inflammation and nutrition-based biomarkers in the prognosis of oesophageal cancer: A systematic review and meta-analysis. BMJ Open 2021, 11, e048324. [Google Scholar] [CrossRef] [PubMed]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
- Buzby, G.P.; Mullen, J.L.; Matthews, D.C.; Hobbs, C.L.; Rosato, E.F. Prognostic nutritional index in gastrointestinal surgery. Am. J. Surg. 1980, 139, 160–167. [Google Scholar] [CrossRef]
- Luan, C.W.; Tsai, Y.T.; Yang, H.Y.; Chen, K.Y.; Chen, P.H.; Chou, H.H. Pretreatment prognostic nutritional index as a prognostic marker in head and neck cancer: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 17117. [Google Scholar] [CrossRef]
- Maejima, K.; Taniai, N.; Yoshida, H. The Prognostic Nutritional Index as a Predictor of Gastric Cancer Progression and Recurrence. J. Nippon. Med. Sch. 2022, 89, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Okadome, K.; Baba, Y.; Yagi, T.; Kiyozumi, Y.; Ishimoto, T.; Iwatsuki, M.; Miyamoto, Y.; Yoshida, N.; Watanabe, M.; Baba, H. Prognostic Nutritional Index, Tumor-infiltrating Lymphocytes, and Prognosis in Patients with Esophageal Cancer. Ann. Surg. 2020, 271, 693–700. [Google Scholar] [CrossRef]
- Sun, K.; Chen, S.; Xu, J.; Li, G.; He, Y. The prognostic significance of the prognostic nutritional index in cancer: A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 2014, 140, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, X.; Xiao, L.; Long, G.; Yao, L.; Wang, Z.; Zhou, L. Prognostic Nutritional Index and Systemic Immune-Inflammation Index Predict the Prognosis of Patients with HCC. J. Gastrointest. Surg. 2021, 25, 421–427. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Zhang, X.; Zhang, T. Pretreatment prognostic nutritional index as a prognostic factor in lung cancer: Review and meta-analysis. Clin. Chim. Acta 2018, 486, 303–310. [Google Scholar] [CrossRef]
- Atasever Akkas, E.; Erdis, E.; Yucel, B. Prognostic value of the systemic immune-inflammation index, systemic inflammation response index, and prognostic nutritional index in head and neck cancer. Eur. Arch. Otorhinolaryngol. 2023, 280, 3821–3830. [Google Scholar] [CrossRef]
- Tu, X.; Ren, J.; Zhao, Y. Prognostic value of prognostic nutritional index in nasopharyngeal carcinoma: A meta-analysis containing 4511 patients. Oral Oncol. 2020, 110, 104991. [Google Scholar] [CrossRef]
- Gao, Q.L.; Shi, J.G.; Huang, Y.D. Prognostic Significance of Pretreatment Prognostic Nutritional Index (PNI) in Patients with Nasopharyngeal Carcinoma: A Meta-Analysis. Nutr. Cancer 2021, 73, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Jia, Z.; Zhang, J. The prognostic role of prognostic nutritional index in nasopharyngeal carcinoma: A systematic review and meta-analysis. Int. J. Clin. Oncol. 2021, 26, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, G.; Pan, Y.; Li, Y. Prognostic Value of Clinical Biochemistry-Based Indexes in Nasopharyngeal Carcinoma. Front. Oncol. 2020, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Du, X.J.; Tang, L.L.; Mao, Y.P.; Guo, R.; Sun, Y.; Lin, A.H.; Ma, J. Value of the prognostic nutritional index and weight loss in predicting metastasis and long-term mortality in nasopharyngeal carcinoma. J. Transl. Med. 2015, 13, 364. [Google Scholar] [CrossRef]
- Yang, L.; Xia, L.; Wang, Y.; Hong, S.; Chen, H.; Liang, S.; Peng, P.; Chen, Y. Low Prognostic Nutritional Index (PNI) Predicts Unfavorable Distant Metastasis-Free Survival in Nasopharyngeal Carcinoma: A Propensity Score-Matched Analysis. PLoS ONE 2016, 11, e0158853. [Google Scholar] [CrossRef]
- Zhang, C.; Zhan, Z.; Fang, Y.; Ruan, Y.; Lin, M.; Dai, Z.; Zhang, Y.; Yang, S.; Xiao, S.; Chen, B. Prognostic nutritional index and serum lactate dehydrogenase predict the prognosis of nasopharyngeal carcinoma patients who received intensity-modulated radiation therapy. J. Cancer Res. Clin. Oncol. 2023, 149, 17795–17805. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.Y.; Deng, J.; Su, D.F.; Li, W.Q.; Han, Y.; Li, Z.X.; Huan, X.Z.; Zhu, S.H.; Yang, Q.L.; Hu, W.; et al. Construction of a comprehensive nutritional index and comparison of its prognostic performance with the PNI and NRI for survival in older patients with nasopharyngeal carcinoma: A retrospective study. Support. Care Cancer 2021, 29, 5371–5381. [Google Scholar] [CrossRef] [PubMed]
- Küçükarda, A.; Erdoğan, B.; Gökyer, A.; Sayın, S.; Gökmen, İ.; Özcan, E.; Hacıoğlu, M.B.; Uzunoğlu, S.; Çiçin, İ. Prognostic nutritional index and its dynamics after curative treatment are independent prognostic factors on survival in non-metastatic nasopharyngeal carcinoma. Support. Care Cancer 2022, 30, 2131–2139. [Google Scholar] [CrossRef] [PubMed]
- Wulfsohn, M.S.; Tsiatis, A.A. A joint model for survival and longitudinal data measured with error. Biometrics 1997, 53, 330–339. [Google Scholar] [CrossRef]
- Wang, Y.; Taylor, J.M.G. Jointly Modeling Longitudinal and Event Time Data With Application to Acquired Immunodeficiency Syndrome. J. Am. Stat. Assoc. 2001, 96, 895–905. [Google Scholar] [CrossRef]
- Faucett, C.L.; Schenker, N.; Taylor, J.M. Survival analysis using auxiliary variables via multiple imputation, with application to AIDS clinical trial data. Biometrics 2002, 58, 37–47. [Google Scholar] [CrossRef]
- Rizopoulos, D. JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data. J. Stat. Softw. 2010, 35, 1–33. [Google Scholar] [CrossRef]
- Buta, G.; Taye, A.; Worku, H. Bayesian Joint Modelling of Disease Progression Marker and Time to Death Event of HIV/AIDS Patients under ART Follow-up. Br. J. Med. Med. Res. 2015, 5, 1034–1043. [Google Scholar] [CrossRef]
- Kirkwood, J.M.; Ibrahim, J.G.; Sondak, V.K.; Richards, J.; Flaherty, L.E.; Ernstoff, M.S.; Smith, T.J.; Rao, U.; Steele, M.; Blum, R.H. High- and low-dose interferon alfa-2b in high-risk melanoma: First analysis of intergroup trial E1690/S9111/C9190. J. Clin. Oncol. 2000, 18, 2444–2458. [Google Scholar] [CrossRef]
- Law, N.J.; Taylor, J.M.; Sandler, H. The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure. Biostatistics 2002, 3, 547–563. [Google Scholar] [CrossRef]
- Chang, C.; Chiang, A.J.; Chen, W.A.; Chang, H.W.; Chen, J. A joint model based on longitudinal CA125 in ovarian cancer to predict recurrence. Biomark. Med. 2016, 10, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Rustand, D.; Briollais, L.; Tournigand, C.; Rondeau, V. Two-part joint model for a longitudinal semicontinuous marker and a terminal event with application to metastatic colorectal cancer data. Biostatistics 2022, 23, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Asar, O.; Ritchie, J.; Kalra, P.A.; Diggle, P.J. Joint modelling of repeated measurement and time-to-event data: An introductory tutorial. Int. J. Epidemiol. 2015, 44, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Crowther, M.J.; Lambert, P.C.; Abrams, K.R. Adjusting for measurement error in baseline prognostic biomarkers included in a time-to-event analysis: A joint modelling approach. BMC Med. Res. Methodol. 2013, 13, 146. [Google Scholar] [CrossRef]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar] [PubMed]
- Tsai, M.S.; Lin, M.H.; Lee, C.P.; Yang, Y.H.; Chen, W.C.; Chang, G.H.; Tsai, Y.T.; Chen, P.C.; Tsai, Y.H. Chang Gung Research Database: A multi-institutional database consisting of original medical records. Biomed. J. 2017, 40, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.C.; Chan, Y.Y.; Kao Yang, Y.H.; Lin, S.J.; Hung, M.J.; Chien, R.N.; Lai, C.C.; Lai, E.C. The Chang Gung Research Database-A multi-institutional electronic medical records database for real-world epidemiological studies in Taiwan. Pharmacoepidemiol. Drug Saf. 2019, 28, 593–600. [Google Scholar] [CrossRef]
- OuYang, P.Y.; Zhang, L.N.; Lan, X.W.; Xie, C.; Zhang, W.W.; Wang, Q.X.; Su, Z.; Tang, J.; Xie, F.Y. The significant survival advantage of female sex in nasopharyngeal carcinoma: A propensity-matched analysis. Br. J. Cancer 2015, 112, 1554–1561. [Google Scholar] [CrossRef]
- McMillan, D.C.; Watson, W.S.; O’Gorman, P.; Preston, T.; Scott, H.R.; McArdle, C.S. Albumin concentrations are primarily determined by the body cell mass and the systemic inflammatory response in cancer patients with weight loss. Nutr. Cancer 2001, 39, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- Bossola, M. Nutritional interventions in head and neck cancer patients undergoing chemoradiotherapy: A narrative review. Nutrients 2015, 7, 265–276. [Google Scholar] [CrossRef]
- Laursen, I.; Briand, P.; Lykkesfeldt, A.E. Serum albumin as a modulator on growth of the human breast cancer cell line, MCF-7. Anticancer. Res. 1990, 10, 343–351. [Google Scholar] [PubMed]
- Al-Shaiba, R.; McMillan, D.C.; Angerson, W.J.; Leen, E.; McArdle, C.S.; Horgan, P. The relationship between hypoalbuminaemia, tumour volume and the systemic inflammatory response in patients with colorectal liver metastases. Br. J. Cancer 2004, 91, 205–207. [Google Scholar] [CrossRef]
- Ligthart, S.; Marzi, C.; Aslibekyan, S.; Mendelson, M.M.; Conneely, K.N.; Tanaka, T.; Colicino, E.; Waite, L.L.; Joehanes, R.; Guan, W.; et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016, 17, 255. [Google Scholar] [CrossRef]
- Chojkier, M. Inhibition of albumin synthesis in chronic diseases: Molecular mechanisms. J. Clin. Gastroenterol. 2005, 39, S143–S146. [Google Scholar] [CrossRef]
- Esper, D.H.; Harb, W.A. The cancer cachexia syndrome: A review of metabolic and clinical manifestations. Nutr. Clin. Pract. 2005, 20, 369–376. [Google Scholar] [CrossRef]
- Ostroumov, D.; Fekete-Drimusz, N.; Saborowski, M.; Kühnel, F.; Woller, N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell. Mol. Life Sci. 2018, 75, 689–713. [Google Scholar] [CrossRef]
- Cézé, N.; Thibault, G.; Goujon, G.; Viguier, J.; Watier, H.; Dorval, E.; Lecomte, T. Pre-treatment lymphopenia as a prognostic biomarker in colorectal cancer patients receiving chemotherapy. Cancer Chemother. Pharmacol. 2011, 68, 1305–1313. [Google Scholar] [CrossRef]
- Cupp, M.A.; Cariolou, M.; Tzoulaki, I.; Aune, D.; Evangelou, E.; Berlanga-Taylor, A.J. Neutrophil to lymphocyte ratio and cancer prognosis: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 2020, 18, 360. [Google Scholar] [CrossRef] [PubMed]
- He, J.R.; Shen, G.P.; Ren, Z.F.; Qin, H.; Cui, C.; Zhang, Y.; Zeng, Y.X.; Jia, W.H. Pretreatment levels of peripheral neutrophils and lymphocytes as independent prognostic factors in patients with nasopharyngeal carcinoma. Head Neck 2012, 34, 1769–1776. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, D.; Tsubaki, M.; Takeda, T.; Miura, M.; Nishida, S.; Sakaguchi, K. Objective evaluation of nutritional status using the prognostic nutritional index during and after chemoradiotherapy in Japanese patients with head and neck cancer: A retrospective study. Eur. J. Hosp. Pharm. 2021, 28, 266–270. [Google Scholar] [CrossRef]
- Iwasa, Y.I.; Shimizu, M.; Matsuura, K.; Hori, K.; Hiramatsu, K.; Sugiyama, K.; Yokota, Y.; Kitano, T.; Kitoh, R.; Takumi, Y. Prognostic significance of pre- and post-treatment hematological biomarkers in patients with head and neck cancer treated with chemoradiotherapy. Sci. Rep. 2023, 13, 3869. [Google Scholar] [CrossRef]
- Long, J.D.; Mills, J.A. Joint modeling of multivariate longitudinal data and survival data in several observational studies of Huntington’s disease. BMC Med. Res. Methodol. 2018, 18, 138. [Google Scholar] [CrossRef]
- Dupuy, J.F.; Mesbah, M. Joint modeling of event time and nonignorable missing longitudinal data. Lifetime Data Anal. 2002, 8, 99–115. [Google Scholar] [CrossRef]
- Arisido, M.W.; Antolini, L.; Bernasconi, D.P.; Valsecchi, M.G.; Rebora, P. Joint model robustness compared with the time-varying covariate Cox model to evaluate the association between a longitudinal marker and a time-to-event endpoint. BMC Med. Res. Methodol. 2019, 19, 222. [Google Scholar] [CrossRef] [PubMed]
Patients, No. (%) (N = 2332) | |||
---|---|---|---|
Variable | Death (n = 638) | Alive (n = 1694) | p-Value a |
Age, mean ± SD (years) | 54.4 ± 13.2 | 48.1 ± 11.3 | <0.001 |
Sex | 0.001 | ||
Male | 510 (79.9%) | 1245 (73.5%) | |
Female | 128 (20.1%) | 449 (26.5%) | |
T classification | <0.001 | ||
1 | 121 (19.0%) | 631 (37.2%) | |
2 | 108 (16.9%) | 332 (19.6%) | |
3 | 146 (22.9%) | 377 (22.3%) | |
4 | 263 (41.2%) | 354 (20.9%) | |
N classification | <0.001 | ||
0 | 65 (10.2%) | 249 (14.7%) | |
1 | 194 (30.4%) | 714 (42.1%) | |
2 | 210 (32.9%) | 453 (26.7%) | |
3 | 169 (26.5%) | 278 (16.4%) | |
AJCC Stage | <0.001 | ||
1 | 9 (1.4%) | 114 (6.7%) | |
2 | 72 (11.3%) | 460 (27.2%) | |
3 | 178 (27.9%) | 552 (32.6%) | |
4 | 379 (59.4%) | 568 (33.5%) | |
DM | 44 (6.9%) | 64 (3.8%) | 0.001 |
HTN | 75 (11.8%) | 122 (7.2%) | <0.001 |
BMI (kg/m2) | 24.5 ± 4.2 | 25.1 ± 4.0 | 0.001 |
Treatment protocol | 0.519 | ||
IMRT | 73 (11.4%) | 169 (10.0%) | |
CCRT | 502 (78.7%) | 1343 (79.3%) | |
Induction C/T + CCRT | 63 (9.9%) | 182 (10.7%) |
Variable | Estimate (95% CI) | SE | p-Value |
---|---|---|---|
Intercept | 48.592 (46.934, 50.251) | 0.846 | <0.001 |
Follow-up (years) | −1.568 (−1.784, −1.352) | 0.110 | <0.001 |
Age (years) | −0.117 (−0.132, −0.101) | 0.008 | <0.001 |
Male | 0.734 (0.311, 1.158) | 0.216 | <0.001 |
DM | −1.818 (−2.752, −0.885) | 0.476 | 0.003 |
HTN | −0.274 (−0.994, 0.447) | 0.367 | 0.170 |
BMI (kg/m2) | 0.086 (0.040, 0.131) | 0.023 | <0.001 |
AJCC stage | |||
1 | Ref. | ||
2 | −2.137 (−3.248, −1.025) | 0.567 | 0.001 |
3 | −3.050 (−4.150, −1.950) | 0.561 | <0.001 |
4 | −4.138 (−5.225, −3.050) | 0.555 | <0.001 |
Treatment protocol | |||
IMRT | Ref. | ||
CCRT | 1.606 (0.843, 2.369) | 0.389 | <0.001 |
Induction C/T + CCRT | 1.492 (0.597, 2.387) | 0.457 | <0.001 |
Variable | Hazard Ratio (95% CI) | SE | p-Value |
---|---|---|---|
PNI | 0.813 (0.805, 0.821) | 0.005 | <0.001 |
Age (years) | 1.011 (1.005, 1.018) | 0.003 | 0.001 |
Male | 1.445 (1.188, 1.759) | 0.100 | <0.001 |
DM | 1.078 (0.764, 1.522) | 0.176 | 0.669 |
HTN | 1.269 (0.960, 1.678) | 0.143 | 0.094 |
BMI (kg/m2) | 0.985 (0.965, 1.006) | 0.011 | 0.163 |
AJCC stage | |||
1 | Ref. | ||
2 | 1.532 (0.741, 3.167) | 0.371 | 0.250 |
3 | 2.549 (1.253, 5.185) | 0.362 | 0.010 |
4 | 3.783 (1.873, 7.641) | 0.359 | <0.001 |
Treatment protocol | |||
IMRT | Ref. | ||
CCRT | 0.813 (0.623, 1.060) | 0.135 | 0.126 |
Induction C/T + CCRT | 0.993 (0.694, 1.422) | 0.183 | 0.971 |
Variable | Estimate (95% CI) | SE | p-Value |
---|---|---|---|
Longitudinal sub-model | |||
Intercept | 48.592 (47.251, 49.934) | 0.684 | <0.001 |
Follow-up (years) | −1.568 (−1.613, −1.523) | 0.023 | <0.001 |
Age (years) | −0.117 (−0.129, −0.104) | 0.006 | <0.001 |
Male | 0.734 (0.389, 1.080) | 0.176 | <0.001 |
DM | −1.818 (−2.516, −1.120) | 0.356 | <0.001 |
HTN | −0.274 (−0.832, 0.285) | 0.285 | 0.337 |
BMI (kg/m2) | 0.086 (0.053, 0.118) | 0.017 | <0.001 |
AJCC stage | |||
1 | Ref. | ||
2 | −2.137 (−3.126, −1.147) | 0.505 | <0.001 |
3 | −3.050 (−4.036, −2.064) | 0.503 | <0.001 |
4 | −4.138 (−5.107, −3.169) | 0.495 | <0.001 |
Treatment protocol | |||
IMRT | Ref. | ||
CCRT | 1.606 (0.960, 2.252) | 0.330 | <0.001 |
Induction C/T + CCRT | 1.492 (0.747, 2.236) | 0.380 | <0.001 |
Variable | Hazard Ratio (95% CI) | SE | p-Value |
Survival sub-model | |||
PNI | 0.864 (0.850, 0.879) | 0.009 | <0.001 |
Age (years) | 1.019 (1.012, 1.027) | 0.004 | <0.001 |
Male | 1.390 (1.135, 1.702) | 0.103 | 0.001 |
DM | 1.398 (0.980, 1.993) | 0.181 | 0.064 |
HTN | 1.119 (0.834, 1.503) | 0.150 | 0.453 |
BMI (kg/m2) | 0.957 (0.936, 0.979) | 0.012 | <0.001 |
AJCC stage | |||
1 | Ref. | ||
2 | 1.817 (0.909, 3.631) | 0.353 | 0.091 |
3 | 3.525 (1.793, 6.929) | 0.345 | <0.001 |
4 | 6.286 (3.223, 12.262) | 0.341 | <0.001 |
Treatment protocol | |||
IMRT | Ref. | ||
CCRT | 0.704 (0.531, 0.933) | 0.144 | 0.015 |
Induction C/T + CCRT | 0.660 (0.455, 0.959) | 0.191 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, P.-W.; Wang, Y.-M.; Wu, S.-C.; Chen, W.-C.; Wu, C.-N.; Chiu, T.-J.; Yang, Y.-H.; Luo, S.-D. A Joint Model Based on Post-Treatment Longitudinal Prognostic Nutritional Index to Predict Survival in Nasopharyngeal Carcinoma. Cancers 2024, 16, 1037. https://doi.org/10.3390/cancers16051037
Hsiao P-W, Wang Y-M, Wu S-C, Chen W-C, Wu C-N, Chiu T-J, Yang Y-H, Luo S-D. A Joint Model Based on Post-Treatment Longitudinal Prognostic Nutritional Index to Predict Survival in Nasopharyngeal Carcinoma. Cancers. 2024; 16(5):1037. https://doi.org/10.3390/cancers16051037
Chicago/Turabian StyleHsiao, Po-Wen, Yu-Ming Wang, Shao-Chun Wu, Wei-Chih Chen, Ching-Nung Wu, Tai-Jan Chiu, Yao-Hsu Yang, and Sheng-Dean Luo. 2024. "A Joint Model Based on Post-Treatment Longitudinal Prognostic Nutritional Index to Predict Survival in Nasopharyngeal Carcinoma" Cancers 16, no. 5: 1037. https://doi.org/10.3390/cancers16051037
APA StyleHsiao, P. -W., Wang, Y. -M., Wu, S. -C., Chen, W. -C., Wu, C. -N., Chiu, T. -J., Yang, Y. -H., & Luo, S. -D. (2024). A Joint Model Based on Post-Treatment Longitudinal Prognostic Nutritional Index to Predict Survival in Nasopharyngeal Carcinoma. Cancers, 16(5), 1037. https://doi.org/10.3390/cancers16051037