Epigenetics Meets CAR-T-Cell Therapy to Fight Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Gene Symbol/ Name/ Gene ID/ (Chromosomal Location) | Function GeneCards (www.genecards.org) [31] | Expression Human Protein Atlas proteinatlas.org [32] | The Cancer Genome Atlas Expression (TCGA) in PCa [14] | References in PubMed https://pubmed.ncbi.nlm.nih.gov/ |
---|---|---|---|---|
KIR2DL3/ Killer-cell immunoglobulin-like receptor 2DL3/ 3804/ (19q13.42) | Killer-cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins with an important role in the regulation of the immune response. | Expressed by NK cells and subsets of T cells. | 1.38 | Hypomethylation, as reported by us [13], is sufficient for expression in NK cells [15]. KIR receptor expression has been demonstrated on NSCLC tumor cells [18]. |
SLC27a4/ solute carrier family 27 member 4/ 10999/ (9q34.11) | This protein plays a role in the translocation of long-chain fatty acids in the plasma membrane. | Expressed on mature enterocytes in the small intestine. Membrane, intracellular (different isoforms). | 1.79 | This protein is overexpressed in 21 types of human cancer, e.g., ovarian cancer, hepatocellular carcinoma and breast cancer [33]. |
SLC52a2/ solute carrier family 52 member 2/ 79581/ (8q24.3/) | This membrane protein belongs to the riboflavin transporter family mediating the uptake of the water-soluble vitamin B2/ riboflavin. | Cytoplasmic expression in most tissues. Membrane, intracellular (different isoforms). | 1.78 | SLC52A2 is highly expressed in almost all tumors. Immunohistochemical results have confirmed this in hepatocellular, gastric, colon and rectal cancers [34]. |
ADAM15/ ADAM metallopeptidase domain 15/ 8751/ (1q21.3) | This type I transmembrane glycoprotein interacts with the integrin beta chain beta 3. It is thought that it functions in cell–cell adhesion, as well as in cellular signaling. | Cytoplasmic expression in most tissues. Membrane and intracellular (different isoforms). | 1.32 | ADAM15 is highly expressed in PCa metastasis and interacts with vascular endothelium [35]. It has been shown that negative (87.7%), weak (3.7%), moderate (5.6%) and strong (3.0%) ADAM15 staining was found in 9826 prostate tumors. Strong expression has been linked to high Gleason grade, advanced pathological tumor stage and positive nodal stage [36]. |
ABCA7/ ATP binding cassette subfamily A member 7/ 10347/ (19p13.3) | The function of this protein has not been elucidated yet; due to its expression pattern, it has been suggested that it might play a role in lipid homeostasis in cells of the immune system. | Lymphoid tissue and bone marrow—innate immune response. Plasma membrane. It is additionally localized to the cell Junctions. | 0.987 | The ABC transporter ABCA7 plays a role in lipid transport processes and cholesterol homeostasis. In a variety of cancer types, it is aberrantly expressed. This is also the case in breast cancer [37]. |
BCAM/ basal cell adhesion molecule (Lutheran blood group)/ 4059/ (19q13.32) | This gene encodes a receptor for the extracellular matrix protein, laminin. It is thought to play a role in epithelial cell cancer. | Membranous expression in basal membranes and endothelial cells. | 2.0 | CD239 promotes the migration of lung carcinoma cells on laminin-511. The over-expression of CD239 is observed in ovarian carcinoma, skin cancer and hepatocellular carcinoma. CD239 is strongly expressed in a subset of breast cancer tissues and cells [38]. |
PLEC/plectin/5339/8q24.3 | This protein interlinks different elements of the cytoskeleton and orchestrates dynamic changes in cytoarchitecture and cell shape. | Membranous and cytoplasmic expression in almost all cells. | 0.940 | Localized and metastatic human PCa shows high levels of plectin. Plectin knock-down inhibited decreased overall metastatic burden [39]. Plectin has a cancer-specific mislocalization on the cell surface. This is involved in its function as a potent oncoprotein [40]. |
TNFRSF4/TNF receptor superfamily member 4/7293/1p36.33 | This receptor has been shown to activate NF-kappaB. Evidence is provided that this receptor suppresses apoptosis. | This protein has cytoplasmic expression in spleen, tonsil and lymph node. Membrane, intracellular (different isoforms). | 1.38 | TNFRSF4 provides co-stimulatory functions of T cells during infection. It is transiently and predominantly expressed by both human CD4+ and CD8+ T cells [41]. |
KCNS3/potassium voltage-gated channel modifier subfamily S member 3/3790/2p24.2 | These voltage-gated potassium channels control the resting membrane potential and the shape and frequency of action potentials. | Membranous and cytoplasmic expression in most tissues. | 1.58 | KCNS3 has been identified as part of a prognostic signature separating high- and low-risk groups in esophageal squamous cell carcinoma (ESCC) patients [42]. |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cappell, K.M.; Kochenderfer, J.N. Long-term outcomes following CAR T cell therapy: What we know so far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Arany, Z.; Baur, J.A.; Epstein, J.A.; June, C.H. CAR T therapy beyond cancer: The evolution of a living drug. Nature 2023, 619, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Wala, J.A.; Hanna, G.J. Chimeric Antigen Receptor T cell Therapy for Solid Tumors. Hematol. Oncol. Clin. N. Am. 2023, 37, 1149–1168. [Google Scholar] [CrossRef] [PubMed]
- Thoma, C. Prostate cancer: Developing CAR T cell therapy. Nat. Rev. Urol. 2018, 15, 138. [Google Scholar] [PubMed]
- Wolf, P.; Alzubi, J.; Gratzke, C.; Cathomen, T. The potential of CAR T cell therapy for prostate cancer. Nat. Rev. Urol. 2021, 18, 556–571. [Google Scholar] [CrossRef]
- Liao, Z.; Jiang, J.; Wu, W.; Shi, J.; Wang, Y.; Yao, Y.; Sheng, T.; Liu, F.; Liu, W.; Zhao, P.; et al. Lymph node-biomimetic scaffold boosts CAR-T therapy against solid tumor. Natl. Sci. Rev. 2024, 11, nwae018. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, M. DNA Hypomethylation in Cancer Cells. Epigenomics 2009, 1, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Sidransky, D. Emerging Molecular Markers of Cancer. Nat. Rev. Cancer 2002, 2, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Bird, A. DNA Methylation Patterns and Epigenetic Memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef]
- Ushijima, T. Detection and interpretation of altered methylation patterns in cancer cells. Nat. Rev. Cancer 2005, 5, 223–231. [Google Scholar] [CrossRef]
- Vavouri, T.; Peinado, M.A. Book: CpG Islands; Springer: New York, NY, USA, 2018; Volume 1766, ISBN 978-1-4939-7767-3. Available online: https://link.springer.com/book/10.1007/978-1-4939-7768-0 (accessed on 3 April 2024).
- Romero-Garcia, S.; Prado-Garcia, H.; Carlos-Reyes, A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front. Oncol. 2020, 10, 1152. [Google Scholar] [CrossRef]
- Araúzo-Bravo, M.J.; Erichsen, L.; Ott, P.; Beermann, A.; Sheikh, J.; Gerovska, D.; Thimm, C.; Bendhack, M.L.; Santourlidis, S. Consistent DNA Hypomethylations in Prostate Cancer. Int. J. Mol. Sci. 2022, 24, 386. [Google Scholar] [CrossRef]
- The Results Referred to Here Are in Whole or Part Based Upon Data Generated by the TCGA Research Network. Available online: https://www.cancer.gov/tcga (accessed on 31 May 2022).
- Santourlidis, S.; Trompeter, H.-I.; Weinhold, S.; Eisermann, B.; Meyer, K.L.; Wernet, P.; Uhrberg, M. Crucial Role of DNA Methylation in Determination of Clonally Distributed Killer Cell Ig-like Receptor Expression Patterns in NK Cells. J. Immunol. 2002, 169, 4253–4261. [Google Scholar] [CrossRef]
- Santourlidis, S.; Graffmann, N.; Christ, J.; Uhrberg, M. Lineage-Specific Transition of Histone Signatures in the Killer Cell Ig-like Receptor Locus from Hematopoietic Progenitor to NK Cells. J. Immunol. 2008, 180, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.-W.; Kurago, Z.B.; Stewart, C.A.; Wilson, M.J.; Martin, M.P.; Mace, B.E.; Carrington, M.; Trowsdale, J.; Lutz, C.T. DNA Methylation Maintains Allele-Specific KIR Gene Expression in Human Natural Killer Cells. J. Exp. Med. 2003, 197, 245–255. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Bunn, P.A.; Zhou, C.; Chan, D. KIR 2D (L1, L3, L4, S4) and KIR 3DL1 protein expression in non-small cell lung cancer. Oncotarget 2016, 7, 82104–82111. [Google Scholar] [CrossRef] [PubMed]
- Trompeter, H.I.; Gómez-Lozano, N.; Santourlidis, S.; Eisermann, B.; Wernet, P.; Vilches, C.; Uhrberg, M. Three structurally and functionally divergent kinds of promoters regulate expression of clonally distributed killer cell Ig-like receptors (KIR), of KIR2DL4, and of KIR3DL3. J. Immunol. 2005, 174, 4135–4143. [Google Scholar] [CrossRef]
- Chaussy, C.G.; Thüroff, S. High-Intensity Focused Ultrasound for the Treatment of Prostate Cancer: A Review. J. Endourol. 2017, 31 (Suppl. S1), S30–S37. [Google Scholar] [CrossRef]
- Slaughter, D.P.; Southwick, H.W.; Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 1953, 6, 963–968. [Google Scholar] [CrossRef]
- Chai, H.; Brown, R.E. Field effect in cancer-an update. Ann. Clin. Lab. Sci. 2009, 39, 331–337. [Google Scholar] [PubMed]
- Qian, J.; Wollan, P.; Bostwick, D.G. The extent and multicentricity of high-grade prostatic intraepithelial neoplasia in clinically localized prostatic adenocarcinoma. Hum. Pathol. 1997, 28, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, J.; Varde, S.; Wang, H.; Chiu, H.; Vargo, J.; Gray, K.; Nagle, R.B.; Neri, J.R.; Mazumder, A. Quantitative, spatial resolution of the epigenetic field effect in prostate cancer. Prostate 2008, 68, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Alberti, A.; Castellani, D.; Yee, C.H.; Zhang, K.; Poon, D.M.C.; Chiu, P.K.; Campi, R.; Resta, G.R.; Dibilio, E.; et al. Oncological results and cancer control definition in focal therapy for Prostate Cancer: A systematic review. Prostate Cancer Prostatic Dis. 2023. [Google Scholar] [CrossRef] [PubMed]
- Faiella, E.; Santucci, D.; D’Amone, G.; Cirimele, V.; Vertulli, D.; Bruno, A.; Beomonte Zobel, B.; Grasso, R.F. Focal Minimally Invasive Treatment in Localized Prostate Cancer: Comprehensive Review of Different Possible Strategies. Cancers 2024, 16, 765. [Google Scholar] [CrossRef] [PubMed]
- Skotheim, R.I.; Bogaard, M.; Carm, K.T.; Axcrona, U.; Axcrona, K. Prostate cancer: Molecular aspects, consequences, and opportunities of the multifocal nature. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189080. [Google Scholar] [CrossRef] [PubMed]
- Johann, D.J., Jr.; Steliga, M.; Shin, I.J.; Yoon, D.; Arnaoutakis, K.; Hutchins, L.; Liu, M.; Liem, J.; Walker, K.; Pereira, A.; et al. Liquid biopsy and its role in an advanced clinical trial for lung cancer. Exp. Biol. Med. 2018, 243, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Moss, J.; Magenheim, J.; Neiman, D.; Zemmour, H.; Loyfer, N.; Korach, A.; Samet, Y.; Maoz, M.; Druid, H.; Arner, P.; et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 2018, 9, 5068. [Google Scholar] [CrossRef] [PubMed]
- Aarthy, R.; Mani, S.; Velusami, S.; Sundarsingh, S.; Rajkumar, T. Role of Circulating Cell-Free DNA in Cancers. Mol. Diagn. Ther. 2015, 19, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Li, Z.; Liao, X.; Hu, Y.; Li, M.; Tang, M.; Zhang, S.; Mo, S.; Li, X.; Chen, S.; Qian, W.; et al. SLC27A4-mediated selective uptake of mono-unsaturated fatty acids promotes ferroptosis defense in hepatocellular carcinoma. Free Radic. Biol. Med. 2023, 201, 41–54. [Google Scholar] [CrossRef]
- Zhang, L.; Li, M.; Cui, Z.; Chai, D.; Guan, Y.; Chen, C.; Wang, W. Systematic analysis of the role of SLC52A2 in multiple human cancers. Cancer Cell Int. 2022, 22, 8. [Google Scholar] [CrossRef]
- Bacolod, M.D.; Barany, F. A Unified Transcriptional, Pharmacogenomic, and Gene Dependency Approach to Decipher the Biology, Diagnostic Markers, and Therapeutic Targets Associated with Prostate Cancer Metastasis. Cancers 2021, 13, 5158. [Google Scholar] [CrossRef]
- Burdelski, C.; Fitzner, M.; Hube-Magg, C.; Kluth, M.; Heumann, A.; Simon, R.; Krech, T.; Clauditz, T.; Büscheck, F.; Steurer, S.; et al. Overexpression of the A Disintegrin and Metalloproteinase ADAM15 is linked to a Small but Highly Aggressive Subset of Prostate Cancers. Neoplasia 2017, 19, 279–287. [Google Scholar] [CrossRef]
- Zappe, K.; Kopic, A.; Scheichel, A.; Schier, A.K.; Schmidt, L.E.; Borutzki, Y.; Miedl, H.; Schreiber, M.; Mendrina, T.; Pirker, C.; et al. Aberrant DNA Methylation, Expression, and Occurrence of Transcript Variants of the ABC Transporter ABCA7 in Breast Cancer. Cells 2023, 12, 1462. [Google Scholar] [CrossRef]
- Kikkawa, Y.; Enomoto-Okawa, Y.; Fujiyama, A.; Fukuhara, T.; Harashima, N.; Sugawara, Y.; Negishi, Y.; Katagiri, F.; Hozumi, K.; Nomizu, M.; et al. Internalization of CD239 highly expressed in breast cancer cells: A potential antigen for antibody-drug conjugates. Sci. Rep. 2018, 8, 6612. [Google Scholar] [CrossRef]
- Buckup, M.; Rice, M.A.; Hsu, E.C.; Garcia-Marques, F.; Liu, S.; Aslan, M.; Bermudez, A.; Huang, J.; Pitteri, S.J.; Stoyanova, T. Plectin is a regulator of prostate cancer growth and metastasis. Oncogene 2021, 40, 663–676. [Google Scholar] [CrossRef]
- Perez, S.M.; Brinton, L.T.; Kelly, K.A. Plectin in Cancer: From Biomarker to Therapeutic Target. Cells 2021, 10, 2246. [Google Scholar] [CrossRef]
- Croft, M. The role of TNF superfamily members in T cell function and diseases. Nat. Rev. Immunol. 2009, 9, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Liu, M.; Wang, S.; Ding, P.; Wang, Y. A novel pyroptosis-related model for prognostic prediction in esophageal squamous cell carcinoma: A bioinformatics analysis. J. Thorac. Dis. 2023, 15, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santourlidis, S.; Araúzo-Bravo, M.J.; Erichsen, L.; Bendhack, M.L. Epigenetics Meets CAR-T-Cell Therapy to Fight Cancer. Cancers 2024, 16, 1941. https://doi.org/10.3390/cancers16101941
Santourlidis S, Araúzo-Bravo MJ, Erichsen L, Bendhack ML. Epigenetics Meets CAR-T-Cell Therapy to Fight Cancer. Cancers. 2024; 16(10):1941. https://doi.org/10.3390/cancers16101941
Chicago/Turabian StyleSantourlidis, Simeon, Marcos J. Araúzo-Bravo, Lars Erichsen, and Marcelo L. Bendhack. 2024. "Epigenetics Meets CAR-T-Cell Therapy to Fight Cancer" Cancers 16, no. 10: 1941. https://doi.org/10.3390/cancers16101941
APA StyleSantourlidis, S., Araúzo-Bravo, M. J., Erichsen, L., & Bendhack, M. L. (2024). Epigenetics Meets CAR-T-Cell Therapy to Fight Cancer. Cancers, 16(10), 1941. https://doi.org/10.3390/cancers16101941