Novel Approaches with HIF-2α Targeted Therapies in Metastatic Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
Resistance Mechanisms of HIF-2α-Targeted Therapies
2. Novel Belzutifan Combinations with Targeted Therapies
2.1. Belzutifan in Combination with Cabozantinib
2.2. Belzutifan in Combination with Lenvatinib
2.3. Belzutifan in Combination with CDK4/6 Inhibitors
3. Belzutifan Combinations with Immunotherapy
3.1. Triplet Combinations with Belzutifan and Immunotherapy
3.2. Belzutifan and Immunotherapy Combinations in the Adjuvant Setting
3.3. Belzutifan Combination with Anti-TIGIT Therapies
4. Other Novel HIF-Targeted Therapies in RCC
4.1. DFF332
4.2. ARO-HIF2 (RNA Interference)
4.3. NKT-2152
4.4. AB521
4.5. BPI-452080
4.6. KD061
5. Broadening the Use of HIF-2α-Targeted Therapies to Other Cancers
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Aldin, A.; Besiroglu, B.; Adams, A.; Monsef, I.; Piechotta, V.; Tomlinson, E.; Hornbach, C.; Dressen, N.; Goldkuhle, M.; Maisch, P.; et al. First-line therapy for adults with advanced renal cell carcinoma: A systematic review and network meta-analysis. Cochrane Database Syst. Rev. 2023, 5, CD013798. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Pal, S.K.; Albiges, L.; Tomczak, P.; Suarez, C.; Voss, M.H.; de Velasco, G.; Chahoud, J.; Mochalova, A.; Procopio, G.; Mahammedi, H.; et al. Atezolizumab plus cabozantinib versus cabozantinib monotherapy for patients with renal cell carcinoma after progression with previous immune checkpoint inhibitor treatment (CONTACT-03): A multicentre, randomised, open-label, phase 3 trial. Lancet 2023, 402, 185–195. [Google Scholar] [CrossRef]
- Cowey, C.L.; Rathmell, W.K. VHL gene mutations in renal cell carcinoma: Role as a biomarker of disease outcome and drug efficacy. Curr. Oncol. Rep. 2009, 11, 94–101. [Google Scholar] [CrossRef]
- Kim, W.Y.; Kaelin, W.G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 2004, 22, 4991–5004. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Kaelin, W.G., Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat. Med. 2020, 26, 1519–1530. [Google Scholar] [CrossRef]
- Zatyka, M.; da Silva, N.F.; Clifford, S.C.; Morris, M.R.; Wiesener, M.S.; Eckardt, K.U.; Houlston, R.S.; Richards, F.M.; Latif, F.; Maher, E.R. Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease. Cancer Res. 2002, 62, 3803–3811. [Google Scholar]
- Mazumder, S.; Higgins, P.J.; Samarakoon, R. Downstream Targets of VHL/HIF-alpha Signaling in Renal Clear Cell Carcinoma Progression: Mechanisms and Therapeutic Relevance. Cancers 2023, 15, 1316. [Google Scholar] [CrossRef]
- Gordan, J.D.; Bertout, J.A.; Hu, C.J.; Diehl, J.A.; Simon, M.C. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 2007, 11, 335–347. [Google Scholar] [CrossRef]
- Sager, R.A.; Backe, S.J.; Ahanin, E.; Smith, G.; Nsouli, I.; Woodford, M.R.; Bratslavsky, G.; Bourboulia, D.; Mollapour, M. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat. Rev. Urol. 2022, 19, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Nakaigawa, N.; Yao, M.; Baba, M.; Kato, S.; Kishida, T.; Hattori, K.; Nagashima, Y.; Kubota, Y. Inactivation of von Hippel-Lindau gene induces constitutive phosphorylation of MET protein in clear cell renal carcinoma. Cancer Res. 2006, 66, 3699–3705. [Google Scholar] [CrossRef]
- Wu, Q.; You, L.; Nepovimova, E.; Heger, Z.; Wu, W.; Kuca, K.; Adam, V. Hypoxia-inducible factors: Master regulators of hypoxic tumor immune escape. J. Hematol. Oncol. 2022, 15, 77. [Google Scholar] [CrossRef]
- Shurin, M.R.; Umansky, V. Cross-talk between HIF and PD-1/PD-L1 pathways in carcinogenesis and therapy. J. Clin. Investig. 2022, 132, e159473. [Google Scholar] [CrossRef] [PubMed]
- Kammerer-Jacquet, S.F.; Medane, S.; Bensalah, K.; Bernhard, J.C.; Yacoub, M.; Dupuis, F.; Ravaud, A.; Verhoest, G.; Mathieu, R.; Peyronnet, B.; et al. Correlation of c-MET Expression with PD-L1 Expression in Metastatic Clear Cell Renal Cell Carcinoma Treated by Sunitinib First-Line Therapy. Target. Oncol. 2017, 12, 487–494. [Google Scholar] [CrossRef]
- Maher, E.R.; Neumann, H.P.; Richard, S. von Hippel-Lindau disease: A clinical and scientific review. Eur. J. Hum. Genet. 2011, 19, 617–623. [Google Scholar] [CrossRef]
- Jonasch, E.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; et al. Belzutifan for Renal Cell Carcinoma in von Hippel-Lindau Disease. N. Engl. J. Med. 2021, 385, 2036–2046. [Google Scholar] [CrossRef]
- Fallah, J.; Brave, M.H.; Weinstock, C.; Mehta, G.U.; Bradford, D.; Gittleman, H.; Bloomquist, E.W.; Charlab, R.; Hamed, S.S.; Miller, C.P.; et al. FDA Approval Summary: Belzutifan for von Hippel-Lindau Disease-Associated Tumors. Clin. Cancer Res. 2022, 28, 4843–4848. [Google Scholar] [CrossRef]
- Agarwal, N.; Brugarolas, J.; Ghatalia, P.; George, S.; Haanen, J.B.A.G.; Gurney, H.P.; Ravilla, R.; Van der Veldt, A.A.M.; Beuselinck, B.; Pokataev, I.; et al. 1881O Safety and efficacy of two doses of belzutifan in patients (pts) with advanced RCC: Results of the randomized phase II LITESPARK-013 study. Ann. Oncol. 2023, 34, S1011. [Google Scholar] [CrossRef]
- Albiges, L.; Rini, B.I.; Peltola, K.; De Velasco Oria, G.A.; Burotto, M.; Suarez Rodriguez, C.; Ghatalia, P.; Lacovelli, R.; Lam, E.T.; Verzoni, E.; et al. LBA88 Belzutifan versus everolimus in participants (pts) with previously treated advanced clear cell renal cell carcinoma (ccRCC): Randomized open-label phase III LITESPARK-005 study. Ann. Oncol. 2023, 34, S1329–S1330. [Google Scholar] [CrossRef]
- Chen, W.; Hill, H.; Christie, A.; Kim, M.S.; Holloman, E.; Pavia-Jimenez, A.; Homayoun, F.; Ma, Y.; Patel, N.; Yell, P.; et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 2016, 539, 112–117. [Google Scholar] [CrossRef]
- Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 2010, 40, 294–309. [Google Scholar] [CrossRef]
- Courtney, K.D.; Ma, Y.; Diaz de Leon, A.; Christie, A.; Xie, Z.; Woolford, L.; Singla, N.; Joyce, A.; Hill, H.; Madhuranthakam, A.J.; et al. HIF-2 Complex Dissociation, Target Inhibition, and Acquired Resistance with PT2385, a First-in-Class HIF-2 Inhibitor, in Patients with Clear Cell Renal Cell Carcinoma. Clin. Cancer Res. 2020, 26, 793–803. [Google Scholar] [CrossRef]
- Stransky, L.A.; Vigeant, S.M.; Huang, B.; West, D.; Denize, T.; Walton, E.; Signoretti, S.; Kaelin, W.G., Jr. Sensitivity of VHL mutant kidney cancers to HIF2 inhibitors does not require an intact p53 pathway. Proc. Natl. Acad. Sci. USA 2022, 119, e2120403119. [Google Scholar] [CrossRef]
- Chen, Y.; Cattoglio, C.; Dailey, G.M.; Zhu, Q.; Tjian, R.; Darzacq, X. Mechanisms governing target search and binding dynamics of hypoxia-inducible factors. eLife 2022, 11, e75064. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Hessel, C.; Halabi, S.; Sanford, B.; Michaelson, M.D.; Hahn, O.; Walsh, M.; Olencki, T.; Picus, J.; Small, E.J.; et al. Cabozantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): Progression-free survival by independent review and overall survival update. Eur. J. Cancer 2018, 94, 115–125. [Google Scholar] [CrossRef]
- Motzer, R.J.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Shah, A.Y.; Suarez, C.; Hamzaj, A.; Porta, C.; Hocking, C.M.; et al. Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): Long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol. 2022, 23, 888–898. [Google Scholar] [CrossRef]
- Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol. 2011, 3, S7–S19. [Google Scholar] [CrossRef]
- Oh, R.R.; Park, J.Y.; Lee, J.H.; Shin, M.S.; Kim, H.S.; Lee, S.K.; Kim, Y.S.; Lee, S.H.; Lee, S.N.; Yang, Y.M.; et al. Expression of HGF/SF and Met protein is associated with genetic alterations of VHL gene in primary renal cell carcinomas. APMIS 2002, 110, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; McDermott, D.F.; Merchan, J.; Bauer, T.M.; Figlin, R.; Heath, E.I.; Michaelson, M.D.; Arrowsmith, E.; D’Souza, A.; Zhao, S.; et al. Belzutifan plus cabozantinib for patients with advanced clear cell renal cell carcinoma previously treated with immunotherapy: An open-label, single-arm, phase 2 study. Lancet Oncol. 2023, 24, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Bauer, T.; Merchan, J.R.; McDermott, D.F.; Figlin, R.; Arrowsmith, E.; Michaelson, M.D.; Heath, E.; D’Souza, A.A.; Zhao, S.; et al. LBA87 Phase II LITESPARK-003 study of belzutifan in combination with cabozantinib for advanced clear cell renal cell carcinoma (ccRCC). Ann. Oncol. 2023, 34, S1328–S1329. [Google Scholar] [CrossRef]
- Capozzi, M.; De Divitiis, C.; Ottaiano, A.; von Arx, C.; Scala, S.; Tatangelo, F.; Delrio, P.; Tafuto, S. Lenvatinib, a molecule with versatile application: From preclinical evidence to future development in anti-cancer treatment. Cancer Manag. Res. 2019, 11, 3847–3860. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Eto, M.; Motzer, R.; De Giorgi, U.; Buchler, T.; Basappa, N.S.; Mendez-Vidal, M.J.; Tjulandin, S.; Hoon Park, S.; Melichar, B.; et al. Lenvatinib plus pembrolizumab versus sunitinib as first-line treatment of patients with advanced renal cell carcinoma (CLEAR): Extended follow-up from the phase 3, randomised, open-label study. Lancet Oncol. 2023, 24, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Hutson, T.E.; Glen, H.; Michaelson, M.D.; Molina, A.; Eisen, T.; Jassem, J.; Zolnierek, J.; Maroto, J.P.; Mellado, B.; et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: A randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015, 16, 1473–1482. [Google Scholar] [CrossRef]
- Albiges, L.; Beckermann, K.; Miller, W.H.; Goh, J.C.; Gajate, P.; Harris, C.A.; Suarez, C.; Peer, A.; Park, S.H.; Stadler, W.M.; et al. Belzutifan plus lenvatinib for patients (pts) with advanced clear cell renal cell carcinoma (ccRCC) after progression on a PD-1/L1 and VEGF inhibitor: Preliminary results of arm B5 of the phase 1/2 KEYMAKER-U03B study. J. Clin. Oncol. 2023, 41, 4553. [Google Scholar] [CrossRef]
- Motzer, R.J.; Schmidinger, M.; Eto, M.; Suarez, C.; Figlin, R.; Liu, Y.; Perini, R.; Zhang, Y.; Heng, D.Y. LITESPARK-011: Belzutifan plus lenvatinib vs cabozantinib in advanced renal cell carcinoma after anti-PD-1/PD-L1 therapy. Future Oncol. 2023, 19, 113–121. [Google Scholar] [CrossRef]
- Bindra, R.S.; Vasselli, J.R.; Stearman, R.; Linehan, W.M.; Klausner, R.D. VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. Cancer Res. 2002, 62, 3014–3019. [Google Scholar]
- VanArsdale, T.; Boshoff, C.; Arndt, K.T.; Abraham, R.T. Molecular Pathways: Targeting the Cyclin D-CDK4/6 Axis for Cancer Treatment. Clin. Cancer Res. 2015, 21, 2905–2910. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, H.E.; Tariq, Z.; Housden, B.E.; Jennings, R.B.; Stransky, L.A.; Perrimon, N.; Signoretti, S.; Kaelin, W.G., Jr. HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Sci. Signal. 2019, 12, eaay0482. [Google Scholar] [CrossRef] [PubMed]
- Cristofanilli, M.; Turner, N.C.; Bondarenko, I.; Ro, J.; Im, S.A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016, 17, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Powles, T.; Albiges, L.; Burotto, M.; Szczylik, C.; Zurawski, B.; Yanez Ruiz, E.; Maruzzo, M.; Suarez Zaizar, A.; Fein, L.E.; et al. Cabozantinib plus Nivolumab and Ipilimumab in Renal-Cell Carcinoma. N. Engl. J. Med. 2023, 388, 1767–1778. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Plimack, E.R.; Powles, T.; Voss, M.H.; Gurney, H.; Silverman, R.K.; Perini, R.F.; Rodriguez-Lopez, K.; Rini, B.I. Phase 3 study of first-line treatment with pembrolizumab + belzutifan + lenvatinib or pembrolizumab/quavonlimab + lenvatinib versus pembrolizumab + lenvatinib for advanced renal cell carcinoma (RCC). J. Clin. Oncol. 2022, 40, TPS399. [Google Scholar] [CrossRef]
- Ravaud, A.; Motzer, R.J.; Pandha, H.S.; George, D.J.; Pantuck, A.J.; Patel, A.; Chang, Y.H.; Escudier, B.; Donskov, F.; Magheli, A.; et al. Adjuvant Sunitinib in High-Risk Renal-Cell Carcinoma after Nephrectomy. N. Engl. J. Med. 2016, 375, 2246–2254. [Google Scholar] [CrossRef] [PubMed]
- Haas, N.B.; Manola, J.; Dutcher, J.P.; Flaherty, K.T.; Uzzo, R.G.; Atkins, M.B.; DiPaola, R.S.; Choueiri, T.K. Adjuvant Treatment for High-Risk Clear Cell Renal Cancer: Updated Results of a High-Risk Subset of the ASSURE Randomized Trial. JAMA Oncol. 2017, 3, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Sarwar, N.; et al. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [Google Scholar] [CrossRef]
- Motzer, R.J.; Russo, P.; Grunwald, V.; Tomita, Y.; Zurawski, B.; Parikh, O.; Buti, S.; Barthelemy, P.; Goh, J.C.; Ye, D.; et al. Adjuvant nivolumab plus ipilimumab versus placebo for localised renal cell carcinoma after nephrectomy (CheckMate 914): A double-blind, randomised, phase 3 trial. Lancet 2023, 401, 821–832. [Google Scholar] [CrossRef]
- Pal, S.K.; Uzzo, R.; Karam, J.A.; Master, V.A.; Donskov, F.; Suarez, C.; Albiges, L.; Rini, B.; Tomita, Y.; Kann, A.G.; et al. Adjuvant atezolizumab versus placebo for patients with renal cell carcinoma at increased risk of recurrence following resection (IMmotion010): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2022, 400, 1103–1116. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Bedke, J.; Karam, J.A.; McKay, R.R.; Motzer, R.J.; Pal, S.K.; Suarez, C.; Uzzo, R.; Liu, H.; Burgents, J.E.; et al. LITESPARK-022: A phase 3 study of pembrolizumab + belzutifan as adjuvant treatment of clear cell renal cell carcinoma (ccRCC). J. Clin. Oncol. 2022, 40, TPS4602. [Google Scholar] [CrossRef]
- Chauvin, J.M.; Zarour, H.M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 2020, 8, e000957. [Google Scholar] [CrossRef]
- Kim, T.W.; Bedard, P.L.; LoRusso, P.; Gordon, M.S.; Bendell, J.; Oh, D.Y.; Ahn, M.J.; Garralda, E.; D’Angelo, S.P.; Desai, J.; et al. Anti-TIGIT Antibody Tiragolumab Alone or with Atezolizumab in Patients With Advanced Solid Tumors: A Phase 1a/1b Nonrandomized Controlled Trial. JAMA Oncol. 2023, 9, 1574–1582. [Google Scholar] [CrossRef]
- Cho, B.C.; Abreu, D.R.; Hussein, M.; Cobo, M.; Patel, A.J.; Secen, N.; Lee, K.H.; Massuti, B.; Hiret, S.; Yang, J.C.H.; et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): Primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022, 23, 781–792. [Google Scholar] [CrossRef]
- Mettu, N.B.; Ulahannan, S.V.; Bendell, J.C.; Garrido-Laguna, I.; Strickler, J.H.; Moore, K.N.; Stagg, R.; Kapoun, A.M.; Faoro, L.; Sharma, S. A Phase 1a/b Open-Label, Dose-Escalation Study of Etigilimab Alone or in Combination with Nivolumab in Patients with Locally Advanced or Metastatic Solid Tumors. Clin. Cancer Res. 2022, 28, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Maurice-Dror, C.; Lee, D.H.; Kim, D.W.; Nagrial, A.; Voskoboynik, M.; Chung, H.C.; Mileham, K.; Vaishampayan, U.; Rasco, D.; et al. First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer. Ann. Oncol. 2022, 33, 169–180. [Google Scholar] [CrossRef]
- Toledo, R.A.; Jimenez, C.; Armaiz-Pena, G.; Arenillas, C.; Capdevila, J.; Dahia, P.L.M. Hypoxia-Inducible Factor 2 Alpha (HIF2alpha) Inhibitors: Targeting Genetically Driven Tumor Hypoxia. Endocr. Rev. 2023, 44, 312–322. [Google Scholar] [CrossRef]
- Ma, Y.; Joyce, A.; Brandenburg, O.; Saatchi, F.; Stevens, C.; Toffessi Tcheuyap, V.; Christie, A.; Do, Q.N.; Fatunde, O.; Macchiaroli, A.; et al. HIF2 Inactivation and Tumor Suppression with a Tumor-Directed RNA-Silencing Drug in Mice and Humans. Clin. Cancer Res. 2022, 28, 5405–5418. [Google Scholar] [CrossRef]
- Brugarolas, J.; Beckermann, K.; Rini, B.I.; Vogelzang, N.J.; Lam, E.T.; Hamilton, J.C.; Schluep, T.; Yi, M.; Wong, S.; Gamelin, E.; et al. Initial results from the phase 1 study of ARO-HIF2 to silence HIF2-alpha in patients with advanced ccRCC (AROHIF21001). J. Clin. Oncol. 2022, 40, 339. [Google Scholar] [CrossRef]
- Lu, J.; Wei, H.; Sun, W.; Geng, J.; Liu, K.; Liu, J.; Liu, Z.; Fu, J.; He, Y.; Wang, K.; et al. Abstract 6330: NKT2152: A highly potent HIF2α inhibitor and its therapeutic potential in solid tumors beyond ccRCC. Cancer Res. 2022, 82, 6330. [Google Scholar] [CrossRef]
- Lawson, K.V.; Sivick Gauthier, K.E.; Mailyan, A.K.; Fournier, J.T.; Beatty, J.W.; Drew, S.L.; Kalisiak, J.; Gal, B.; Mata, G.; Wang, Z.; et al. Abstract 1206: Discovery and characterization of AB521, a novel, potent, and selective hypoxia-inducible factor (HIF)-2α inhibitor. Cancer Res. 2021, 81, 1206. [Google Scholar] [CrossRef]
- Sivick Gauthier, K.E.; Piovesan, D.; Cho, S.; Lawson, K.V.; Schweickert, P.G.; Lopez, A.; Liu, S.; Park, T.; Mailyan, A.; Fournier, J.T.A.; et al. Abstract P206: AB521 potently and selectively inhibits pro-tumorigenic gene transcription by Hypoxia-Inducible Factor (HIF)-2α in vitro and in vivo. Cancer Res. 2021, 20, P206. [Google Scholar] [CrossRef]
- Lawson, K.V.; Sivick Gauthier, K.E.; Piovesan, D.; Mailyan, A.; Mata, G.; Fournier, J.T.; Yu, K.; Liu, S.; Soriano, F.; Jin, L.; et al. 46P AB521, a clinical-stage, potent, and selective Hypoxia-Inducible Factor (HIF)-2α inhibitor, for the treatment of renal cell carcinoma. Ann. Oncol. 2022, 33, S21. [Google Scholar] [CrossRef]
- Liao, K.; Foster, P.; Seitz, L.; Cheng, T.; Gauthier, K.; Lawson, K.; Jin, L.; Paterson, E. HIF-2α inhibitor AB521 modulates erythropoietin levels in healthy volunteers following a single oral dose. Eur. J. Cancer 2022, 174, S20. [Google Scholar] [CrossRef]
- Wang, P.; Yang, R.; Sun, Y.; Ju, X.; Zhao, J.; Liu, Y.; Liu, X.; Zou, Z.; Ren, J.; Wang, M.; et al. Abstract 494: BPI-452080: A potent and selective HIF-2α inhibitor for the treatment of clear cell renal cell carcinoma, von Hippel-Lindau disease, and other solid tumors. Cancer Res. 2023, 83, 494. [Google Scholar] [CrossRef]
- Yang, L.; Fan, Y.; Zhang, Q. Targeting ferroptosis in renal cell carcinoma: Potential mechanisms and novel therapeutics. Heliyon 2023, 9, e18504. [Google Scholar] [CrossRef]
- Koh, M.Y. The identification of a novel orally available ferroptosis inducer for the treatment of clear cell renal carcinoma. Oncologist 2023, 28, S10. [Google Scholar] [CrossRef]
- Bai, J.; Chen, W.B.; Zhang, X.Y.; Kang, X.N.; Jin, L.J.; Zhang, H.; Wang, Z.Y. HIF-2alpha regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling. World J. Stem Cells 2020, 12, 87–99. [Google Scholar] [CrossRef]
- Singhal, R.; Mitta, S.R.; Das, N.K.; Kerk, S.A.; Sajjakulnukit, P.; Solanki, S.; Andren, A.; Kumar, R.; Olive, K.P.; Banerjee, R.; et al. HIF-2alpha activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron. J. Clin. Investig. 2021, 131, e143691. [Google Scholar] [CrossRef]
- Zhao, J.; Du, F.; Shen, G.; Zheng, F.; Xu, B. The role of hypoxia-inducible factor-2 in digestive system cancers. Cell Death Dis. 2015, 6, e1600. [Google Scholar] [CrossRef] [PubMed]
- Pavlakis, D.; Kampantais, S.; Gkagkalidis, K.; Gourvas, V.; Memmos, D.; Tsionga, A.; Dimitriadis, G.; Vakalopoulos, I. Hypoxia-Inducible Factor 2a Expression Is Positively Correlated With Gleason Score in Prostate Cancer. Technol. Cancer Res. Treat. 2021, 20, 1533033821990010. [Google Scholar] [CrossRef] [PubMed]
- Buscheck, F.; Fraune, C.; Simon, R.; Kluth, M.; Hube-Magg, C.; Moller-Koop, C.; Sarper, I.; Ketterer, K.; Henke, T.; Eichelberg, C.; et al. Prevalence and clinical significance of VHL mutations and 3p25 deletions in renal tumor subtypes. Oncotarget 2020, 11, 237–249. [Google Scholar] [CrossRef] [PubMed]
Trial Name/NCT Identifier | Phase | Treatment | Setting | Key Primary Endpoint(s) |
---|---|---|---|---|
Monotherapy trials | ||||
NCT04846920 | 1 | Belzutifan monotherapy (dose escalation) | Advanced refractory ccRCC | Advderse events; percentage of participants who discontinue or modify/interrupt treatment due to adverse event; DLTs |
LITESPARK-013 (NCT04489771) | 2 | Belzutifan (120 mg versus 240 mg) | Advanced refractory ccRCC | ORR |
LITESPARK-005 (NCT04195750) | 3 | Belzutifan monotherapy | Advanced refractory ccRCC | PFS and OS (co-primary) |
Combinations with targeted therapies | ||||
LITESPARK-024 (NCT05468697) | 1/2 | Belzutifan + Palbociclib | Advanced refractory ccRCC | Adverse events; DLTs; number of participants who discontinue treatment due to adverse event; ORR (phase 2) |
NCT04627064 | 1/1B | Belzutifan + Abemaciclib | Advanced refractory ccRCC | Maximum tolerated dose and ORR |
LITESPARK-003 (NCT03634540) | 2 | Belzutifan + Cabozantinib | Advanced refractory ccRCC | ORR |
KEYMAKER-U03B (NCT04626518) | 1/2 | Belzutifan + Lenvatinib | Advanced refractory ccRCC | Adverse events; DLTs; number of participants who discontinue therapy due to adverse event; ORR |
LITESPARK-011 (NCT04586231) | 3 | Belzutifan + Lenvatinib | Advanced refractory ccRCC | PFS and OS (co-primary) |
Combinations with immunotherapy | ||||
LITESPARK-022 (NCT05239728) | 3 | Belzutifan + Pembrolizumab | Adjuvant therapy | Disease-free survival |
LITESPARK-012 (NCT04736706) | 3 | Belzutifan/Lenvatinib + Pembrolizumab or Quavonlimab | First-line in advanced ccRCC | PFS and OS (co-primary) |
NCT05899049 (China) | 3 | Belzutifan + Pembrolizumab + Lenvatinib | First-line in advanced ccRCC | PFS and OS (co-primary) |
NCT05030506 (China) | 1 | Belzutifan + Lenvatinib +/− Pembrolizumab | First-line in advanced ccRCC | Adverse events; DLTs; pharmacokinetic/pharmacodynamic profiles |
NCT04626479 | 1/2 | Belzutifan + Vibostolimab/Pembrolizumab | First-line in advanced ccRCC | Adverse events; DLTs; ORR |
Trial Name/NCT Identifier | Phase | Agent | Setting | Key Primary Endpoint(s) |
---|---|---|---|---|
Novel small molecule inhibitors | ||||
NCT04895748 | 1/1b | DFF332 monotherapy DFF332 + Everolimus/Spartalizumab + Taminadenant | Advanced refractory ccRCC | Adverse events; DLTs; number of participants with dose interruptions/reductions; dose intensity for dose escalation/expansion |
NCT05119335 | 1/2 | NKT-2152 | Advanced refractory ccRCC | DLTs; recommended dose for expansion in the dose escalation phase (phase 1); recommended dose for phase 2; ORR (phase 2) |
NCT05935748 | 2 | NKT-2152 + Palbociclib + Sasanlimab | Advanced refractory ccRCC | DLT and ORR |
ARC-20 (NCT05536141) | 1 | AB521 | Advanced refractory ccRCC | DLTs and adverse events |
NCT05843305 | 1 | BPI-452080 | Advanced refractory ccRCC | Adverse events |
RNA interference (RNAi) | ||||
NCT04169711 | 1 | ARO-HIF2 | Advanced refractory ccRCC | Adverse events |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, C.B.; Oh, E.; Bahar, P.; Vaishampayan, U.N.; Else, T.; Alva, A.S. Novel Approaches with HIF-2α Targeted Therapies in Metastatic Renal Cell Carcinoma. Cancers 2024, 16, 601. https://doi.org/10.3390/cancers16030601
Nguyen CB, Oh E, Bahar P, Vaishampayan UN, Else T, Alva AS. Novel Approaches with HIF-2α Targeted Therapies in Metastatic Renal Cell Carcinoma. Cancers. 2024; 16(3):601. https://doi.org/10.3390/cancers16030601
Chicago/Turabian StyleNguyen, Charles B., Eugene Oh, Piroz Bahar, Ulka N. Vaishampayan, Tobias Else, and Ajjai S. Alva. 2024. "Novel Approaches with HIF-2α Targeted Therapies in Metastatic Renal Cell Carcinoma" Cancers 16, no. 3: 601. https://doi.org/10.3390/cancers16030601
APA StyleNguyen, C. B., Oh, E., Bahar, P., Vaishampayan, U. N., Else, T., & Alva, A. S. (2024). Novel Approaches with HIF-2α Targeted Therapies in Metastatic Renal Cell Carcinoma. Cancers, 16(3), 601. https://doi.org/10.3390/cancers16030601