Human Leukocyte Antigen–Haploidentical Haematopoietic Stem Cell Transplantation Using Post-Transplant Cyclophosphamide for Paediatric Haematological Malignancies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Basic Theory of PTCY
3. Development of Haplo-HSCT with PTCY and Its Current Progress in Adults
4. Haplo-HSCT with PTCY and Its Current Progress in Paediatric Patients
5. Measures to Improve the Outcomes of Paediatric Haplo-HSCT with PTCY
6. Viral Reactivation and Haemorrhagic Cystitis in Paediatric Haplo-HSCT with PTCY
7. Pharmacokinetic (PK) Study of CY and CY Metabolites and Cardiotoxicity in Paediatric Haplo-HSCT with PTCY
8. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- O’Donnell, P.V.; Luznik, L.; Jones, R.J.; Vogelsang, G.B.; Leffell, M.S.; Phelps, M.; Rhubart, P.; Cowan, K.; Piantados, S.; Fuchs, E.J. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol. Blood Marrow Transpl. 2002, 8, 377–386. [Google Scholar] [CrossRef]
- Japanese Data Center for Hematopoietic Cell Transplantation. Hematopoietic Cell Transplantation in Japan. Annual Report of Nationwide Survey 2022. Available online: http://www.jdchct.or.jp/en/outline/ (accessed on 5 November 2023).
- Center for International Blood & Marrow Transplant Research. The US Summary Slides 2022—Updated August 2023. Available online: https://cibmtr.org/CIBMTR/Resources/Summary-Slides-Reports (accessed on 5 November 2023).
- Fuchs, E.J.; O’Donnell, P.V.; Eapen, M.; Logan, B.; Antin, J.H.; Dawson, P.; Devine, S.; Horowitz, M.M.; Horwitz, M.E.; Karanes, C.; et al. Double unrelated umbilical cord blood vs HLA-haploidentical bone marrow transplantation: The BMT CTN 1101 trial. Blood 2021, 137, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Gagelmann, N.; Bacigalupo, A.; Rambaldi, A.; Hoelzer, D.; Halter, J.; Sanz, J.; Bonifazi, F.; Meijer, E.; Itälä-Remes, M.; Marková, M.; et al. Haploidentical stem cell transplantation with posttransplant cyclophosphamide therapy vs other donor transplantations in adults with hematologic cancers: A systematic review and meta-analysis. JAMA Oncol. 2019, 5, 1739–1748. [Google Scholar] [CrossRef]
- Wieduwilt, M.J.; Metheny, L.; Zhang, M.J.; Wang, H.L.; Estrada-Merly, N.; Marks, D.I.; Al-Homsi, A.S.; Muffly, L.; Chao, N.; Rizzieri, D.; et al. Haploidentical vs sibling, unrelated, or cord blood hematopoietic cell transplantation for acute lymphoblastic leukemia. Blood Adv. 2022, 6, 339–357. [Google Scholar] [CrossRef]
- Liu, D.; Huang, X.; Liu, K.; Xu, L.; Chen, H.; Han, W.; Chen, Y.; Zhang, X.; Jiang, Q. Haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for treatment of hematological malignancies in children. Biol. Blood Marrow Transplant. 2008, 14, 469–477. [Google Scholar] [CrossRef]
- Mochizuki, K.; Kikuta, A.; Ito, M.; Sano, H.; Akaihata, M.; Kobayashi, S.; Ohto, H.; Hosoya, M. Feasibility of tacrolimus, methotrexate, and prednisolone as a graft-versus-host disease prophylaxis in non-T-cell-depleted haploidentical hematopoietic stem cell transplantation for children. Clin. Transplant. 2011, 25, 892–897. [Google Scholar] [CrossRef]
- Berenbaum, M.C.; Brown, I.N. Prolongation of homograft survival in mice with single doses of cyclophosphamide. Nature 1963, 200, 84. [Google Scholar] [CrossRef]
- Nomoto, K.; Eto, M.; Yanaga, K.; Nishimura, Y.; Maeda, T.; Nomoto, K. Interference with cyclophosphamide-induced skin allograft tolerance by cyclosporin A. J. Immunol. 1992, 15, 2668–2674. [Google Scholar] [CrossRef]
- McDonald, G.B.; Slattery, J.T.; Bouvier, M.E.; Ren, S.; Batchelder, A.L.; Kalhorn, T.F.; Schoch, H.G.; Anasetti, C.; Gooley, T. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003, 101, 2043–2048. [Google Scholar] [CrossRef] [PubMed]
- Kanakry, C.G.; Ganguly, S.; Zahurak, M.; Bolaños-Meade, J.; Thoburn, C.; Perkins, B.; Fuchs, E.J.; Jones, R.J.; Hess, A.D.; Luznik, L. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci. Transl. Med. 2013, 5, 211ra157. [Google Scholar] [CrossRef]
- Nishikawa, T.; Miyahara, E.; Kurauchi, K.; Watanabe, E.; Ikawa, K.; Asaba, K.; Tanabe, T.; Okamoto, Y.; Kawano, Y. Mechanisms of fatal cardiotoxicity following high-dose cyclophosphamide therapy and a method for its prevention. PLoS ONE 2015, 10, e0131394. [Google Scholar] [CrossRef] [PubMed]
- Kurauchi, K.; Nishikawa, T.; Miyahara, E.; Okamoto, Y.; Kawano, Y. Role of metabolites of cyclophosphamide in cardiotoxicity. BMC Res. Notes 2017, 10, 406. [Google Scholar] [CrossRef]
- Ganguly, S.; Ross, D.B.; Panoskaltsis-Mortari, A.; Kanakry, C.G.; Blazar, B.R.; Levy, R.B.; Luznik, L. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood 2014, 124, 2131–2141. [Google Scholar] [CrossRef] [PubMed]
- Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol. 2009, 6, 638–647. [Google Scholar] [CrossRef]
- Luznik, L.; Jalla, S.; Engstrom, L.W.; Iannone, R.; Fuchs, E.J. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood 2001, 98, 3456–3464. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.; Jones, M.; Komanduri, K.; Levy, R.B. Antigen and lymphopenia-driven donor T cells are differentially diminished by post-transplantation administration of cyclophosphamide after hematopoietic cell transplantation. Biol. Blood Marrow Transpl. 2013, 19, 1430–1438. [Google Scholar] [CrossRef] [PubMed]
- Wachsmuth, L.P.; Patterson, M.T.; Eckhaus, M.A.; Venzon, D.J.; Gress, R.E.; Kanakry, C.G. Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J. Clin. Investig. 2019, 26, 2357–2373. [Google Scholar] [CrossRef]
- Nunes, N.S.; Kanakry, C.G. Mechanisms of graft-versus-host disease prevention by post-transplantation cyclophosphamide: An evolving understanding. Front. Immunol. 2019, 10, 2668. [Google Scholar] [CrossRef]
- Fletcher, R.E.; Nunes, N.S.; Patterson, M.T.; Vinod, N.; Khan, S.M.; Mendu, S.K.; Li, X.; de Paula Pohl, A.; Wachsmuth, L.P.; Choo-Wosoba, H.; et al. Posttransplantation cyclophosphamide expands functional myeloid-derived suppressor cells and indirectly influences Tregs. Blood Adv. 2023, 7, 1117–1129. [Google Scholar] [CrossRef]
- Luznik, L.; O’Donnell, P.V.; Symons, H.J.; Chen, A.R.; Leffell, M.S.; Zahurak, M.; Gooley, T.A.; Piantadosi, S.; Kaup, M.; Ambinder, R.F.; et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transpl. 2008, 14, 641–650. [Google Scholar] [CrossRef]
- Munchel, A.T.; Kasamon, Y.L.; Fuchs, E.J. Treatment of hematological malignancies with nonmyeloablative, HLA-haploidentical bone marrow transplantation and high dose, post-transplantation cyclophosphamide. Best Pract. Res. Clin. Haematol. 2011, 24, 359–368. [Google Scholar] [CrossRef]
- Raiola, A.M.; Dominietto, A.; Ghiso, A.; Di Grazia, C.; Lamparelli, T.; Gualandi, F.; Bregante, S.; Van Lint, M.T.; Geroldi, S.; Luchetti, S.; et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol. Blood Marrow Transpl. 2013, 19, 117–122. [Google Scholar] [CrossRef]
- Raj, K.; Pagliuca, A.; Bradstock, K.; Noriega, V.; Potter, V.; Streetly, M.; McLornan, D.; Kazmi, M.; Marsh, J.; Kwan, J.; et al. Peripheral blood hematopoietic stem cells for transplantation of hematological diseases from related, haploidentical donors after reduced-intensity conditioning. Biol. Blood Marrow Transpl. 2014, 20, 890–895. [Google Scholar] [CrossRef]
- Bhamidipati, P.K.; DiPersio, J.F.; Stokerl-Goldstein, K.; Rashidi, A.; Gao, F.; Uy, G.L.; Westervelt, P.; Vij, R.; Schroeder, M.A.; Abboud, C.N.; et al. Haploidentical transplantation using G-CSF-mobilized T-cell replete PBSCs and post-transplantation CY after non-myeloablative conditioning is safe and is associated with favorable outcomes. Bone Marrow Transplant. 2014, 49, 1124–1126. [Google Scholar] [CrossRef]
- Castagna, L.; Crocchiolo, R.; Fürst, S.; Bramanti, S.; El Cheikh, J.; Sarina, B.; Granata, A.; Mauro, E.; Faucher, C.; Mohty, B.; et al. Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol. Blood Marrow Transplant. 2014, 20, 724–729. [Google Scholar] [CrossRef]
- Sawada, A.; Shimizu, M.; Isaka, K.; Higuchi, K.; Mayumi, A.; Yoshimoto, Y.; Kikuchi, H.; Kondo, O.; Koyama-Sato, M.; Yasui, M.; et al. Feasibility of HLA-haploidentical hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for advanced pediatric malignancies. Pediatr. Hematol. Oncol. 2014, 31, 754–764. [Google Scholar] [CrossRef]
- Dufort, G.; Castillo, L.; Pisano, S.; Castiglioni, M.; Carolina, P.; Andrea, I.; Simon, E.; Zuccolo, S.; Schelotto, M.; Morosini, F.; et al. Haploidentical hematopoietic stem cell transplantation in children with high-risk hematologic malignancies: Outcomes with two different strategies for GvHD prevention. Ex vivo T-cell depletion and post-transplant cyclophosphamide: 10 years of experience at a single center. Bone Marrow Transplant. 2016, 51, 1354–1360. [Google Scholar] [CrossRef]
- Berger, M.; Lanino, E.; Cesaro, S.; Zecca, M.; Vassallo, E.; Faraci, M.; De Bortoli, M.; Barat, V.; Prete, A.; Fagioli, F. Feasibility and outcome of haploidentical hematopoietic stem cell transplantation with post-transplant high-dose cyclophosphamide for children and adolescents with hematologic malignancies: An AIEOP-GITMO retrospective multicenter study. Biol. Blood Marrow Transplant. 2016, 22, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.T.; Kang, H.J.; Choi, J.Y.; Hong, C.R.; Cheon, J.E.; Park, J.D.; Park, K.D.; Song, S.H.; Yu, K.S.; Jang, I.J.; et al. Favorable outcome of post-transplantation cyclophosphamide haploidentical peripheral blood stem cell transplantation with targeted busulfan-based myeloablative conditioning using intensive pharmacokinetic monitoring in pediatric patients. Biol. Blood Marrow Transplant. 2018, 24, 2239–2244. [Google Scholar] [CrossRef] [PubMed]
- Medina, D.; Estacio, M.; Rosales, M.; Manzi, E. Haploidentical stem cell transplant with post-transplantation cyclophosphamide and mini-dose methotrexate in children. Hematol. Oncol. Stem Cell Ther. 2020, 13, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, A.; Ferreras, C.; Pascual, A.; Gonzalez-Vicent, M.; Alonso, L.; Badell, I.; Fernández Navarro, J.M.; Regueiro, A.; Plaza, M.; Pérez Hurtado, J.M.; et al. Haploidentical transplantation in high-risk pediatric leukemia: A retrospective comparative analysis on behalf of the Spanish working Group for bone marrow transplantation in children (GETMON) and the Spanish Grupo for hematopoietic transplantation (GETH). Am. J. Hematol. 2020, 95, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, Á.M.; Karduss, A.J.; Suarez, G.; Pérez, R.; Ruiz, G.; Cardona, A.; Ramírez, M.; Betancur, J. Haploidentical hematopoietic stem cell transplantation with post-transplantation cyclophosphamide in children with high-risk leukemia using a reduced-intensity conditioning regimen and peripheral blood as the stem cell source. Transplant. Cell. Ther. 2021, 27, 427.e1–427.e7. [Google Scholar] [CrossRef] [PubMed]
- Saglio, F.; Berger, M.; Spadea, M.; Pessolano, R.; Carraro, F.; Barone, M.; Quarello, P.; Vassallo, E.; Fagioli, F. Haploidentical HSCT with post transplantation cyclophosphamide versus unrelated donor HSCT in pediatric patients affected by acute leukemia. Bone Marrow Transplant. 2021, 56, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.; Arcuri, L.J.; Seber, A.; Colturato, V.; Zecchin, V.G.; Kuwahara, C.; Nichele, S.; Gouveia, R.; Fernandes, J.F.; Macedo, A.V.; et al. Impact of mother donor, peripheral blood stem cells and measurable residual disease on outcomes after haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide in children with acute leukaemia. Bone Marrow Transplant. 2021, 56, 3042–3048. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, A.; Labopin, M.; Sanz, G.; Piemontese, S.; Arcese, W.; Bacigalupo, A.; Blaise, D.; Bosi, A.; Huang, H.; Karakasis, D.; et al. Cord Blood Committee of Cellular Therapy and Immunobiology working party-EBMT.; ALWP-EBMT study. Comparison of outcomes after unrelated cord blood and unmanipulated haploidentical stem cell transplantation in adults with acute leukemia. Leukemia 2015, 29, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.E.; Ballen, K.K.; Zhang, M.J.; Allbee-Johnson, M.; Karanes, C.; Milano, F.; Verneris, M.R.; Eapen, M.; Brunstein, C.G. Comparison of haploidentical and umbilical cord blood transplantation after myeloablative conditioning. Blood Adv. 2021, 5, 4064–4072. [Google Scholar] [CrossRef] [PubMed]
- Fatobene, G.; Rocha, V.; St Martin, A.; Hamadani, M.; Robinson, S.; Bashey, A.; Boumendil, A.; Brunstein, C.; Castagna, L.; Dominietto, A.; et al. Nonmyeloablative Alternative Donor Transplantation for Hodgkin and Non-Hodgkin Lymphoma: From the LWP-EBMT, Eurocord, and CIBMTR. J. Clin. Oncol. 2020, 10, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.; Montoro, J.; Solano, C.; Valcárcel, D.; Sampol, A.; Ferrá, C.; Parody, R.; Lorenzo, I.; Montesinos, P.; Ortí, G.; et al. Prospective randomized study comparing myeloablative unrelated umbilical cord blood transplantation versus HLA-haploidentical related stem cell transplantation for adults with hematologic malignancies. Biol. Blood Marrow Transplant. 2020, 26, 358–366. [Google Scholar] [CrossRef]
- Ciurea, S.O.; Al Malki, M.M.; Kongtim, P.; Fuchs, E.J.; Luznik, L.; Huang, X.J.; Ciceri, F.; Locatelli, F.; Aversa, F.; Castagna, L.; et al. The European Society for Blood and Marrow Transplantation (EBMT) consensus recommendations for donor selection in haploidentical hematopoietic cell transplantation. Bone Marrow Transplant. 2020, 55, 12–24. [Google Scholar] [CrossRef]
- Solomon, S.R.; Aubrey, M.T.; Zhang, X.; Jackson, K.C.; Morris, L.E.; Holland, H.K.; Solh, M.M.; Bashey, A. Class II HLA mismatch improves outcomes following haploidentical transplantation with posttransplant cyclophosphamide. Blood Adv. 2020, 4, 5311–5321. [Google Scholar] [CrossRef]
- Fleischhauer, K. Haplo-PtCy: Adjusting the HLA barrier. Blood 2022, 139, 1431–1433. [Google Scholar] [CrossRef]
- Arcuri, L.J.; Hamerschlak, N.; Rocha, V.; Bonfim, C.; Kerbauy, M.N. Outcomes after haploidentical hematopoietic cell transplantation with post-transplantation cyclophosphamide: A systematic review and meta-analysis comparing myeloablative with reduced-intensity conditioning regimens and bone marrow with peripheral blood stem cell grafts. Transplant. Cell. Ther. 2021, 27, 782.e1–782.e7. [Google Scholar] [CrossRef]
- Maffini, E.; Labopin, M.; Blaise, D.; Ciceri, F.; Gülbas, Z.; Deconinck, E.; Leblond, V.; Chevallier, P.; Sociè, G.; Araujo, M.C.; et al. CD34+ cell dose effects on clinical outcomes after T-cell replete haploidentical allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia using peripheral blood stem cells. A study from the acute leukemia working Party of the European Society for blood and marrow transplantation (EBMT). Am. J. Hematol. 2020, 95, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Elmariah, H.; Naqvi, S.M.H.; Kim, J.; Nishihori, T.; Mishra, A.; Perez, L.; Faramand, R.; Lazaryan, A.; Liu, H.D.; Khimani, F.; et al. Impact of infused CD34+ stem cell dosing for allogeneic peripheral blood stem cell transplantation with post-transplant cyclophosphamide. Bone Marrow Transplant. 2021, 56, 1683–1690. [Google Scholar] [CrossRef]
- Pedraza, A.; Salas, M.Q.; Rodríguez-Lobato, L.G.; Charry, P.; Suárez-Lledo, M.; Martínez-Cibrian, N.; Doménech, A.; Solano, M.T.; Arcarons, J.; de Llobet, N.; et al. Effect of CD34+ cell dose on the outcomes of allogeneic stem cell transplantation with post-transplantation cyclophosphamide. Transplant. Cell. Ther. 2023, 29, 181.e1–181.e10. [Google Scholar] [CrossRef]
- Uygun, V.; Karasu, G.; Yalçın, K.; Öztürkmen, S.; Daloğlu, H.; Çelen, S.S.; Hazar, V.; Yeşilipek, A. Timing of initiation of calcineurin inhibitors in pediatric haploidentical transplantation with post-transplantation cyclophosphamide: Effects on survival, relapse, and cytokine release syndrome. Acta Haematol. 2022, 145, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, A.; Labopin, M.; Battipaglia, G.; Chiusolo, P.; Tischer, J.; Diez-Martin, J.L.; Bruno, B.; Castagna, L.; Moiseev, I.S.; Vitek, A.; et al. Timing of post-transplantation cyclophosphamide administration in haploidentical transplantation: A comparative study on behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2020, 26, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Senjo, H.; Harada, S.; Kubota, S.I.; Tanaka, Y.; Tateno, T.; Zhang, Z.; Okada, S.; Chen, X.; Kikuchi, R.; Miyashita, N.; et al. Calcineurin inhibitor inhibits tolerance induction by suppressing terminal exhaustion of donor T cells after allo-HCT. Blood 2023, 142, 477–492. [Google Scholar] [CrossRef]
- Senjo, H.; Hashimoto, D.; Okada, S.; Kubota, S.I.; Ito, A.; Tanaka, T.; Saito, Y.; Miyajima, T.; Li, W.; Zhang, Z.; et al. Delayed initiation of calcineurin inhibitor is critical for tolerance induction by posttransplant cyclophosphamide. Blood 2023, 142, 2041. [Google Scholar] [CrossRef]
- Brown, P.A.; Ji, L.; Xu, X.; Devidas, M.; Hogan, L.E.; Borowitz, M.J.; Raetz, E.A.; Zugmaier, G.; Sharon, E.; Bernhardt, M.B.; et al. Effect of postreinduction therapy consolidation with Blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: A randomized clinical trial. JAMA 2021, 325, 833–842. [Google Scholar] [CrossRef]
- Abematsu, T.; Nishikawa, T.; Nakagawa, S.; Kodama, Y.; Okamoto, Y.; Kawano, Y. Successful salvage of very early relapse in pediatric acute lymphoblastic leukemia with inotuzumab ozogamicin and HLA-haploidentical peripheral blood stem cell transplantation with posttransplant cyclophosphamide. J. Pediatr. Hematol. Oncol. 2022, 44, 62–64. [Google Scholar] [CrossRef]
- Abematsu, T.; Nishikawa, T.; Shiba, N.; Iijima-Yamashita, Y.; Inaba, Y.; Takahashi, Y.; Nakagawa, S.; Kodama, Y.; Okamoto, Y.; Kawano, Y. Pediatric acute myeloid leukemia co-expressing FLT3/ITD and NUP98/NSD1 treated with gilteritinib plus allogenic peripheral blood stem cell transplantation: A case report. Pediatr. Blood Cancer 2021, 68, e29216. [Google Scholar] [CrossRef]
- Xuan, L.; Liu, Q.J. Maintenance therapy in acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. J. Hematol. Oncol. 2021, 14, 4. [Google Scholar] [CrossRef]
- Burchert, A.; Bug, G.; Fritz, L.V.; Finke, J.; Stelljes, M.; Röllig, C.; Wollmer, E.; Wäsch, R.; Bornhäuser, M.; Berg, T.; et al. Sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia with FLT3-internal tandem duplication mutation (SORMAIN). J. Clin. Oncol. 2020, 38, 2993–3002. [Google Scholar] [CrossRef] [PubMed]
- Gaballa, M.R.; Banerjee, P.; Milton, D.R.; Jiang, X.; Ganesh, C.; Khazal, S.; Nandivada, V.; Islam, S.; Kaplan, M.; Daher, M.; et al. Blinatumomab maintenance after allogeneic hematopoietic cell transplantation for B-lineage acute lymphoblastic leukemia. Blood 2022, 24, 1908–1919. [Google Scholar] [CrossRef]
- Xue, Y.J.; Suo, P.; Huang, X.J.; Lu, A.D.; Wang, Y.; Zuo, Y.X.; Yan, C.H.; Wu, J.; Kong, J.; Zhang, X.H.; et al. Superior survival of unmanipulated haploidentical haematopoietic stem cell transplantation compared with intensive chemotherapy as post-remission treatment for children with very high-risk philadelphia chromosome negative B-cell acute lymphoblastic leukaemia in first complete remission. Br. J. Haematol. 2020, 188, 757–767. [Google Scholar] [CrossRef]
- Xue, Y.J.; Cheng, Y.F.; Lu, A.D.; Wang, Y.; Zuo, Y.X.; Yan, C.H.; Wu, J.; Sun, Y.Q.; Suo, P.; Chen, Y.H.; et al. Allogeneic hematopoietic stem cell transplantation, especially haploidentical, may improve long-term survival for high-risk pediatric patients with Philadelphia chromosome-positive acute lymphoblastic leukemia in the tyrosine kinase inhibitor era. Biol. Blood Marrow Transplant. 2019, 25, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.D.; Tang, B.L.; Zhang, X.H.; Zheng, C.C.; Xu, L.P.; Zhu, X.Y.; Wang, Y.; Liu, H.L.; Yan, C.H.; Chu, X.D.; et al. Comparison of outcomes after umbilical cord blood and unmanipulated haploidentical hematopoietic stem cell transplantation in children with high-risk acute lymphoblastic leukemia. Int. J. Cancer 2016, 139, 2106–2115. [Google Scholar] [CrossRef]
- Crocchiolo, R.; Bramanti, S.; Vai, A.; Sarina, B.; Mineri, R.; Casari, E.; Tordato, F.; Mauro, E.; Timofeeva, I.; Lugli, E.; et al. Infections after T-replete haploidentical transplantation and high-dose cyclophosphamide as graft-versus-host disease prophylaxis. Transpl. Infect. Dis. 2015, 17, 242–249. [Google Scholar] [CrossRef]
- Rambaldi, B.; Kim, H.T.; Reynolds, C.; Chamling Rai, S.; Arihara, Y.; Kubo, T.; Buon, L.; Gooptu, M.; Koreth, J.; Cutler, C.; et al. Impaired T- and NK-cell reconstitution after haploidentical HCT with posttransplant cyclophosphamide. Blood Adv. 2021, 26, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, S.R.; Abid, M.B.; Auletta, J.J.; Bashey, A.; Beitinjaneh, A.; Castillo, P.; Chemaly, R.F.; Chen, M.; Ciurea, S.; Dandoy, C.E.; et al. Posttransplant cyclophosphamide is associated with increased cytomegalovirus infection: A CIBMTR analysis. Blood 2021, 10, 3291–3305. [Google Scholar] [CrossRef]
- Tischer, J.; Engel, N.; Fritsch, S.; Prevalsek, D.; Hubmann, M.; Schulz, C.; Zoellner, A.K.; Bücklein, V.; Reibke, R.; Mumm, F.; et al. Virus infection in HLA-haploidentical hematopoietic stem cell transplantation: Incidence in the context of immune recovery in two different transplantation settings. Ann. Hematol. 2015, 94, 1677–1688. [Google Scholar] [CrossRef]
- Mariotti, J.; Legrand, F.; Furst, S.; Giordano, L.; Magri, F.; Richiardi, L.; Granata, A.; De Philippis, C.; Maisano, V.; Faraci, D.; et al. Risk factors for early cytomegalovirus reactivation and impact of early cytomegalovirus reactivation on clinical outcomes after T cell-replete haploidentical transplantation with post-transplantation cyclophosphamide. Transplant. Cell. Ther. 2022, 28, 169.e1–169.e9. [Google Scholar] [CrossRef]
- Lin, A.; Flynn, J.; DeRespiris, L.; Figgins, B.; Griffin, M.; Lau, C.; Proli, A.; Devlin, S.M.; Cho, C.; Tamari, R.; et al. Letermovir for prevention of cytomegalovirus reactivation in haploidentical and mismatched adult donor allogeneic hematopoietic cell transplantation with post-transplantation cyclophosphamide for graft-versus-host disease prophylaxis. Transplant. Cell. Ther. 2021, 27, 85.e1–85.e6. [Google Scholar] [CrossRef]
- Singh, A.; Dandoy, C.E.; Chen, M.; Kim, S.; Mulroney, C.M.; Kharfan-Dabaja, M.A.; Ganguly, S.; Maziarz, R.T.; Kanakry, C.G.; Kanakry, J.A.; et al. Post-transplantation cyclophosphamide is associated with an increase in non-cytomegalovirus herpesvirus infections in patients with acute leukemia and myelodysplastic syndrome. Transplant. Cell. Ther. 2022, 28, 48.e1–48.e10. [Google Scholar] [CrossRef]
- Dybko, J.; Giordano, U.; Pilch, J.; Mizera, J.; Borkowski, A.; Dereń-Wagemann, I. Evaluating the impact of post-transplant cyclophosphamide and anti-thymocyte globulin on CMV reactivation following allogeneic hematopoietic stem cell transplantation: A Systematic Literature Review. J. Clin. Med. 2023, 18, 7765. [Google Scholar] [CrossRef]
- Ustun, C.; Chen, M.; Kim, S.; Auletta, J.J.; Batista, M.V.; Battiwalla, M.; Cerny, J.; Gowda, L.; Hill, J.A.; Liu, H.; et al. Post-transplantation cyclophosphamide is associated with increased bacterial infections. Bone Marrow Transplant. 2024, 59, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Papanicolaou, G.A.; Chen, M.; He, N.; Martens, M.J.; Kim, S.; Batista, M.V.; Bhatt, N.S.; Hematti, P.; Hill, J.A.; Liu, H.; et al. Incidence and impact of fungal infections in post-transplantation cyclophosphamide-based graft-versus-host disease prophylaxis and haploidentical hematopoietic cell transplantation: A Center for International Blood and Marrow Transplant Research analysis. Transplant. Cell. Ther. 2024, 30, 114.e1–114.e16. [Google Scholar] [CrossRef]
- Cesaro, S.; Dalianis, T.; Hanssen Rinaldo, C.; Koskenvuo, M.; Pegoraro, A.; Einsele, H.; Cordonnier, C.; Hirsch, H.H.; ECIL-6 Group. ECIL guidelines for the prevention, diagnosis and treatment of BK polyomavirus-associated haemorrhagic cystitis in haematopoietic stem cell transplant recipients. J. Antimicrob. Chemother. 2018, 73, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, A.; Roth-Guepin, G.; Battipaglia, G.; Mamez, A.C.; Malard, F.; Gomez, A.; Brissot, E.; Belhocine, R.; Vekhoff, A.; Lapusan, S.; et al. Incidence and risk factors for hemorrhagic cystitis in unmanipulated haploidentical transplant recipients. Transpl. Infect. Dis. 2015, 17, 822–830. [Google Scholar] [CrossRef]
- Lunde, L.E.; Dasaraju, S.; Cao, Q.; Cohn, C.S.; Reding, M.; Bejanyan, N.; Trottier, B.; Rogosheske, J.; Brunstein, C.; Warlick, E.; et al. Hemorrhagic cystitis after allogeneic hematopoietic cell transplantation: Risk factors, graft source and survival. Bone Marrow Transpl. 2015, 50, 1432–1437. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, Y.; Saito, S.; Yanagisawa, R.; Suzuki, T.; Ito, T.; Ishida, F.; Muramatsu, H.; Matsumoto, K.; Kato, K.; Ishida, H.; et al. Recipient seropositivity for adenovirus type 11 (AdV11)is a highly predictive factor for the development of AdV11-induced hemorrhagic cystitis after allogeneic hematopoietic SCT. Bone Marrow Transplant. 2013, 48, 737–739. [Google Scholar] [CrossRef]
- Copelan, O.R.; Sanikommu, S.R.; Trivedi, J.S.; Butler, C.; Ai, J.; Ragon, B.K.; Jacobs, R.; Knight, T.G.; Usmani, S.Z.; Grunwald, M.R.; et al. Higher incidence of hemorrhagic cystitis following haploidentical related donor transplantation compared with matched related donor transplantation. Biol. Blood Marrow Transplant. 2019, 25, 785–790. [Google Scholar] [CrossRef]
- Coomes, E.A.; Wolfe, A.; Michelis, F.V.; Kim, D.D.H.; Thyagu, S.; Viswabandya, A.; Lipton, J.H.; Messner, H.A.; Deotare, U. Efficacy of cidofovir in treatment of BK virus-induced hemorrhagic cystitis in allogeneic hematopoietic cell transplant recipients. Biol. Blood Marrow Transplant. 2018, 24, 1901–1905. [Google Scholar] [CrossRef]
- Arango, M.; Cardona, D. Hemorrhagic Cystitis after Haploidentical Transplantation with Post-Transplantation Cyclophosphamide: Protective effect of MESNA continuous infusion. Biol. Blood Marrow Transplant. 2020, 26, 1492–1496. [Google Scholar] [CrossRef]
- Kasudhan, K.S.; Patil, A.N.; Jandial, A.; Khadwal, A.; Prakash, G.; Jain, A.; Bhurani, D.; Ahmed, R.; Agrawal, N.; Singh, R.; et al. Post-transplant cyclophosphamide pharmacokinetics and haploidentical hematopoietic cell transplantation outcomes: An exploratory study. Leuk. Lymphoma 2022, 63, 2679–2685. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, T.; Ikawa, K.; Miyahara, E.; Abematsu, T.; Nakagawa, S.; Kurauchi, K.; Kodama, Y.; Tanabe, T.; Shinkoda, Y.; Okamoto, Y.; et al. Pharmacokinetics of cyclophosphamide and its metabolites in pediatric hematopoietic stem cell transplant recipients: A comparative study of two conditioning regimens, and one posttransplantation regimen. Biol. Blood Marrow Transplant. 2017, 23, S243–S244. [Google Scholar] [CrossRef]
- Yamada, K.; Sugita, K.; Onishi, S.; Yamada, W.; Kawano, T.; Nakame, K.; Mukai, M.; Kaji, T.; Saito, A.; Hazeki, D.; et al. Thoracoscopic fenestration for hemorrhagic cardiac tamponade induced by cardiotoxicity of cyclophosphamide. Videoscopy 2019, 29, 557. [Google Scholar] [CrossRef]
- Duléry, R.; Mohty, R.; Labopin, M.; Sestili, S.; Malard, F.; Brissot, E.; Battipaglia, G.; Médiavilla, C.; Banet, A.; Van de Wyngaert, Z.; et al. Early cardiac toxicity associated with post-transplant cyclophosphamide in allogeneic stem cell transplantation. JACC CardioOncol. 2021, 15, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.; Whited, L.; Saliba, R.M.; Rondon, G.; Banchs, J.; Shpall, E.; Champlin, R.; Popat, U. Cardiac toxicity after matched allogeneic hematopoietic cell transplant in the posttransplant cyclophosphamide era. Blood Adv. 2021, 28, 5599–5607. [Google Scholar] [CrossRef] [PubMed]
Number of Cases | Median Age (Years) | Diagnosis | Disease Status at Transplantation | Conditioning Regimen | Donor Source | GVHD Prophylaxis Other Than PTCY | aGVHD (III–IV) cGVHD (Extensive) | References |
---|---|---|---|---|---|---|---|---|
15 | 7 | ALL, AML, NB, etc. | non-CR 87% | RIC 100% | BM 100% | CNI, mPSL PTCY (day 3 only) | 40% 0% | [28] |
23 | 15 (1–26) | ALL, AML, MDS, etc. | non-CR 26% | MAC 70% RIC 30% | PB 100% | CNI, MMF | 5% 12% | [29] |
33 | 12 (1–21) | ALL, AML, lymphoma, etc. | non-CR 30% | MAC 42% RIC 57% | BM 91% PB 9% | CNI, MMF | 3% N.D. | [30] |
34 | 11 (0.9–21) | ALL, AML, non-malignant, etc. | CR 68% N/A 32% | MAC 100% | PB 100% | CNI, MMF | 5.9% 9.1% | [31] |
52 | 9 (1–17) | ALL, AML, MDS, etc. | non-CR 9.8% | MAC 100% | BM 60% PB 40% | CNI, MTX 81 % CNI, MMF 19 % | 8.5% N.D. | [32] |
41 | 6 | ALL, AML, MDS, etc. | MRD > 0.01 36% | MAC 100% | BM 22% PB 78% | CNI, MMF | 28% N.D. | [33] |
42 | 11 (2–17) | ALL, AML, JMML, etc. | non-CR 3% | MAC 100% | PB 100% | CNI, MMF | 17% N.D. | [34] |
23 | 9 | ALL, AML | N.D. | RIC 100% | BM or PB | CNI, MMF | N.D. 5.0% | [35] |
180 | 9 | ALL | non-CR 19% | MAC 77% RIC 23% | BM 64% PB 36% | CNI, MMF | 12.4 % 9.% | [36] |
MAC | –9 | –8 | –7 | –6 | –5 | –4 | –3 | –2 | –1 | 0 |
---|---|---|---|---|---|---|---|---|---|---|
TBI-based regimen | ||||||||||
TBI 9.9–12 Gy | ↓ | ↓ | ↓ | |||||||
fludarabine 30 mg/m2/day | ↓ | ↓ | ↓ | ↓ | ||||||
Non-TBI regimen | ||||||||||
fludarabine 30 mg/m2/day | ↓ | ↓ | ↓ | ↓ | ||||||
melphalan 90 mg/m2/day | ↓ | ↓ | ||||||||
fludarabine 30 mg/m2/day | ↓ | ↓ | ↓ | ↓ | ||||||
targeted busulfan (total AUC 80–100 mg × h/L) | ↓ | ↓ | ↓ | ↓ | ||||||
RIC | ||||||||||
fludarabine 30 mg/m2/day | ↓ | ↓ | ↓ | ↓ | ||||||
melphalan 70 mg/m2/day | ↓ | ↓ | ↓ | |||||||
fludarabine 30 mg/m2/day | ↓ | ↓ | ↓ | ↓ | ↓ | |||||
cyclophosphamide 14.5 mg/kg/day | ↓ | ↓ | ||||||||
TBI 2 Gy | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishikawa, T. Human Leukocyte Antigen–Haploidentical Haematopoietic Stem Cell Transplantation Using Post-Transplant Cyclophosphamide for Paediatric Haematological Malignancies. Cancers 2024, 16, 600. https://doi.org/10.3390/cancers16030600
Nishikawa T. Human Leukocyte Antigen–Haploidentical Haematopoietic Stem Cell Transplantation Using Post-Transplant Cyclophosphamide for Paediatric Haematological Malignancies. Cancers. 2024; 16(3):600. https://doi.org/10.3390/cancers16030600
Chicago/Turabian StyleNishikawa, Takuro. 2024. "Human Leukocyte Antigen–Haploidentical Haematopoietic Stem Cell Transplantation Using Post-Transplant Cyclophosphamide for Paediatric Haematological Malignancies" Cancers 16, no. 3: 600. https://doi.org/10.3390/cancers16030600
APA StyleNishikawa, T. (2024). Human Leukocyte Antigen–Haploidentical Haematopoietic Stem Cell Transplantation Using Post-Transplant Cyclophosphamide for Paediatric Haematological Malignancies. Cancers, 16(3), 600. https://doi.org/10.3390/cancers16030600