The Impact of Nanomedicine on Soft Tissue Sarcoma Treated by Radiotherapy and/or Hyperthermia: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Nanoparticles Used in Radiotherapy Treatment of Soft Tissue Sarcomas
3.1.1. Gold Nanoparticles
3.1.2. Hafnium Oxide Nanoparticles for the Radiotherapy of STS
3.2. The Use of Nanoparticles in Hyperthermia Treatment of Soft Tissue Sarcomas
3.2.1. Liposomes and Hyperthermia
3.2.2. Liposomes for Combined Hyperthermia and Radiotherapy
3.2.3. Magnetic Nanoparticles and Hyperthermia
4. Discussion
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
STS | Soft Tissue Sarcoma |
RT | Radiotherapy |
HT | Hyperthermia |
NP | Nanoparticle |
GNP | Gold Nanoparticle |
p-GNP | Pegylated Gold Nanoparticle |
RD | Recommended Dose |
pCR | Pathological Complete Response |
DOX | Doxorubicin |
TSL | Thermosensitive Liposomes |
CA | Contrast Agent |
LCST | Lower Critical Solution Temperature |
NHG | Nanohydrogel |
MNH | Magnetic Nanoparticle Hyperthermia |
IRT | Infrared Thermography |
References
- Liz-Marzán, L.M.; Nel, A.E.; Brinker, C.J.; Chan, W.C.W.; Chen, C.; Chen, X.; Ho, D.; Hu, T.; Kataoka, K.; Kotov, N.A.; et al. What Do We Mean When We Say Nanomedicine? ACS Nano 2022, 16, 13257–13259. [Google Scholar] [CrossRef]
- Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front. Chem. 2018, 6, 360. [Google Scholar] [CrossRef] [PubMed]
- Helleday, T. Chemotherapy-induced Toxicity—A Secondary Effect Caused by Released DNA? Ann. Oncol. 2017, 28, 2054–2055. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.B.; Coleman, C.N.; Anscher, M.S.; McBride, W.H. Effects of Radiation on Normal Tissue: Consequences and Mechanisms. Lancet Oncol. 2003, 4, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Liebl, C.M.; Kutschan, S.; Dörfler, J.; Käsmann, L.; Hübner, J. Systematic Review about Complementary Medical Hyperthermia in Oncology. Clin. Exp. Med. 2022, 22, 519–565. [Google Scholar] [CrossRef] [PubMed]
- Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. Adv. Cancer Res. 2018, 137, 115–170. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Fu, S.; Wu, J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int. J. Nanomed. 2020, 15, 9407–9430. [Google Scholar] [CrossRef]
- Grüttner, C.; Müller, K.; Teller, J.; Westphal, F. Synthesis and Functionalisation of Magnetic Nanoparticles for Hyperthermia Applications. Int. J. Hyperth. 2013, 29, 777–789. [Google Scholar] [CrossRef]
- Ta, T.; Porter, T.M. Thermosensitive Liposomes for Localized Delivery and Triggered Release of Chemotherapy. J. Control Release 2013, 169, 112–125. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.; Schneeweiss, A.; Barrios, C.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.; Shaw Wright, G.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Yoneshima, Y.; Morita, S.; Ando, M.; Nakamura, A.; Iwasawa, S.; Yoshioka, H.; Goto, Y.; Takeshita, M.; Harada, T.; Hirano, K.; et al. Phase 3 Trial Comparing Nanoparticle Albumin-Bound Paclitaxel With Docetaxel for Previously Treated Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, Q.; Chen, B.; Xi, M.; Makelike, K.; Liu, S.; Hu, Y.; Zhu, Y. Phase I study of cisplatin and nanoparticle albumin-bound-paclitaxel combined with concurrent radiotherapy in locally advanced esophageal squamous cell carcinoma. Cancer Med. 2023, 12, 15187–15198. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.; Wang, Z.; Zhao, L.; Mao, H.; Wang, G.; Zhang, K.; Liu, X.; Wu, D.; Zheng, Y.; Lu, J.; et al. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics 2018, 8, 5088–5105. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Shelar, S.; Srivastava, M.; Singh, B.; Goel, L.; Ningthoujam, R. Development of Core@Shell gamma-Fe2O3@MnxOy@SiO2 Nanoparticles for Hyperthermia, Targeting, and Imaging Applications. ACS Appl. Bio Mater. 2022, 5, 5386–5393. [Google Scholar] [CrossRef]
- Maier-Hauff, K.; Rothe, R.; Scholz, R.; Gneveckow, U.; Wust, P.; Thiesen, B.; Feussner, A.; von Deimling, A.; Waldoefner, N.; Felix, R.; et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. J. Neuro-Oncol. 2007, 81, 53–60. [Google Scholar] [CrossRef]
- Maniglio, D.; Benetti, F.; Minati, L.; Jovicich, J.; Valentini, A.; Speranza, G.; Migliaresi, C. Theranostic gold-magnetite hybrid nanoparticles for MRI-guided radiosensitization. Nanotechnology 2018, 29, 315101. [Google Scholar] [CrossRef]
- Bagley, A.; Ludmir, E.; Maitra, A.; Minsky, B.; Li Smith, G.; Das, P.; Koong, A.; Holliday, E.; Taniguchi, C.; Katz, M.; et al. NBTXR3, a first-in-class radioenhancer for pancreatic ductal adenocarcinoma: Report of first patient experience. Clin. Transl. Radiat. Oncol. 2022, 33, 66–69. [Google Scholar] [CrossRef]
- Choi, J.; Kim, G.; Cho, S.B.; Im, H.J. Radiosensitizing High-Z Metal Nanoparticles for Enhanced Radiotherapy of Glioblastoma Multiforme. J. Nanobiotechnol. 2020, 18, 122. [Google Scholar] [CrossRef]
- Datta, N.R.; Kok, H.P.; Crezee, H.; Gaipl, U.S.; Bodis, S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front. Oncol. 2020, 10, 819. [Google Scholar] [CrossRef]
- Datta, N.R.; Jain, B.M.; Mathi, Z.; Datta, S.; Johari, S.; Singh, A.R.; Kalbande, P.; Kale, P.; Shivkumar, V.; Bodis, S. Hyperthermia: A Potential Game-Changer in the Management of Cancers in Low-Middle-Income Group Countries. Cancers 2022, 14, 315. [Google Scholar] [CrossRef]
- Datta, N.R.; Ordóñez, S.G.; Gaipl, U.S.; Paulides, M.M.; Crezee, H.; Gellermann, J.; Marder, D.; Puric, E.; Bodis, S. Local hyperthermia combined with radiotherapy and/or chemotherapy: Recent advances and promises for the future. Cancer Treat. Rev. 2015, 41, 742–753. [Google Scholar] [CrossRef]
- Kouloulias, V.; Triantopoulou, S.; Uzunoglou, N.; Pistevou-Gompaki, K.; Barich, A.; Zygogianni, A.; Kyrgias, G.; Kardamakis, D.; Pectasidis, D.; Kouvaris, J.; et al. Hyperthermia Is Now Included in the NCCN Clinical Practice Guidelines for Breast Cancer Recurrences: An Analysis of Existing Data. Breast Care 2015, 10, 109–116. [Google Scholar] [CrossRef]
- Strander, H.; Turesson, I.; Cavallin-ståhl, E. A Systematic Overview of Radiation Therapy Effects in Soft Tissue Sarcomas. Acta Oncol. 2003, 42, 516–531. [Google Scholar] [CrossRef]
- O’Sullivan, B.; Davis, A.; Turcotte, R.; Bell, R.; Catton, C.; Chabot, P.; Wunder, J.; Kandel, R.; Goddard, K.; Sadura, A.; et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: A randomised trial. Lancet 2002, 359, 2235–2241. [Google Scholar] [CrossRef]
- Davis, A.; O’Sullivan, B.; Bell, R.; Turcotte, R.; Catton, C.; Wunder, J.; Chabot, P.; Hammond, A.; Benk, V.; Isler, M.; et al. Function and health status outcomes in a randomized trial comparing preoperative and postoperative radiotherapy in extremity soft tissue sarcoma. J. Clin. Oncol. 2002, 20, 4472–4477. [Google Scholar] [CrossRef]
- Davis, A.; O’Sullivan, B.; Turcotte, R.; Bell, R.; Catton, C.; Chabot, P.; Wunder, J.; Hammond, A.; Benk, V.; Kandel, R.; et al. Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother. Oncol. 2005, 75, 48–53. [Google Scholar] [CrossRef]
- Bonvalot, S.; Le Pechoux, C.; De Baere, T.; Kantor, G.; Buy, X.; Stoeckle, E.; Terrier, P.; Sargos, P.; Coindre, J.M.; Lassau, N.; et al. First-in-Human Study Testing a New Radioenhancer Using Nanoparticles (NBTXR3) Activated by Radiation Therapy in Patients with Locally Advanced Soft Tissue Sarcomas. Clin. Cancer Res. 2017, 23, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Bonvalot, S.; Rutkowski, P.L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M.P.; Agoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M.; et al. NBTXR3, a First-in-Class Radioenhancer Hafnium Oxide Nanoparticle, Plus Radiotherapy Versus Radiotherapy Alone in Patients with Locally Advanced Soft-Tissue Sarcoma (Act.In.Sarc): A Multicentre, Phase 2-3, Randomised, Controlled Trial. Lancet Oncol. 2019, 20, 1148–1159, Erratum: Lancet Oncol. 2019, 20, e468. [Google Scholar] [CrossRef]
- Benton, J.Z.; Williams, R.J.; Patel, A.; Meichner, K.; Tarigo, J.; Nagata, K.; Pethel, T.D.; Gogal, R.M., Jr. Gold Nanoparticles Enhance Radiation Sensitization and Suppress Colony Formation in a Feline Injection Site Sarcoma Cell Line, In Vitro. Res. Vet. Sci. 2018, 117, 104–110. [Google Scholar] [CrossRef]
- Zimmermann, K.; Hossann, M.; Hirschberger, J.; Troedson, K.; Peller, M.; Schneider, M.; Brühschwein, A.; Meyer-Lindenberg, A.; Wess, G.; Wergin, M.; et al. A Pilot Trial of Doxorubicin Containing Phosphatidyldiglycerol Based Thermosensitive Liposomes in Spontaneous Feline Soft Tissue Sarcoma. Int. J. Hyperth. 2017, 33, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Pizzuti, V.J.; Misra, R.; Lee, J.; Torregrosa-Allen, S.E.; Currie, M.P.; Clark, S.R.; Patel, A.P.; Schorr, C.R.; Jones-Hall, Y.; Childress, M.O.; et al. Folic Acid-Conjugated Radioluminescent Calcium Tungstate Nanoparticles as Radio-Sensitizers for Cancer Radiotherapy. ACS Biomater. Sci. Eng. 2019, 5, 4776–4789. [Google Scholar] [CrossRef] [PubMed]
- Kong, G.; Anyarambhatla, G.; Petros, W.P.; Braun, R.D.; Colvin, O.M.; Needham, D.; Dewhirst, M.W. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: Importance of triggered drug release. Cancer Res. 2000, 60, 6950–6957. [Google Scholar]
- Joh, D.Y.; Kao, G.D.; Murty, S.; Stangl, M.; Sun, L.; Al Zaki, A.; Xu, X.; Hahn, S.M.; Tsourkas, A.; Dorsey, J.F. Theranostic Gold Nanoparticles Modified for Durable Systemic Circulation Effectively and Safely Enhance the Radiation Therapy of Human Sarcoma Cells and Tumors. Transl. Oncol. 2013, 6, 722–731. [Google Scholar] [CrossRef]
- Miladi, I.; Alric, C.; Dufort, S.; Mowat, P.; Dutour, A.; Mandon, C.; Laurent, G.; Bräuer-Krisch, E.; Herath, N.; Coll, J.L.; et al. The In Vivo Radiosensitizing Effect of Gold Nanoparticles Based MRI Contrast Agents. Small 2014, 10, 2246–2249. [Google Scholar] [CrossRef]
- Moding, E.J.; Clark, D.P.; Qi, Y.; Li, Y.; Ma, Y.; Ghaghada, K.; Johnson, G.A.; Kirsch, D.G.; Badea, C.T. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Ruoslahti, E. RGD and Other Recognition Sequences for Integrins. Annu. Rev. Cell Dev. Biol. 1996, 12, 697–715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jugold, M.; Woenne, E.C.; Lammers, T.; Morgenstern, B.; Mueller, M.M.; Zentgraf, H.; Bock, M.; Eisenhut, M.; Semmler, W.; et al. Specific Targeting of Tumor Angiogenesis by RGD-Conjugated Ultrasmall Superparamagnetic Iron Oxide Particles Using a Clinical 1.5-T Magnetic Resonance Scanner. Cancer Res. 2007, 67, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, P.; Li, F.; Jin, X.; Li, J.; Chen, W.; Li, Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018, 8, 1824–1849. [Google Scholar] [CrossRef]
- Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Deutsch, E.; Bourhis, J.; Borghi, E.; Levy, L. Nanoscale Radiotherapy with Hafnium Oxide Nanoparticles. Future Oncol. 2012, 8, 1167–1181. [Google Scholar] [CrossRef]
- Maswadeh, H.; Khan, A.; Alorainy, M.; Al-Wabel, N.; Demetzos, C. In vitro and in vivo activity of thermosensitive liposomes loaded with doxorubicin and cisplatin. Drug Dev. Ind. Pharm. 2022, 48, 158–168. [Google Scholar] [CrossRef]
- Ning, S.; Macleod, K.; Abra, R.; Huang, A.; Hahn, G. Hyperthermia induces doxorubicin release from long-circulating liposomes and enhances their anti-tumor efficacy. Int. J. Radiat. Oncol. Biol. Phys. 1994, 29, 827–834. [Google Scholar] [CrossRef]
- Li, L.; ten Hagen, T.L.M.; Bolkestein, M.; Gasselhuber, A.; Yatvin, J.; van Rhoon, G.C.; Eggermont, A.M.M.; Haemmerich, D.; Koning, G.A. Improved Intratumoral Nanoparticle Extravasation and Penetration by Mild Hyperthermia. J. Control Release 2013, 167, 130–137. [Google Scholar] [CrossRef]
- Gregoriadis, G. Engineering Liposomes for Drug Delivery: Progress and Problems. Trends Biotechnol. 1995, 13, 527–537. [Google Scholar] [CrossRef]
- Ruoslahti, E. Specialization of Tumour Vasculature. Nat. Rev. Cancer 2002, 2, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Limmer, S.; Hahn, J.; Schmidt, R.; Wachholz, K.; Zengerle, A.; Lechner, K.; Eibl, H.; Issels, R.D.; Hossann, M.; Lindner, L.H. Gemcitabine Treatment of Rat Soft Tissue Sarcoma with Phosphatidyldiglycerol-Based Thermosensitive Liposomes. Pharm. Res. 2014, 31, 2276–2286. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; ten Hagen, T.L.M.; Haeri, A.; Soullié, T.; Scholten, C.; Seynhaeve, A.L.B.; Eggermont, A.M.M.; Koning, G.A. A Novel Two-Step Mild Hyperthermia for Advanced Liposomal Chemotherapy. J. Control Release 2014, 174, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Willerding, L.; Limmer, S.; Hossann, M.; Zengerle, A.; Wachholz, K.; Ten Hagen, T.L.M.; Koning, G.A.; Sroka, R.; Lindner, L.H.; Peller, M. Method of Hyperthermia and Tumor Size Influence Effectiveness of Doxorubicin Release from Thermosensitive Liposomes in Experimental Tumors. J. Control Release 2016, 222, 47–55. [Google Scholar] [CrossRef]
- Peller, M.; Willerding, L.; Limmer, S.; Hossann, M.; Dietrich, O.; Ingrisch, M.; Sroka, R.; Lindner, L.H. Surrogate MRI Markers for Hyperthermia-Induced Release of Doxorubicin from Thermosensitive Liposomes in Tumors. J. Control Release 2016, 237, 138–146. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, Z.; Gu, Y. In Vivo Anti-Tumor Efficacy of Docetaxel-Loaded Thermally Responsive Nanohydrogel. Nanotechnology 2009, 20, 325102. [Google Scholar] [CrossRef]
- Klouda, L.; Mikos, A. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008, 68, 34–45. [Google Scholar] [CrossRef]
- Besse, H.C.; Bos, C.; Zandvliet, M.M.J.M.; van der Wurff-Jacobs, K.; Moonen, C.T.W.; Deckers, R. Triggered Radiosensitizer Delivery Using Thermosensitive Liposomes and Hyperthermia Improves Efficacy of Radiotherapy: An In Vitro Proof of Concept Study. PLoS ONE 2018, 13, e0204063. [Google Scholar] [CrossRef]
- Kang, J.; Kim, J.; Shin, Y.; Han, S.; Won, W.; Her, J.; Park, J.; Oh, K. Principles and applications of nanomaterial-based hyperthermia in cancer therapy. Arch. Pharm. Res. 2020, 43, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, H.F.; Capistrano, G.; Mello, F.M.; Zufelato, N.; Silveira-Lacerda, E.; Bakuzis, A.F. Precise Determination of the Heat Delivery During In Vivo Magnetic Nanoparticle Hyperthermia with Infrared Thermography. Phys. Med. Biol. 2017, 62, 4062–4082. [Google Scholar] [CrossRef]
- Gogoi, M.; Jaiswal, M.K.; Sarma, H.D.; Bahadur, D.; Banerjee, R. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integr. Biol. 2017, 9, 555–565. [Google Scholar] [CrossRef]
- Rodrigues, H.F.; Mello, F.M.; Branquinho, L.C.; Zufelato, N.; Silveira-Lacerda, E.P.; Bakuzis, A.F. Real-time Infrared Thermography Detection of Magnetic Nanoparticle Hyperthermia in a Murine Model under a Non-uniform Field Configuration. Int. J. Hyperth. 2013, 29, 752–767. [Google Scholar] [CrossRef]
- Chowdhry, V.; Goldberg, S.; DeLaney, T.; Cote, G.; Raskin, K.; Bernstein, K. Myxoid Liposarcoma: A Radiosensitive Malignancy. Int. J. Radiat. Oncol. 2017, 99, E751. [Google Scholar] [CrossRef]
- Investopedia. Stratified Random Sampling. 2021. Available online: https://www.investopedia.com/ask/answers/041615/what-are-advantages-and-disadvantages-stratified-random-sampling.asp (accessed on 28 December 2023).
- Storm, F.; Mahvi, D. Diagnosis and management of retroperitoneal soft-tissue sarcoma. Ann. Surg. 1991, 214, 2–10. [Google Scholar] [CrossRef]
- Seiwert, T.; Foster, C.; Le Tourneau, C.; Calugaru, V.; Bonvalot, S. Hafnium Oxide Nanoparticles Activated by SABR in Combination with PD-1 Inhibitors for the Treatment of Patients with Advanced HNSCC or NSCLC: A Phase I/II Trial. J. Clin. Oncol. 2019, 37, TPS23. [Google Scholar] [CrossRef]
- Rastinehad, A.R.; Anastos, H.; Wajswol, E.; Winoker, J.S.; Sfakianos, J.P.; Doppalapudi, S.K.; Carrick, M.R.; Knauer, C.J.; Taouli, B.; Lewis, S.C.; et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA 2019, 116, 18590–18596. [Google Scholar] [CrossRef]
- Richmond, A.; Su, Y. Mouse Xenograft Models vs GEM Models for Human Cancer Therapeutics. Dis. Model. Mech. 2008, 1, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.; Kim, J.; Lim, D.; Kim, D.; Jeon, S.; Kim, K. Recent Studies and Progress in the Intratumoral Administration of Nano-Sized Drug Delivery Systems. Nanomaterials 2023, 13, 2225. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.; Balar, P.; Nalla, L.; Bezbaruah, R.; Gogoi, N.; Gajula, S.; Peng, B.; Meena, A.; Conde, J.; Prasad, R. Conjugated Nanoparticles for Solid Tumor Theranostics: Unraveling the Interplay of Known and Unknown Factors. ACS Omega 2023, 8, 37654–37684. [Google Scholar] [CrossRef]
- Boateng, F.; Ngwa, W. Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. Int. J. Mol. Sci. 2019, 21, 273. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Al Zaki, A.; Hui, J.Z.; Muzykantov, V.R.; Tsourkas, A. Multifunctional Nanoparticles: Cost versus Benefit of Adding Targeting and Imaging Capabilities. Science 2012, 338, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Vanhaezebrouck, I.F.; Scarpelli, M.L. Companion Animals as a Key to Success for Translating Radiation Therapy Research into the Clinic. Cancers 2023, 15, 3377. [Google Scholar] [CrossRef]
- Singh, V.P.; Pratap, K.; Sinha, J.; Desiraju, K.; Bahal, D.; Kukreti, R. Critical Evaluation of Challenges and Future Use of Animals in Experimentation for Biomedical Research. Int. J. Immunopathol. Pharmacol. 2016, 29, 551–561. [Google Scholar] [CrossRef]
- Li, J.; Wu, T.; Li, S.; Chen, X.; Deng, Z.; Huang, Y. Nanoparticles for Cancer Therapy: A Review of Influencing Factors and Evaluation Methods for Biosafety. Clin. Transl. Oncol. 2023, 25, 2043–2055. [Google Scholar] [CrossRef]
- Inglut, C.; Sorrin, A.; Kuruppu, T.; Vig, S.; Cicalo, J.; Ahmad, H.; Huang, H. Immunological and Toxicological Considerations for the Design of Liposomes. Nanomaterials 2020, 10, 190. [Google Scholar] [CrossRef]
- Malhotra, N.; Lee, J.; Liman, R.; Ruallo, J.; Villaflores, O.; Ger, T.; Hsiao, C. Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef]
- Falagan Lotsch, P.; Grzincic, E.; Murphy, C. One Low-Dose Exposure of Gold Nanoparticles Induces Long-Term Changes in Human Cells. Proc. Natl. Acad. Sci. USA 2016, 113, 13318–13323. [Google Scholar] [CrossRef]
- DuRoss, A.N.; Phan, J.; Lazar, A.J.; Walker, J.M.; Guimaraes, A.R.; Baas, C.; Krishnan, S.; Thomas, C.R.J.; Sun, C.; Bagley, A.F. Radiotherapy reimagined: Integrating nanomedicines into radiotherapy clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 15, e1867. [Google Scholar] [CrossRef]
- Gavilán, H.; Avugadda, S.K.; Fernández-Cabada, T.; Soni, N.; Cassani, M.; Mai, B.T.; Chantrell, R.; Pellegrino, T. Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 2021, 50, 11606–11634. [Google Scholar] [CrossRef]
- Chandarana, H.; Wang, H.; Tijssen, R.H.N.; Das, I.J. Emerging Role of MRI in Radiation Therapy. J. Magn. Reson. Imaging 2018, 48, 1468–1478. [Google Scholar] [CrossRef]
- Verry, C.; Dufort, S.; Villa, J.; Gavard, J.; Iriart, C.; Grand, S.; Charles, J.; Chovelon, B.; Cracowski, J.L.; Quesada, J.L.; et al. Theranostic AGuIX nanoparticles as radiosensitizer: A phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial). Radiother. Oncol. 2021, 160, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Pignol, J.P.; Oudart, H.; Chauvel, P.; Sauerwein, W.; Gabel, D.; Prevot, G. Selective delivery of 10B to soft tissue sarcoma using 10B-L-borophenylalanine for boron neutron capture therapy. Br. J. Radiol. 1998, 71, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Malouff, T.D.; Seneviratne, D.S.; Ebner, D.K.; Stross, W.C.; Waddle, M.R.; Trifiletti, D.M.; Krishnan, S. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front. Oncol. 2021, 11, 601820. [Google Scholar] [CrossRef]
- Ho, S.L.; Yue, H.; Tegafaw, T.; Ahmad, M.Y.; Liu, S.; Nam, S.W.; Chang, Y.; Lee, G.H. Gadolinium Neutron Capture Therapy (GdNCT) Agents from Molecular to Nano: Current Status and Perspectives. ACS Omega 2022, 7, 2533–2553. [Google Scholar] [CrossRef] [PubMed]
- A Phase I Study of RP7214 as a Radiosensitizer in Combination with Stereotactic Body Radiotherapy (SBRT) in Patients with Advanced Solid Tumors. ClinicalTrials.gov Identifier: NCT04784221. 2023. Available online: https://clinicaltrials.gov/study/NCT04784221?cond=cancer&term=Nanoparticles,%20radiotherapy&rank=2&page=1 (accessed on 24 September 2023).
- Jin, J.; Zhao, Q. Engineering Nanoparticles to Reprogram Radiotherapy and Immunotherapy: Recent Advances and Future Challenges. J. Nanobiotechnol. 2020, 18, 75. [Google Scholar] [CrossRef]
- Phase I/II Randomized Study of NBTXR3 Activated by Abscopal or RadScopal Radiation in Combination with Immunotherapy (Anti-PD-1/L-1) for Patients with Advanced Solid Malignancies. ClinicalTrials.gov Identifier: NCT05039632. 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT05039632 (accessed on 24 September 2023).
- de Nigris, F.; Meo, C.; Palinski, W. Combination of Genomic Landscape and 3D Culture Functional Assays Bridges Sarcoma Phenotype to Target and Immunotherapy. Cells 2023, 12, 2204. [Google Scholar] [CrossRef]
- Neugebauer, J.; Blum, P.; Keiler, A.; Süß, M.; Neubauer, M.; Moser, L.; Dammerer, D. Brachytherapy in the Treatment of Soft-Tissue Sarcomas of the Extremities—A Current Concept and Systematic Review of the Literature. Cancers 2023, 15, 1133. [Google Scholar] [CrossRef]
- Seniwal, B.; Thipe, V.; Singh, S.; Fonseca, T.C.F.; Freitas de Freitas, L. Recent Advances in Brachytherapy Using Radioactive Nanoparticles: An Alternative to Seed-Based Brachytherapy. Front. Oncol. 2021, 11, 766407. [Google Scholar] [CrossRef] [PubMed]
- Laprise-Pelletier, M.; Simão, T.; Fortin, M.A. Gold Nanoparticles in Radiotherapy and Recent Progress in Nanobrachytherapy. Adv. Healthc. Mater. 2018, 7, e1701460. [Google Scholar] [CrossRef] [PubMed]
NPs Type | Sarcoma Type | Study Type | Aim | Outcome | Reference | |
---|---|---|---|---|---|---|
GNPs | P-GNPs | HT1080 fibrosarcoma | in vivo | Imaging of NP’s accumulation and irradiation results | Extended NP’s blood circulation, regression of tumor growth | [33] |
Gold nanospheres | Feline Injection Site Sarcoma (FISS) cells | in vitro | Cytotoxicity assay | Decreased viability of cells | [29] | |
RGD-GNPs, PEG-GNPs | Mouse primary STS | in vitro/in vivo | Assess of vascular permeability enhancement post RT and enhanced chemo-drug ability | Lower vascular permeability threshold, enhanced chemo-drug intratumorally delivered | [35] | |
Hafnium oxide NPs | NBTXR3 | HT1080 fibrosarcoma | in vitro/in vivo | Tumor growth and cytotoxicity assay | Significant enhancement of RT outcomes | [39] |
STS of the extremities or the abdomen | Phase I | Determination of Maximum Tolerated Dose (MTD) and pathological response, 22 patients | Optimal dose set as 55.3 g/L of NBTXR3 at a volume equivalent to 10% of the calculated baseline tumor volume | [27] | ||
Phase II/III clinical trials | Evaluate effectiveness and side effects, 180 patients | Increased anti-tumor efficacy and tumor response than RT alone | [28] | |||
Folic calcium tungstate NPs | FOL-PEG-PLA/CWO | Canine STS | Veterinary | Evaluate effectiveness and side effects | Translatable use of NPs from murine models, significant tumor shrinkage | [31] |
NP Type | STS Subtype | Study Type | Aim | Outcome | Reference | |
---|---|---|---|---|---|---|
Liposomal NPs | DPPC/DSPC/DS PE-PEG200 | BFS-1 | in vivo | Assessment of vascular permeability with window chambers | fifty-fold increase in permeability | [42] |
DPPG2-TSLs loaded with dFdC | BN175 | in vivo | Controlled drug release with thermosensitive liposomes | Enhanced drug retention with temperature rise, enhanced tumor control | [45] | |
DOX-TSL | BFS-1 | in vitro | Complementary survival assay of two-step hyperthermia | No thermal sensitization of cells to DOX alone | [46] | |
BN-175 | in vivo | Method of hyperthermia and tumor size influence on TSL treatment | Laser and cold-light more effective than water bath, greater concentration of DOX in small tumors | [47] | ||
CA-TSL & DOX-TSL | BN-175 | in vivo | Determination of MRI markers for temperature and drug release monitoring | No significant results for temperature monitoring, PC(t) marker for in vivo chemo-drug dosimetry | [48] | |
DPPG2-TSL-DOX | FISS | Veterinary | Pharmacokinetic analysis and tumor response | Rapid elimination from the circulation and increased extravascular release | [30] | |
ThermoDox | HT180 | in vitro | Combination of HT and chemo drugs to enhance RT treatment | Same radio-enhancement results when HT+chemo was applied either pre or post RT | [51] | |
DTX-NHG | S180 | in vivo | Anti-tumor efficacy of DTX-NHG vs DTX | Higher inhibition rate and fewer side effects of DTX-NHG | [49] | |
Magnetic NPs | manganese ferrite DMSA | S180 | in vivo | Development of novel infrared thermography technique for HT | Successful Integration of IRT with numerical simulations | [55] |
LSMO+Fe3O4 | HT1080 | in vivo | Cytotoxicity and therapeutic evaluation tests of NPs for Chemo+self-controlled HT | Positive tumor response, no significant presence of the NPs outside the tumor | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zachou, M.-E.; Kouloulias, V.; Chalkia, M.; Efstathopoulos, E.; Platoni, K. The Impact of Nanomedicine on Soft Tissue Sarcoma Treated by Radiotherapy and/or Hyperthermia: A Review. Cancers 2024, 16, 393. https://doi.org/10.3390/cancers16020393
Zachou M-E, Kouloulias V, Chalkia M, Efstathopoulos E, Platoni K. The Impact of Nanomedicine on Soft Tissue Sarcoma Treated by Radiotherapy and/or Hyperthermia: A Review. Cancers. 2024; 16(2):393. https://doi.org/10.3390/cancers16020393
Chicago/Turabian StyleZachou, Maria-Eleni, Vassilis Kouloulias, Marina Chalkia, Efstathios Efstathopoulos, and Kalliopi Platoni. 2024. "The Impact of Nanomedicine on Soft Tissue Sarcoma Treated by Radiotherapy and/or Hyperthermia: A Review" Cancers 16, no. 2: 393. https://doi.org/10.3390/cancers16020393
APA StyleZachou, M. -E., Kouloulias, V., Chalkia, M., Efstathopoulos, E., & Platoni, K. (2024). The Impact of Nanomedicine on Soft Tissue Sarcoma Treated by Radiotherapy and/or Hyperthermia: A Review. Cancers, 16(2), 393. https://doi.org/10.3390/cancers16020393