Nature’s Green Potential: Anticancer Properties of Plants of the Euphorbiaceae Family
Abstract
:Simple Summary
Abstract
1. Introduction
2. Criteria for the Selection of Experimental Papers
3. The Euphorbiaceae Family of Plants
3.1. Phytochemistry of the Euphorbiaceae Family
3.2. Cytotoxic and Anticancer Effects of Euphorbiaceae Extracts In Vitro Studies
3.3. Cytotoxic and Anticancer Effects of Euphorbiaceae Pure Compounds In Vitro Studies
3.4. Anticancer Effects of Euphorbiaceae Extracts and Pure Compounds In Vivo Studies
3.5. Anticancer and Cytotoxic Effects of Nanoparticles Prepared from Euphobiaceae Extracts and Pure Compounds
4. Potential Anticancer Mechanism of Action of Euphorbiaceae Extracts and Isolated Compounds
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AgONPs | Silver oxide nanoparticles |
Akt | Protein kinase B |
APAF | Apoptotic Protease-Activating Factor-1 |
AuNPs | Gold nanoparticles |
Bax | Apoptosis regulator or bcl-2-like protein 4 |
Bcl-2 | B-cell lymphoma 2 protein |
Casp-3 | Caspase 3 |
Casp-6 | Caspase 6 |
Casp-7 | Caspase 7 |
Casp-8 | Caspase 8 |
Casp-9 | Caspase 9 |
CuONPs | Cupper oxide nanoparticles |
MAPK | Mitogen-activated protein kinase |
MMP-2 | Metalloproteinase 2 |
MMP-9 | Metalloproteinase 9 |
NP | Nanoparticles |
P53 | Tumor protein P53 |
PARP | Poly ADP-Ribose Polymerase |
PI3K | Phosphoinositide 3-kinases |
ROS | Reactive oxygen species |
SMAC/DIABLO | Second Mitochondria-Derived Activator of Caspase |
STAT3 | Signal transducer and activator of transcription 3 |
TNBC | Triple negative breast cancer |
TNB-Z | Tonantzitlolone B |
XIAP | X-linked inhibitor of apoptosis |
ZnONPs | Zinc oxide nanoparticles |
References
- Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer Development, Progression, and Therapy: An Epigenetic Overview. Int. J. Mol. Sci. 2013, 14, 21087–21113. [Google Scholar] [CrossRef]
- Bremnes, R.M.; Camps, C.; Sirera, R. Angiogenesis in Non-Small Cell Lung Cancer: The Prognostic Impact of Neoangiogenesis and the Cytokines VEGF and BFGF in Tumours and Blood. Lung Cancer 2006, 51, 143–158. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO-Cancer Report-2020-Global Profile; World Health Organization (WHO): Geneva, Switzerland, 2020. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Voda, A.I.; Bostan, I. Public Health Care Financing and the Costs of Cancer Care: A Cross-National Analysis. Cancers 2018, 10, 117. [Google Scholar] [CrossRef]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative Approaches for Cancer Treatment: Current Perspectives and New Challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Plants as a Source of Anti-Cancer Agents. J. Ethnopharmacol. 2005, 100, 72–79. [Google Scholar] [CrossRef]
- Kingston, D.G.I.; Newman, D.J. The Search for Novel Drug Leads for Predominately Antitumor Therapies by Utilizing Mother Nature’s Pharmacophoric Libraries. Curr. Opin. Drug Discov. Dev. 2005, 8, 207–227. [Google Scholar]
- Ernst, M.; Grace, O.M.; Saslis-Lagoudakis, C.H.; Nilsson, N.; Simonsen, H.T.; Rønsted, N. Global Medicinal Uses of Euphorbia L. (Euphorbiaceae). J. Ethnopharmacol. 2015, 176, 90–101. [Google Scholar] [CrossRef]
- Saleh, Z.M.; Abdel Azeiz, A.Z.; Mehany, A.B.M.; El-Swaify, Z.A.S. Anticancer and Antimicrobial Activity of Jatropha’s Leaves Extracts. Egypt. J. Bot. 2023, 63, 621–634. [Google Scholar] [CrossRef]
- Prakash, E.; Gupta, D.K. Cytotoxic Activities of Extracts of Medicinal Plants of Euphorbiacae Family Studied on Seven Human Cancer Cell Lines. Univ. J. Plant Sci. 2013, 1, 113–117. [Google Scholar] [CrossRef]
- Li, C.; Wu, X.; Sun, R.; Zhao, P.; Liu, F.; Zhang, C. Croton tiglium Extract Induces Apoptosis via Bax/Bcl-2 Pathways in Human Lung Cancer A549 Cells. Asian Pac. J. Cancer Prev. 2016, 17, 4893–4898. [Google Scholar] [CrossRef]
- Vasas, A.; Hohmann, J. Euphorbia Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008–2012). Chem. Rev. 2014, 114, 8579–8612. [Google Scholar] [CrossRef]
- Block, S.; Baccelli, C.; Tinant, B.; Van Meervelt, L.; Rozenberg, R.; Habib Jiwan, J.-L.; Llabrès, G.; De Pauw-Gillet, M.-C.; Quetin-Leclercq, J. Diterpenes from the Leaves of Croton zambesicus. Phytochemistry 2004, 65, 1165–1171. [Google Scholar] [CrossRef]
- Kemboi, D.; Siwe-noundou, X.; Krause, R.W.M.; Langat, M.K.; Tembu, V.J. Euphorbia Diterpenes: An Update of Isolation, Structure, Pharmacological Activities and Structure—Activity Relationship. Molecules 2021, 26, 5055. [Google Scholar] [CrossRef]
- Subramanian, S.S.; Nagarajan, S.; Sulochana, N. Flavonoids of the Leaves of Jatropha gossypifolia. Phytochemistry 1971, 10, 1690. [Google Scholar] [CrossRef]
- Šmejkal, K. Cytotoxic Potential of C-Prenylated Flavonoids. Phytochem. Rev. 2014, 13, 245–275. [Google Scholar] [CrossRef]
- Megawati, M.; Saepudin, E.; Hanafi, M.; Darmawan, A.; Lotulung, P.D.N. Identification and Bioactivity Studies of Flavonoid Compounds from Macaranga hispida (Blume) Mull.Arg. Makara J. Sci. 2015, 19, 96–100. [Google Scholar] [CrossRef]
- Coelho, P.L.C.; Oliveira, M.N.; da Silva, A.B.; Pitanga, B.P.S.; Silva, V.D.A.; Faria, G.P.; Sampaio, G.P.; Costa, M.d.F.D.; Braga-de-Souza, S.; Costa, S.L. The Flavonoid Apigenin from Croton betulaster Mull Inhibits Proliferation, Induces Differentiation and Regulates the Inflammatory Profile of Glioma Cells. Anticancer Drugs 2016, 27, 960–969. [Google Scholar] [CrossRef]
- Novello, C.R.; Marques, L.C.; Pires, M.E.; Kutschenco, A.P.; Nakamura, C.V.; Nocchi, S.; Sarragiotto, M.H.; Mello, J.C.P. Bioactive Indole Alkaloids from Croton echioides. J. Braz. Chem. Soc. 2016, 27, 2203–2209. [Google Scholar] [CrossRef]
- Euphorbiaceae. Plants of the World Online; Kew Royal Botanical Garden: Richmond, UK, 2023. [Google Scholar]
- GBIF. Euphorbiaceae in Global Biodiversity Information Facility; GBIF: Copenhagen, Denmark, 2023. [Google Scholar] [CrossRef]
- Valdés, B.; Talavera, S.; Fernández-Galiano, E. (Eds.) Flora Vascular de Andalucía Occidental; Flora Vascular: Barcelona, Spain, 1987. [Google Scholar]
- Blanca, G.; Cabezudo, B.; Cueto, M.; Salazar, C.; Morales Torres, C. (Eds.) Flora Vascular de Andalucía Oriental, 2nd ed.; Corregida y Aumentada; Conserjería de Medio Ambiente, Junta de Andalucía: Granada, Spain, 2011. [Google Scholar]
- Cueto, M.; Melendo, M.; Giménez, E.; Fuentes, J.; Carrique, E.L.; Blanca, G. First Updated Checklist of the Vascular Flora of Andalusia (S of Spain), One of the Main; Biodiversity Centres in the Mediterranean Basin: Auckland, New Zealand, 2018; Volume 339, ISBN 9781776703104. [Google Scholar]
- FAO. Save and Grow: Cassava; FAO: Rome, Italy, 2013. [Google Scholar]
- Mohidin, S.R.N.S.P.; Moshawih, S.; Hermansyah, A.; Asmuni, M.I.; Shafqat, N.; Ming, L.C. Cassava (Manihot esculenta Crantz): A Systematic Review for the Pharmacological Activities, Traditional Uses, Nutritional Values, and Phytochemistry. J. Evid.-Based Integr. Med. 2023, 28, 2515690X231206227. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT Cassava. Available online: https://www.fao.org/faostat/es/#data/qv (accessed on 15 September 2023).
- Marwat, S.K.; Rehman, F.; Khan, E.A.; Baloch, M.S.; Sci, P.J.P.; Sadiq, M.; Ullah, I.; Javaria, S.; Shaheen, S. Ricinus communis: Ethnomedicinal Uses and Pharmacological Activities. Pak. J. Pharm. Sci. 2017, 30, 1815–1827. [Google Scholar] [PubMed]
- Johnson, W. Final Report on the Safety Assessment of Ricinus communis (Castor) Seed Oil, Hydrogenated Castor Oil, Glyceryl Ricinoleate, Glyceryl Ricinoleate SE, Ricinoleic Acid, Potassium Ricinoleate, Sodium Ricinoleate, Zinc Ricinoleate, Cetyl Ricinoleate, Ethyl Ricinoleate, Glycol Ricinoleate, Isopropyl Ricinoleate, Methyl Ricinoleate, and Octyldodecyl Ricinoleate. Int. J. Toxicol. 2007, 26, 31–77. [Google Scholar]
- Kelly, A.J.; Kavanagh, J.; Thomas, J. Castor Oil, Bath and/or Enema for Cervical Priming and Induction of Labour. Cochrane Database Syst. Rev. 2013, 2013, CD0030992013. [Google Scholar] [CrossRef] [PubMed]
- Elkousy, R.H.; Said, Z.N.A.; El-Baseer, M.A.A.; El Wafa, S.A.A. Antiviral Activity of Castor Oil Plant (Ricinus communis) Leaf Extracts. J. Ethnopharmacol. 2021, 271, 113878. [Google Scholar] [CrossRef] [PubMed]
- Fitranda, M.I.; Sutrisno; Marfu’ah, S. Physicochemical Properties and Antibacterial Activity of Castor Oil and Its Derivatives. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Malang, Indonesia, 2–3 November 2019; Institute of Physics Publishing: Bristol, UK, 2020; Volume 833. [Google Scholar]
- Ogunniyi, D.S. Castor Oil: A Vital Industrial Raw Material. Bioresour. Technol. 2006, 97, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Neuwinger, H.D. Plants Used for Poison Fishing in Tropical Africa. Toxicon 2004, 44, 417–430. [Google Scholar] [CrossRef]
- Lai, X.Z.; Yang, Y.B.; Shan, X.L. The Investigation of Euphorbiaceous Medicinal Plants in Southern China. Econ. Bot. 2004, 58, S307–S320. [Google Scholar] [CrossRef]
- Polygenis-bigendako, M.J.; Lejoly, J. Plantes employées dans le traitement des diarrhées en médecine traditionnelle au burundi occidental. Bull. Soc. R. Bot. Belg./Bull. Van K. Belg. Bot. Ver. 1989, 122, 87–97. [Google Scholar]
- Gaioni, D.T. Medical Choices in a Philippine Highland Community. Ethnomedical and Biomedical Dimensions of Bauko Clinical Reality. Anthropos 2002, 97, 505–518. [Google Scholar]
- Bard, C.L. A Contribution to the History of Medicine in Southern California; Hansebooks: Norderstedt, Germany, 1894. [Google Scholar]
- Hargreaves, B.J. The Spurges of Botswana. Botsw. Notes Rec. 1991, 23, 115–130. [Google Scholar]
- Safford, W.E. The Useful Plants of the Island of Guam; Bulletin (United States National Museum); U.S. Government Printing Office: Washington, DC, USA, 1905; ISBN 9780598582195.
- Manandhar, N.P. An Inventory of Some Herbal Drugs of Myagdi District, Nepal. Econ. Bot. 1995, 49, 371–379. [Google Scholar] [CrossRef]
- Zhan, Z.J.; Li, S.; Chu, W.; Yin, S. Euphorbia Diterpenoids: Isolation, Structure, Bioactivity, Biosynthesis, and Synthesis (2013–2021). Nat. Prod. Rep. 2022, 39, 2132–2174. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tang, P.; Zhu, M.; Wang, Y.; Sun, D.; Li, H.; Chen, L. Diterpenoids from the Genus Euphorbia: Structure and Biological Activity (2013–2019). Phytochemistry 2021, 190, 112846. [Google Scholar] [CrossRef] [PubMed]
- Moremi, M.P.; Makolo, F.; Viljoen, A.M.; Kamatou, G.P. A Review of Biological Activities and Phytochemistry of Six Ethnomedicinally Important South African Croton Species. J. Ethnopharmacol. 2021, 280, 114416. [Google Scholar] [CrossRef]
- Zhu, Q.F.; Xu, G.B.; Liao, S.G.; Yan, X.L. Ent-Abietane Diterpenoids from Euphorbia fischeriana and Their Cytotoxic Activities. Molecules 2022, 27, 7258. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, P.; Ma, J.; Li, X.; Yuan, W. A New Diterpenoid with Cytotoxic Activities from the Roots of Euphorbia fischeriana. Chem. Nat. Compd. 2023, 59, 701–705. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.J. Cytotoxic Ent-Abietane Diterpenoids from the Leaves of Croton lachnocarpus Benth. J. Asian Nat. Prod. Res. 2023, 25, 309–315. [Google Scholar] [CrossRef]
- Sabandar, C.W.; Ahmat, N.; Jaafar, F.M.; Sahidin, I. Medicinal Property, Phytochemistry and Pharmacology of Several Jatropha Species (Euphorbiaceae): A Review. Phytochemistry 2013, 85, 7–29. [Google Scholar] [CrossRef]
- Yuan, H.-T.; Li, Q.-F.; Tian, T.; Zhang, C.-Y.; Huang, Z.-Q.; Fan, C.-X.; Mei, K.; Zhou, J.; Zhai, X.-X.; Li, S.-B.; et al. Lathyrane Diterpenoids from Jatropha podagrica and Their Antitumor Activities in Human Osteosarcoma Cells. Nat. Prod. Res. 2021, 35, 5089–5095. [Google Scholar] [CrossRef]
- Kemboi, D.; Peter, X.; Langat, M.; Tembu, J. A Review of the Ethnomedicinal Uses, Biological Activities, and Triterpenoids of Euphorbia Species. Molecules 2020, 25, 4019. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.R.; Ashour, A.; Amen, Y.; Nagata, M.; El-Toumy, S.A.; Shimizu, K. A New Cycloartane Triterpene and Other Phytoconstituents from the Aerial Parts of Euphorbia dendroides. Nat. Prod. Res. 2022, 36, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Ngadjui, B.T.; Folefoc, G.G.; Keumedjio, F.; Dongo, E.; Sondengam, B.L.; Connolly, J.D. Crotonadiol, a Labdane Diterpenoid from the Stem Barkof Croton zambesicus. Phytochemistry 1999, 51, 171–174. [Google Scholar] [CrossRef]
- Kapingu, M.C.; Mbwambo, Z.H.; Moshi, M.J.; Magadula, J.J. Brine Shrimp Lethality of Alkaloids from Croton sylvaticus Hoechst. East Cent. Afr. J. Pharm. Sci. 2012, 15, 35–37. [Google Scholar]
- Prozesky, E.A. Antiplasmodial-and Chloroquine Resistance Reversal Properties of a New Diterpene from Croton steenkampianus; University of Pretoria (South Africa) ProQuest Dissertations Publishing: Ann Arbor, MI, USA, 2005. [Google Scholar]
- Mohamed, I.E.; El Nur, E.B.E.; Choudhary, M.I.; Khan, S.N. Bioactive Natural Products from Two Sudanese Medicinal Plants Diospyros mespiliformis and Croton zambesicus. Rec. Nat. Prod. 2009, 3, 198–203. [Google Scholar]
- Zhang, C.-Y.; Zhang, R.-R.; Zhu, J.Y. New Tetracyclic Triterpenoids from Jatropha gossypiifolia Induce Cell-Cycle Arrest and Apoptosis in RKO Cells. Fitoterapia 2018, 130, 145–151. [Google Scholar] [CrossRef]
- Cavalcante, N.B.; da Conceição Santos, A.D.; da Silva Almeida, J.R.G. The Genus Jatropha (Euphorbiaceae): A Review on Secondary Chemical Metabolites and Biological Aspects. Chem. Biol. Interact. 2020, 318, 108976. [Google Scholar] [CrossRef]
- Salehi, B.; Iriti, M.; Vitalini, S.; Antolak, H.; Pawlikowska, E.; Kręgiel, D.; Sharifi-Rad, J.; Oyeleye, S.I.; Ademiluyi, A.O.; Czopek, K.; et al. Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance. Biomolecules 2019, 9, 337. [Google Scholar] [CrossRef]
- Azizi, K.; Hamedi, A.; Azarpira, N.; Hamedi, A.; Shahini, M.; Pasdaran, A. A New Cytotoxic Sesquiterpene Lactone from Euphorbia microsphaera Boiss against Human Breast Cancer (MCF-7) and Human Fibrosarcoma (HT1080) Cells. Toxicon 2021, 202, 60–66. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef]
- Gálvez, J.; Crespo, M.E.; Jiménez, J.; Suárez, A.; Zarzuelo, A. Antidiarrhoeic Activity of Quercitrin in Mice and Rats. J. Pharm. Pharmacol. 1993, 45, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Fajriah, S.; Darmawan, A. Apigenin, an Anticancer Isolated from Macaranga gigantifolia Leaves. J. Trop. Life Sci. 2016, 6, 7–9. [Google Scholar]
- Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for Cancer Prevention and Therapy: Current Progress and Future Perspectives. Eur. J. Pharmacol. 2019, 858, 172472. [Google Scholar] [CrossRef] [PubMed]
- Vendruscolo, I.; Venturella, S.R.T.; Bressiani, P.A.; Marco, I.G.; Novello, C.R.; Almeida, I.V.; Vicentini, V.E.P.; Mello, J.C.P.; Düsman, E. Cytotoxicity of Extracts and Compounds Isolated from Croton echioides in Animal Tumor Cell (HTC). Braz. J. Biol. 2022, 82, e264356. [Google Scholar] [CrossRef]
- Mesas, C.; Martínez, R.; Ortíz, R.; Galisteo, M.; López-Jurado, M.; Cabeza, L.; Perazzoli, G.; Melguizo, C.; Porres, J.M.; Prados, J. Antitumor Effect of the Ethanolic Extract from Seeds of Euphorbia lathyris in Colorectal Cancer. Nutrients 2021, 13, 566. [Google Scholar] [CrossRef]
- Sultana, T.; Mitra, A.K.; Das, S. Evaluation of Anti-Cancer Potential of Excoecaria agallocha (L.) Leaf Extract on Human Cervical Cancer (SiHa) Cell Line and Assessing the Underlying Mechanism of Action. Futur. J. Pharm. Sci. 2022, 8, 3. [Google Scholar] [CrossRef]
- Kwan, Y.P.; Saito, T.; Ibrahim, D.; Al-Hassan, F.M.S.; Oon, C.E.; Chen, Y.; Jothy, S.L.; Kanwar, J.R.; Sasidharan, S. Evaluation of the Cytotoxicity, Cell-Cycle Arrest, and Apoptotic Induction by Euphorbia hirta in MCF-7 Breast Cancer Cells. Pharm. Biol. 2016, 54, 1223–1236. [Google Scholar] [CrossRef]
- Njoya, E.M.; Eloff, J.N.; McGaw, L.J. Croton gratissimus Leaf Extracts Inhibit Cancer Cell Growth by Inducing Caspase 3/7 Activation with Additional Anti-Inflammatory and Antioxidant Activities. BMC Complement. Altern. Med. 2018, 18, 305. [Google Scholar] [CrossRef]
- Vargas-Madriz, Á.F.; Luzardo-Ocampo, I.; Moreno-Celis, U.; Roldán-Padrón, O.; Chávez-Servín, J.L.; Vergara-Castañeda, H.A.; Martínez-Pacheco, M.; Mejía, C.; García-Gasca, T.; Kuri-García, A. Comparison of Phytochemical Composition and Untargeted Metabolomic Analysis of an Extract from Cnidoscolus aconitifolius (Mill.) I. I. Johnst and Porophyllum ruderale (Jacq.) Cass. and Biological Cytotoxic and Antiproliferative Activity In Vitro. Plants 2023, 12, 1987. [Google Scholar] [CrossRef]
- Al-Massarani, S.; El-Sayed, M.-I.K.; El-Shaibany, A. Antioxidant and Anti-Proliferative Activities of Acalypha fruticosa: Possible Elucidated Mechanism. Pak. J. Pharm. Sci. 2019, 32, 2041–2050. [Google Scholar]
- Chekuri, S.; Panjala, S.; Anupalli, R.R. Cytotoxic Activity of Acalypha Indica L. Hexane Extract on Breast Cancer Cell Lines (MCF-7). J. Phytopharm. 2017, 6, 264–268. [Google Scholar] [CrossRef]
- Guillén-Meléndez, G.A.; Villa-Cedillo, S.A.; Pérez-Hernández, R.A.; Castillo-Velázquez, U.; Salas-Treviño, D.; Saucedo-Cárdenas, O.; Montes-De-oca-luna, R.; Gómez-Tristán, C.A.; Garza-Arredondo, A.J.; Zamora-ávila, D.E.; et al. Cytotoxic Effect in Vitro of Acalypha monostachya Extracts over Human Tumor Cell Lines. Plants 2021, 10, 2326. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishna, S. In-Vitro Anticancer Activity of Baliospermum montanum on T Cell Leukemia-Jurkat Cell Line and Human Breast Cancer-MCF-7. IAETSD J. Adv. Sci. Appl. Sci. 2018, 5, 173–179. [Google Scholar]
- Pipatrattanaseree, W.; Itharat, A.; Mukkasombut, N.; Saesiw, U. Potential in Vitro Anti-Allergic, Anti-Inflammatory and Cytotoxic Activities of Ethanolic Extract of Baliospermum montanum Root, Its Major Components and a Validated HPLC Method. BMC Complement. Altern. Med. 2019, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Adi, A.S.; Elya, B.; Hanafi, M. Antioxidant and Cytotoxic Bioassay on Blumeodendron toxbrai (Blume.) Stem Bark Hexane, Dichloromethane, and Methanolic Ekstract. Pharmacogn. J. 2021, 13, 139–141. [Google Scholar] [CrossRef]
- Ramadan Kamel, M.; Nafady, A.; Hassanein, A.; Ragaey, R.; Haggag, E. Phytochemical Investigation and Assessment of Antioxidant, Antimicrobial and Cytotoxic Activities of the Root Bark Chrozophora oblongifolia (Delile) Spreng. (Euphorbiaceae). J. Adv. Pharm. Res. 2019, 3, 200–208. [Google Scholar] [CrossRef]
- Sunil Kumar, K.; Rao, A.S. Evaluation of Hepatoprotective and Invitro Cytotoxic Activity of Leaves of Chrozophora plicata Linn. Res. J. Pharmacol. Pharmacodyn. 2017, 9, 19–26. [Google Scholar] [CrossRef]
- Ikpefan, E.O.; Ayinde, B.A.; Mudassir, A.; Farooq, A.D. Comparative in Vitro Assessment of the Methanol Extracts of the Leaf, Stem, and Root Barks of Cnidoscolus aconitifolius on Lung and Breast Cancer Cell Lines. Turk. J. Pharm. Sci. 2019, 16, 375–379. [Google Scholar] [CrossRef]
- Kumarasamy, K.P.; Nallaperumal, N.; Natarajan, C.; Nallamadan, J. An in vitro cytotoxicity study of Cnidoscolus chayamansa McVaugh on selected cell lines. World J. Pharm. Pharm. Sci. 2014, 3, 1110–1116. [Google Scholar]
- Sánchez-Aguirre, O.A.; Juárez-Aguilar, E.; Montoya-Hernández, E.L.; Vázquez-Hernández, M.; Colorado-Peralta, R.; Sánchez-Medina, A.; Márquez-López, M.E.; Hernández-Romero, D. Antioxidant Potential of Cnidoscolus multilobus (Pax) I.M. Johnst and Its Antiproliferative and Cytotoxic Effect on Cervical Cancer Cells. Eur. J. Integr. Med. 2022, 53, 102134. [Google Scholar] [CrossRef]
- Paredes, P.F.M.; De Morais, S.M.; Brito, F.C.R.; Moura, L.F.W.G.; De Rodrigues, P.A.; Benjamin, S.R.; Magalhães, F.E.A.; Florean, E.O.P.T.; Guedes, M.I.F. Characterization of Cnidoscolus quercifolius Pohl Bark Root Extract and Evaluation of Cytotoxic Effect on Human Tumor Cell Lines. Asian Pac. J. Trop. Biomed. 2018, 8, 345–351. [Google Scholar] [CrossRef]
- Worarat, C.; Pompimon, W.; Udomputtimekakul, P.; Sukdee, S.; Sombutsiri, P.; Kuanmuang, N.; Suwan, I.; Khamyong, Y.; Suksabai, C.; Artkla, W.; et al. In Vitro Screening for Cytotoxic, Anti-Bacterial, Anti-HIV1-RT Activities and Chemical Constituents of Croton fluviatilis, Croton acutifolius, and Croton thorelii. Nat. Prod. J. 2021, 12, 92. [Google Scholar] [CrossRef]
- Bhavana, J.; Mk, K.; Sumathy, A. Cytotoxic and Pro-Apoptotic Activities of Leaf Extract of Croton bonplandianus Baill. against Lung Cancer Cell Line A549; NISCAIR-CSIR: New Delhi, India, 2016; Volume 54. [Google Scholar]
- Shantabi, L.; Jagetia, G.C.; Moirangthem, D.S.; Nongalleima, K. Anticancer Activity of an Ehnomedicinal Plant Croton caudatus Geiseler, Kam Sabut in Cultured HeLa Cells. Biocatal. Agric. Biotechnol. 2020, 23, 101500. [Google Scholar] [CrossRef]
- Rosangkima, G.; Jagetia, G. Anticancer, Antioxidant and Analgesic Properties of Croton caudatus. Int. J. Curr. Res. 2015, 7, 20640–20646. [Google Scholar]
- De, B.; Mitra, I.; Choudhury, M.D.; Paul, S.B.; Deb, L.; De, A.; Nath, R. In Vitro Cytotoxic Study of Croton caudatus Geiseler—A Traditionally Known Anticancerous Plant in North-East India. Pleione 2018, 12, 165. [Google Scholar] [CrossRef]
- Jéssica, d.A.G.S.; Gibbelly, C.d.S.; Marilia, G.d.F.S.; Vanessa, F.d.S.; Jaciana, d.S.A.; Teresinha, G.d.S.; Sônia, P.L. Physicochemical Characteristics and Cytotoxic Effect of the Methanolic Extract of Croton heliotropiifolius Kunth (Euphorbiaceae). Afr. J. Pharm. Pharmacol. 2017, 11, 321–326. [Google Scholar] [CrossRef]
- Ernandes, P.A.D.S.; Silva, J.C.P.D.; Sales, D.L.; Ribeiro, P.R.V.; de Brito, E.S.; Kerntopf, M.R.; Delmondes, G.D.A.; Pinheiro, J.C.A.; Salazar, G.J.T.; Batista, F.L.A.; et al. Chemical Constituents and Biological Activities of Croton heliotropiifolius Kunth. Antibiotics 2021, 10, 1074. [Google Scholar] [CrossRef]
- Yeboah, K.O.; Emosivbe, M.; Ntim, E.A.; Sam, G.H.; Ainooson, G. The Antiproliferative, Antimigratory and Anticlonogenic Effects of Croton membranaceus Mϋll. Arg. (Euphorbiaceae) Hydroethanolic Root Extract in Human 22Rv1 Castration-Resistant Prostate Cancer Cells. Acta Pharm. Sci. 2023, 61, 121–140. [Google Scholar] [CrossRef]
- Motta, L.B.; Furlan, C.M.; Santos, D.Y.A.C.; Salatino, M.L.F.; Negri, G.; de Carvalho, J.E.; Monteiro, P.A.; Ruiz, A.L.T.G.; Caruzo, M.B.; Salatino, A. Antiproliferative Activity and Constituents of Leaf Extracts of Croton sphaerogynus Baill. (Euphorbiaceae). Ind. Crops Prod. 2013, 50, 661–665. [Google Scholar] [CrossRef]
- Vieira, G.T.; Oliveira, T.T.d; Monteiro, L.P.; Kanashiro, M.M.; Costa, M.R.d; Pereira, W.L. Atividade citotóxica do extrato de Croton urucurana Baill contra linhagens de células leucêmicas humanas U937 e THP1. Ciênc. Nat. 2017, 39, 512. [Google Scholar] [CrossRef]
- Gadamsetty, G.; Maru, S.; Tyagi, A.; Chakravarthula, S.N. Anti-Inflammatory, Cytotoxic and Antioxidant Effects of Methanolic Extracts of Drypetes sepiaria (Euphorbiaceae). Afr. J. Tradit. Complement. Altern. Med. AJTCAM/Afr. Netw. Ethnomed. 2013, 10, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamoud, G.A.; Fantoukh, O.I.; Amina, M.; Nasr, F.A.; Al Musayeib, N.M.; Ahmed, M.Z.; Noman, O.M.; Al-Sharidah, R.E.; Alasmari, F.; Alqahtani, A.S. Unprecedented Insights on Chemical and Biological Significance of Euphorbia cactus Growing in Saudi Arabia. Plants 2022, 11, 681. [Google Scholar] [CrossRef] [PubMed]
- Bano, S.; Siddiqui, B.S.; Farooq, A.D.; Begum, S.; Siddiqui, F.; Kashif, M. In vitro growth inhibition and cytotoxicity of Euphorbia caducifolia against four human cancer cell lines and its phytochemical characterisation. Nat. Prod. Res. 2017, 31, 2936–2940. [Google Scholar] [CrossRef] [PubMed]
- Rédei, D.; Kúsz, N.; Szabó, M.; Pinke, G.; Zupkó, I.; Hohmann, J. First Phytochemical Investigation of Secondary Metabolites of Euphorbia davidii Subils. and Antiproliferative Activity of Its Extracts Short Communication. Acta Biol. Hung. 2015, 66, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.T.; Yousef, A.K.; Ahmed, F.A.; Elgneady, F.M.; El-Adl, K.; Elhady, M.M. In Silico ADMET, Docking, Anti-Proliferative and Antimicrobial Evaluations of Ethanolic Extract of Euphorbia dendroides L. S. Afr. J. Bot. 2022, 150, 607–620. [Google Scholar] [CrossRef]
- Ikpefan, E.O.; Ayinde, B.A.; Mudassar, A.; Farooq, A.D. In Vitro Antiproliferative and Antioxidant Assessment of the Extract and Partitioned Fractions of Leaves of Euphorbia graminea Jacq. (Euphorbiaceae). Niger. J. Pharm. 2021, 55, 26–31. [Google Scholar] [CrossRef]
- Kemboi, D.; Langat, M.K.; Siwe-Noundou, X.; Krause, R.W.M.; Isaacs, M.L.; Tembu, V.J. In Vitro Antibacterial and Cytotoxic Effects of Euphorbia grandicornis Blanc Chemical Constituents. BMC Complement. Med. Ther. 2022, 22, 90. [Google Scholar] [CrossRef]
- Magozwi, D.K.; Peter, X.; Langat, M.K.; Mhlanga, R.; Vukea, N.; Mare, J.A.d.L.; Siwe-Noundou, X.; Krause, R.W.M.; Tembu, V.J. In Vitro Cytotoxic Effects of Chemical Constituents of Euphorbia grandicornis Blanc against Breast Cancer Cells. Sci. Afr. 2021, 14, e01002. [Google Scholar] [CrossRef]
- Radi, M.H.; El-Shiekh, R.A.; El-Halawany, A.M.; Al-Abd, A.M.; Abdel-Sattar, E. In Vitro Cytotoxic Study of Euphorbia grantii Oliv. Aerial Parts against MCF-7 and MCF-7ADRBreast Cancer Cell Lines: A Bioactivity-Guided Isolation. ACS Omega 2023, 8, 18299–18305. [Google Scholar] [CrossRef]
- Al-Robai, S.A.; Ahmed, A.A.; Ahmed, A.A.E.; Zabin, S.A.; Mohamed, H.A.; Alghamdi, A.A.A. Phenols, Antioxidant and Anticancer Properties of Tagetes minuta, Euphorbia granulata and Galinsoga parviflora: In Vitro and in Silico Evaluation. J. Umm Al-Qura Univ. Appl. Sci. 2023, 9, 15–28. [Google Scholar] [CrossRef]
- Deveci, E.; Çayan, G.T.; Karakurt, S.; Duru, M.E. Anti-Colorectal Cancer Effects of Medicinal Plants: Euphorbia helioscopia, Ferula elaeochytris, and Sideritis albiflora. Commagene J. Biol. 2021, 5, 73–77. [Google Scholar] [CrossRef]
- El-Hallouty, S.M.; Gohar, L.H.; Elgazzar, E.M. Enhancement of Radiation-Induced Cytotoxicity in Hepatocellular Carcinoma Cells by Some Plant Extracts In Vitro. Egypt. J. Radiat. Sci. Appl. 2022. [Google Scholar] [CrossRef]
- EL-Hallouty, S.; Batawi, A.; Shafi, M.; Rashwan, E.; Elhawary, E.; Abdelaal, N. Cytotoxicity of five plant extracts against different human cancer cell lines and their molecular mechanism. Asian J. Pharm. Clin. Res. 2020, 13, 194–198. [Google Scholar] [CrossRef]
- Al-Saraireh, Y.M.; Youssef, A.M.M.; Za’al Alsarayreh, A.; Al Hujran, T.A.; Al-Sarayreh, S.; Al-Shuneigat, J.M.; Alrawashdeh, H.M. Phytochemical and Anti-Cancer Properties of Euphorbia hierosolymitana Boiss. Crude Extracts. J. Pharm. Pharmacogn. Res. 2021, 9, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Anitha, P.; Geegi, P.G.; Yogeswari, J.; Anthoni, S.A. In Vitro Anticancer Activity of Ethanolic Extract of Euphorbia hirta (L.). Sci. Technol. Arts Res. J. 2014, 3, 1. [Google Scholar] [CrossRef]
- Rashmi; Gupta, P. In Vitro Anti-Inflammatory and Anti-Proliferative Potential of Roots Extract of Euphorbia hirta Linn. J. Phytopharm. 2021, 10, 7–9. [Google Scholar] [CrossRef]
- Sharma, N.; Samarakoon, K.W.; Gyawali, R.; Park, Y.H.; Lee, S.J.; Oh, S.J.; Lee, T.H.; Jeong, D.K. Evaluation of the Antioxidant, Anti-Inflammatory, and Anticancer Activities of Euphorbia hirta Ethanolic Extract. Molecules 2014, 19, 14567–14581. [Google Scholar] [CrossRef]
- Senniappan, P.; Srinivas, K.; Venkata, M.; Rao, B. In-Vitro Antioxidant and Cytotoxicity Activity of Euphorbia hirta Petroleum Ether, Chloroform Extracts. Eur. Chem. Bull. 2023, 12, 2949–2960. [Google Scholar]
- Mali, P. Evaluation of Cytotoxicity of Aqueous Extract of Euphorbia hirta Using Human Colon Adenocarcinoma and Vero Cell Line. Toxicol. Int. 2017, 24, 17–21. [Google Scholar] [CrossRef]
- De Sousa, A.S.; Fernandes, T.C.C.; Cardona, Y.T.; Almeida, P.M.D.; Marin-Morales, M.A.; Dos Santos, A.V.; Randau, K.P.; Benko-Iseppon, A.M.; Brasileiro-Vidal, A.C. Cytotoxic and Genotoxic Effects of Ethanolic Extract of Euphorbia hyssopifolia L. on HepG2 Cells. J. Ethnopharmacol. 2015, 170, 16–19. [Google Scholar] [CrossRef]
- Alghamdi, A.A.A.; Ali, N.M.; Alam, M.M.; Nazreen, S.; Mahzari, A. HPLC Profile, Anticancer, Anti-Inflammatory and Antioxidant Activities of Euphorbia inarticulata Ethanolic Extract. Adv. Pharmacol. Pharm. 2023, 11, 156–167. [Google Scholar] [CrossRef]
- Okpako, I.O.; Ng, F.A.; Kyama, C.M.; Oyem, J.C.; Njeru, S.N. Antiproliferative Activity of Euphorbia ingens Extract against Prostate Cancer Cell Line: An in Silico and in Vitro Analysis. Preprints 2023. [Google Scholar] [CrossRef]
- Wongprayoon, P.; Charoensuksai, P. Cytotoxic and anti-migratory activities from hydroalcoholic extract of Euphorbia lactea Haw. Against HN22 cell line. Thai Bull. Pharm. Sci. 2018, 13, 69–77. [Google Scholar]
- Taş, A.; Şahin-Bölükbaşı, S.; Çevik, E.; Özmen, E.; Gümüş, E.; Siliğ, Y. An in Vitro Study of Cytotoxic Activity of Euphorbia macroclada Boiss on MCF–7 Cells. Indian J. Pharm. Educ. Res. 2018, 52, S119–S123. [Google Scholar] [CrossRef]
- Ebrahim, H.Y.; Osman, S.A.; Haffez, H.R.; Hassan, Z.A. In-vitro screening of some plant extracts for their potential anticancer activity. Afr. J. Tradit. Complement. Altern. Med. 2020, 17, 1–8. [Google Scholar] [CrossRef]
- Younus, M.; Hasan, M.M.; Hanif, M.; Sarwar, G.; Ahmad, K.; Ur Rehman, S.M.; Shirazi, J.H.; Jamil, Q.A.; Khan, K.R.; Syed, S.K.; et al. Botanical Features and Anti-Cancerous Potential of Euphorbia nivulia Buch.-Ham. Trop. J. Nat. Product. Res. 2021, 5, 1591–1596. [Google Scholar] [CrossRef]
- Al-Yousef, H.M.; Alqahtani, A.S.; Ghani, A.S.A.; El-Toumy, S.A.; El-Dougdoug, W.I.A.; Hassan, W.H.B.; Hassan, H.M. Nephroprotective, Cytotoxic and Antioxidant Activities of Euphorbia paralias. Saudi J. Biol. Sci. 2021, 28, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Aslantürk, Ö.S.; Aşkin Çelik, T. Antioxidant, Cytotoxic and Apoptotic Activities of Extracts from Medicinal Plant Euphorbia platyphyllos L. J. Med. Plants Res. 2013, 7, 1293–1304. [Google Scholar] [CrossRef]
- Aslantürk, Ö.S.; Yılmaz, E.Ş.; Aşkın Çelik, T.; Güzel, Y. Evaluation of the Antioxidant and Cytotoxic Potency of Euphorbia rigida and Arbutus andrachne Methanol Extracts in Human Hepatocellular Carcinoma Cell Lines In Vitro. Beni Suef Univ. J. Basic. Appl. Sci. 2021, 10, 51. [Google Scholar] [CrossRef]
- de Souza, L.S.; Tosta, C.L.; de Oliveira, B.J.R.P.; Varricchio, M.C.B.N.; Kitagawa, R.R.; Filgueiras, P.R.; Kuster, R.M. Chemical Profile and Cytotoxic Evaluation of Aerial Parts of Euphorbia tirucalli L. on Gastric Adenocarcinoma (AGS Cells). Nat. Prod. Res. 2023, 37, 4267–4273. [Google Scholar] [CrossRef]
- Archanjo, A.B.; De, F.; Careta, P.; Costa, A.V.; Nunes, C. Evaluation of cytotoxicity and expression of caspase-3 and p53 in HCT-116 cells of lineage treated with different extracts of Euphorbia tirucalli L. Arch. Vet. Sci. 2016, 21, 35–45. [Google Scholar] [CrossRef]
- Al-Faifi, Z.I.A.; Masrahi, Y.S.; Aly, M.S.; Al-Turki, T.A.; Dardeer, T. Evaluation of Cytotoxic and Genotoxic Effects of Euphorbia triaculeata Forssk. Extract. Asian Pac. J. Cancer Prev. 2017, 18, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Aliomrani, M.; Jafarian, A.; Zolfaghari, B. Phytochemical Screening and Cytotoxic Evaluation of Euphorbia turcomanica on Hela and HT-29 Tumor Cell Lines. Adv. Biomed. Res. 2017, 6, 68. [Google Scholar] [CrossRef]
- Campos, A.; Vendramini-Costa, D.B.; Longato, G.B.; Zermiani, T.; Ruiz, A.L.T.G.; De Carvalho, J.E.; Pandiella, A.; Filho, V.C. Antiproliferative Effect of Synadenium grantii Hook f. Stems (Euphorbiaceae) and a Rare Phorbol Diterpene Ester. Int. J. Toxicol. 2016, 35, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Kanunfre, C.C.; Leffers, T.; Cruz, L.S.; Luz, L.E.C.; Crisma, A.R.; Wang, M.; Avula, B.; Khan, I.A.; Beltrame, F.L. Euphorbia umbellata Bark Extracts—An in Vitro Cytotoxic Study. Rev. Bras. Farmacogn. 2017, 27, 206–213. [Google Scholar] [CrossRef]
- Ali, M.M.; Khattab, M.; Mohamed, M.A.; Abdelsalam, R.M.; Mahmoud, K.; Soliman, S.; Barghash, M.F. The Cytotoxic Effect of Synadenium grantii Extract against Human Lung Carcinoma A549 Cells and Its Role in Improvement of Histopathological and Biomarkers Changes in Benzo(a)Pyrene-Induced Lung Cancer in Rats. Int. J. Res. Pharm. Sci. 2020, 11, 962–971. [Google Scholar] [CrossRef]
- Periyasamy, K.; Pharm, I.J.; Sci, B.; Batsa, A.J.S. Anticancer activity of Excoecaria agallocha leaf extract in cell line model. Int. J. Pharm. Biol. Sci. 2013, 3, 392–398. [Google Scholar]
- Mohapatra, R. The in Vitro Anti-Tumor Efficacy of Methanolic Leaf Extract of Exoecaria agallocha in Cancer Cell Lines of Different Tissue Origin. Int. J. Innov. Res. Technol. 2021, 8, 1348. [Google Scholar]
- Hettihewa, L.M.; Munasinghe, M.M.A.B.; Bulugahapitiya, V.B.; Kihara, N. Dose dependent anti proliferative and cytotoxic effects of Flueggea leucopyrus Willd against human ovarian carcinoma; MTS and human telomerase enzyme inhibition. EJBPS 2015, 2, 14–18. [Google Scholar]
- Vassallo, A.; Armentano, M.F.; Miglionico, R.; Caddeo, C.; Chirollo, C.; Gualtieri, M.J.; Ostuni, A.; Bisaccia, F.; Faraone, I.; Milella, L. Hura crepitans L. Extract: Phytochemical Characterization, Antioxidant Activity, and Nanoformulation. Pharmaceutics 2020, 12, 553. [Google Scholar] [CrossRef]
- Mongalo, N.; Soyingbe, O.; Makhafola, T. Antimicrobial, Cytotoxicity, Anticancer and Antioxidant Activities of Jatropha zeyheri Sond. Roots (Euphorbiaceae). Asian Pac. J. Trop. Biomed. 2019, 9, 307–314. [Google Scholar] [CrossRef]
- Cruz, A.J.D.P.; Raymundo, J.K.G.; Jacinto, S.D.; Tolentino, J.E.; Ipulan-Colet, L.A.D.G. Combining in vitro and in ovo assays to screen for anti-cancer and anti-angiogenic effects of the leaf extracts of Mallotus cumingii Müll.Arg. (Euphorbiaceae). Malays. Appl. Biol. 2022, 51, 73–82. [Google Scholar] [CrossRef]
- Benny, B.; Krishna, A.S.; Samraj, S.; John, P.; Radhakrishnan, U. Cytotoxic and Antiproliferative Potential of Methanolic Extract of Mallotus phillippensis in MCF-7 Cell Line. J. Phytopharm. 2022, 11, 60–63. [Google Scholar] [CrossRef]
- Chen, X.-M.; Zhang, Z.-J.; Liu, A.-L.; Lv, F.-J.; Li, S.-F. Cholinesterase and Human Lung Cancer Cells (A-549) Inhibitory Activity of the Cassava Peel of Euphorbiaceae In Vitro. In International Conference on Food Science and Engineering (ICFSE 2016); Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2016; ISBN 978-1-60595-390-8. [Google Scholar]
- Al-Douri, N.; Al-Jaidi, B.A.; Hammad, H.M.; Shakya, A.K.; Alkhalailah, T.J.M.; Shilbayeh, S.A.R.; Ibrahim, A.A.; Venugopala, K.N.; Kamal, Y.T. Biological Evaluation of Mercurialis annua Extracts for Possible Antioxidant, Antiproliferative and Cytotoxic Activity. Indian. J. Pharm. Educ. Res. 2022, 56, S479–S486. [Google Scholar] [CrossRef]
- Nascimento, A.K.L.; Melo-Silveira, R.F.; Dantas-Santos, N.; Fernandes, J.M.; Zucolotto, S.M.; Rocha, H.A.O.; Scortecci, K.C. Antioxidant and Antiproliferative Activities of Leaf Extracts from Plukenetia volubilis Linneo (Euphorbiaceae). Evid.-Based Complement. Altern. Med. 2013, 2013, 950272. [Google Scholar] [CrossRef] [PubMed]
- Islam Shah, T.; Sharma, E.; Shah, G.A. Inhibitory Property of Aqueous Extract of Ricinus communis Leaves on Proliferation of Melanoma Treated against A375 Cell Lines. World J. Pharm. Sci. 2015, 3, 758–761. [Google Scholar]
- Prakash, E.; Gupta, D.K. In Vitro Study of Extracts of Ricinus communis Linn on Human Cancer Cell Lines. J. Med. Sci. Public Health 2014, 2, 15–20. [Google Scholar]
- Albino, R.C.; Antoniassi, R.; de Faria-Machado, A.F.; Ferraris, F.K.; Amendoeira, F.C.; Ramos, D.F.; Silva, P.E.A.; Leitão, S.G.; Oliveira, D.R. Traditional Detoxification of Jatropha curcas L. Seeds. J. Ethnopharmacol. 2019, 241, 111970. [Google Scholar] [CrossRef]
- Florence, D. An Investigation into The Antineoplastic Properties of Schinziophyton rautanenii and Colophospermum mopane . Ph.D. Thesis, The University of Namibia, Windhuk, Namibia, 2008. [Google Scholar]
- Menon, M.; Varghese, L. Evaluation of the Phytochemical Constituents and Tumor Reduction Potentials of Tragia involucrata Linn. J. Appl. Biol. Biotechnol. 2023, 11, 84–91. [Google Scholar] [CrossRef]
- Euphorbia Species-Derived Diterpenes and Coumarins as Multidrug Resistance Modulators in Human Colon Carcinoma Cells. Anticancer. Res. 2016, 36, 2259–2264.
- Li, Y.; Liu, Y.; Li, Y.; Liu, F.; Zhao, Y.; Xu, J.; Guo, Y. Trigothysoid, N. Inhibits Tumor Proliferation and Migration by Targeting Mitochondria and the STAT3/FAK Pathway. Arab. J. Chem. 2023, 16, 104930. [Google Scholar] [CrossRef]
- Lin, M.; Tang, S.; Zhang, C.; Chen, H.; Huang, W.; Liu, Y.; Zhang, J. Euphorbia Factor L2 Induces Apoptosis in A549 Cells through the Mitochondrial Pathway. Acta Pharm. Sin. B 2017, 7, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.Z.; Chen, L.; Su, T.; Li, W.; Huang, J.L.; Sang, J.; Tang, G.H.; Yin, S. Discovery of 8,9-Seco-Ent-Kaurane Diterpenoids as Potential Leads for the Treatment of Triple-Negative Breast Cancer. J. Med. Chem. 2021, 64, 9926–9942. [Google Scholar] [CrossRef] [PubMed]
- Wongprayoon, P.; Leelasart, S.; Jantham, J.; Pootaeng-on, Y.; Oekchuae, S.; Limpachayaporn, P.; Rayanil, K.O.; Charoensuksai, P. A Triterpenoid Friedelan-3β-Ol Isolated from Euphorbia lactea Exhibited Cytotoxic Activity against HN22 Cells by Inducing an S-Phase Cell Cycle Arrest. J. Appl. Pharm. Sci. 2022, 12, 31–48. [Google Scholar] [CrossRef]
- Li, H.H.; Qi, F.M.; Dong, L.L.; Fan, G.X.; Che, J.M.; Guo, D.D.; Zhang, Z.X.; Fei, D.Q. Cytotoxic and Antibacterial Pyran-2-One Derivatives from Croton crassifolius. Phytochem. Lett. 2014, 10, 304–308. [Google Scholar] [CrossRef]
- Cui, J.J.; Ji, K.L.; Liu, H.C.; Zhou, B.; Liu, Q.F.; Xu, C.H.; Ding, J.; Zhao, J.X.; Yue, J.M. Cytotoxic Tigliane Diterpenoids from Croton damayeshu. J. Nat. Prod. 2019, 82, 1550–1557. [Google Scholar] [CrossRef]
- Karina, P.; Uchôa, S.; Nunes Da Silva, J.; Silveira, R.; Anne, M.; Lima, S.; Braz-Filho, R. Trachylobane and kaurane diterpenes from Croton floribundus Spreng. Quim. Nova 2013, 36, 778–782. [Google Scholar]
- Liu, C.-P.; Xu, J.-B.; Zhao, J.-X.; Xu, C.-H.; Dong, L.; Ding, J.; Yue, J.-M. Diterpenoids from Croton laui and Their Cytotoxic and Antimicrobial Activities. J. Nat. Prod. 2014, 77, 1013–1020. [Google Scholar] [CrossRef]
- Zhao, B.Q.; Peng, S.; He, W.J.; Liu, Y.H.; Wang, J.F.; Zhou, X.J. Antitubercular and Cytotoxic Tigliane-Type Diterpenoids from Croton tiglium. Bioorg Med. Chem. Lett. 2016, 26, 4996–4999. [Google Scholar] [CrossRef]
- Zhang, X.L.; Wang, L.; Li, F.; Yu, K.; Wang, M.K. Cytotoxic Phorbol Esters of Croton tiglium. J. Nat. Prod. 2013, 76, 858–864. [Google Scholar] [CrossRef]
- Wang, J.F.; Yang, S.H.; Liu, Y.Q.; Li, D.X.; He, W.J.; Zhang, X.X.; Liu, Y.H.; Zhou, X.J. Five New Phorbol Esters with Cytotoxic and Selective Anti-Inflammatory Activities from Croton tiglium. Bioorg Med. Chem. Lett. 2015, 25, 1986–1989. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhao, Y.; Liu, H.; Tang, C.; Zhang, M.; Ke, C.; Ye, Y. Isolation and Structure Characterization of Cytotoxic Phorbol Esters from the Seeds of Croton tiglium. Planta Med. 2017, 83, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Cândido-Bacani, P.D.M.; Figueiredo, P.D.O.; Matos, M.D.F.C.; Garcez, F.R.; Garcez, W.S. Cytotoxic Orbitide from the Latex of Croton urucurana. J. Nat. Prod. 2015, 78, 2754–2760. [Google Scholar] [CrossRef] [PubMed]
- Abreu, L.S.; do Nascimento, Y.M.; do Espirito-Santo, R.F.; Meira, C.S.; Santos, I.P.; Brandão, R.B.; Souto, A.L.; Guedes, M.L.S.; Soares, M.B.P.; Villarreal, C.F.; et al. Phenylpropanoids from Croton velutinus with Cytotoxic, Trypanocidal and Anti-Inflammatory Activities. Fitoterapia 2020, 145, 104632. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cheng, X.; Sun, Y.; Liu, P. A new friedelane triterpenoid possessing cytotoxicity from the leaves and stems of Drypetes hainanensis. Chem. Nat. Compd. 2014, 50, 93–96. [Google Scholar] [CrossRef]
- Abdel-Sattar, E.; Abou-Hussein, D.; Petereit, F. Chemical Constituents from the Leaves of Euphorbia Ammak Growing in Saudi Arabia. Pharmacogn. Res. 2015, 7, 14–17. [Google Scholar] [CrossRef]
- Aljubiri, S.M.; Mahgoub, S.A.; Almansour, A.I.; Shaaban, M.; Shaker, K.H. Isolation of Diverse Bioactive Compounds from Euphorbia balsamifera: Cytotoxicity and Antibacterial Activity Studies. Saudi J. Biol. Sci. 2021, 28, 417–426. [Google Scholar] [CrossRef]
- Shadi, S.; Saeidi, H.; Ghanadian, M.; Rahimnejad, M.R.; Aghaei, M.; Ayatollahi, S.M.; Iqbal Choudhary, M. New Macrocyclic Diterpenes from Euphorbia connata Boiss. with Cytotoxic Activities on Human Breast Cancer Cell Lines. Nat. Prod. Res. 2015, 29, 607–614. [Google Scholar] [CrossRef]
- Foda, S.M.; Zaghloul, M.G.; Marzouk, A.M.; Shaker Mansour, E.-S. Phytochemical Investigation and Biological Studies of Euphorbia tithymaloides L. Family Euphorbiaceae. Delta Univ. Sci. J. 2022, 5, 260–271. [Google Scholar] [CrossRef]
- Shamsabadipour, S.; Zarei, S.M.; Ghanadian, M.; Ayatollahi, S.A.; Rahimnejad, M.R.; Saeedi, H.; Aghaei, M. A New Taraxastane Triterpene from Euphorbia denticulata with Cytotoxic Activity against Prostate Cancer Cells. Iran. J. Pharm. Res. IJPR 2018, 17, 336. [Google Scholar]
- Yuan, W.J.; Yang, G.P.; Zhang, J.H.; Zhang, Y.; Chen, D.Z.; Li, S.L.; Di, Y.T.; Hao, X.J. Three New Diterpenes with Cytotoxic Activity from the Roots of Euphorbia ebracteolata Hayata. Phytochem. Lett. 2016, 18, 176–179. [Google Scholar] [CrossRef]
- Chen, G.; Ma, T.; Ma, Y.; Han, C.; Zhang, J.; Sun, Y. Chemical Composition, Anti-Breast Cancer Activity and Extraction Techniques of Ent-Abietane Diterpenoids from Euphorbia fischeriana Steud. Molecules 2022, 27, 4282. [Google Scholar] [CrossRef] [PubMed]
- Zhong, N.F.; Huang, H.H.; Wei, J.C.; Yang, Y.C.; Gao, X.X.; Wei, X.Y.; Wang, A.H.; Jia, J.M. Euphorfiatnoids A−I: Diterpenoids from the Roots of Euphorbia fischeriana with Cytotoxic Effects. Phytochemistry 2022, 203, 113372. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Li, B.T.; Sheng, G.; Zhang, A.L.; Li, X.C.; Tian, J.M. Cytotoxic Diterpenoids from Euphorbia fischeriana. Chem. Biodivers. 2021, 18, e2000919. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Yu, D.; Zhu, G.; Xu, J. Three New Abietane Diterpenoids from the Aerial Parts of Euphorbia fischeriana and Their Cytotoxic Effects. Phytochem. Lett. 2023, 55, 56–60. [Google Scholar] [CrossRef]
- Zhou, M.; Ma, Q.; He, L.; Chen, Y.H.; Zhu, B.Y.; Wang, J.H.; Yang, Q.; Liu, S.; Ma, L.M. Cytotoxic Jatrophane Diterpenoids from the Aerial Parts of Euphorbia helioscopia. J. Asian Nat. Prod. Res. 2021, 23, 731–737. [Google Scholar] [CrossRef]
- Lu, Y.B.; Luo, S.; Wang, Y.X.; Feng, Z.Y.; Gao, K.; Chen, J.J. Jatrophane Diterpenoids with Cytotoxic Activity from the Whole Plant of Euphorbia heliosocpia L. Phytochemistry 2022, 203, 113420. [Google Scholar] [CrossRef]
- Adedoyin, B.A. In Vitro Cytotoxicity of Euphorbia heterophylla against Human Cancer Cell Lines. Afr. J. Eng. Environ. Res. 2022, 3, 1. [Google Scholar]
- Hu, R.; Sang, J.; Li, W.; Tian, Y.; Zou, M.F.; Tang, G.H.; Yin, S. Structurally Diverse Triterpenoids with Cytotoxicity from Euphorbia hypericifolia. Fitoterapia 2021, 151, 104888. [Google Scholar] [CrossRef]
- Hegazy, M.E.F.; Hamed, A.R.; Ibrahim, M.A.A.; Talat, Z.; Reda, E.H.; Abdel-Azim, N.S.; Hammouda, F.M.; Nakamura, S.; Matsuda, H.; Haggag, E.G.; et al. Euphosantianane A–D: Antiproliferative Premyrsinane Diterpenoids from the Endemic Egyptian Plant Euphorbia sanctae-catharinae. Molecules 2018, 23, 2221. [Google Scholar] [CrossRef]
- Jia, H.Y.; Liao, Z.X.; Liu, F.Y.; Wu, L.; Xu, C.; Zuo, B. A New Phenylpropanoid from the Roots of Euphorbia nematocypha. Nat. Prod. Res. 2015, 29, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Jia, H.-Y.; Zuo, B.; Liao, Z.-X.; Ji, L.-J.; Sun, H.-F.; Wang, Q. Chemical Constituents of the Aerial Parts of Euphorbia nematocypha. Nat. Prod. Commun. 2016, 11, 1934578X1601100210. [Google Scholar] [CrossRef]
- Song, N.; Zheng, X.; Wang, J.; Zhu, L.; Wang, C.; Cai, L.; Ding, Z. Cytotoxicity and Molecular-Docking Approach of a New Rosane-Type Diterpenoid from the Roots of Euphorbia nematocypha. Front. Chem. 2022, 10, 912738. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, J.S.; Liu, H.C.; Zhang, Y.; Yin, W.H.; Liu, Q.F.; Wang, G.W.; Zhao, J.X.; Yue, J.M. Phonerilins A–K, Cytotoxic Ingenane and Ingol Diterpenoids from Euphorbia neriifolia. Tetrahedron 2022, 123, 132955. [Google Scholar] [CrossRef]
- Ghanadian, M.; Saeidi, H.; Aghaei, M.; Rahiminejad, M.R.; Ahmadi, E.; Ayatollahi, S.M.; Choudhary, M.I.; Bahmani, B. New Jatrophane Diterpenes from Euphorbia osyridea with Proapoptotic Effects on Ovarian Cancer Cells. Phytochem. Lett. 2015, 12, 302–307. [Google Scholar] [CrossRef]
- Wang, K.; Yu, H.; Wu, H.; Wang, X.; Pan, Y.; Chen, Y.; Liu, L.; Jin, Y.; Zhang, C. A New Casbane Diterpene from Euphorbia pekinensis. Nat. Prod. Res. 2015, 29, 1456–1460. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Zeng, Y.; Ma, B.; Bi, K.; Chen, X. A New Cytotoxic Cembrane Diterpene from the Roots of Euphorbia pekinensis Rupr. Fitoterapia 2013, 90, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Zeng, X.T.; Xu, D.Q.; Yue, S.J.; Fu, R.J.; Yang, X.; Liu, Z.X.; Tang, Y.P. Pimarane, Abietane, and Labdane Diterpenoids from Euphorbia pekinensis Rupr. and Their Anti-Tumor Activities. Phytochemistry 2022, 197, 113113. [Google Scholar] [CrossRef]
- Ismail, M.; Ahmed, M.H.; Zaki, M.; Moawad, A.; Mohammed, R. Colorectal Cytotoxic Activities of Phenolic Constituents Isolated from Euphorbia pseudocactus Cultivated in Egypt. J. Appl. Pharm. Sci. 2022, 12, 97–102. [Google Scholar] [CrossRef]
- Wu, S.; Gan, L.; Su, T.; Wei, X.; Yin, S. New Ingenane and Ingol Diterpenoids from Euphorbia royleana. Nat. Prod. Res. 2023, 37, 1130–1137. [Google Scholar] [CrossRef]
- Banjar, M.F.S.; Mohamed, G.A.; Shehata, I.A.; Abdallah, H.M.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Koshak, A.E.; Ibrahim, S.R.M. Cycloschimperols A and B, New Cytotoxic Cycloartane Triterpenoids from Euphorbia schimperi. Phytochem. Lett. 2019, 32, 90–95. [Google Scholar] [CrossRef]
- Aljubiri, S.M.; Mahmoud, K.; Mahgoub, S.A.; Almansour, A.I.; Shaker, K.H. Bioactive Compounds from Euphorbia schimperiana with Cytotoxic and Antibacterial Activities. S. Afr. J. Bot. 2021, 141, 357–366. [Google Scholar] [CrossRef]
- Zolfaghari, B.; Yazdiniapour, Z.; Ghanadian, M.; Lanzotti, V. Cyclomyrsinane and Premyrsinane Diterpenes from Euphorbia sogdiana Popov. Tetrahedron 2016, 72, 5394–5401. [Google Scholar] [CrossRef]
- Zhu, H.; Ren, X.; Huang, Y.; Su, T.; Yang, L. Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites 2023, 13, 852. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Liu, G.H.; Dawa, D.; Ding, L.S.; Cao, Z.X.; Zhou, Y. Cytotoxic Diterpenoids from the Roots of Euphorbia stracheyi. Phytochem. Lett. 2020, 36, 183–187. [Google Scholar] [CrossRef]
- Rédei, D.; Kúsz, N.; Sátori, G.; Kincses, A.; Spengler, G.; Burián, K.; Barina, Z.; Hohmann, J. Bioactive Segetane, Ingenane, and Jatrophane Diterpenes from Euphorbia Taur. Planta Med. 2018, 84, 729–735. [Google Scholar] [CrossRef]
- Silva, V.A.O.; Rosa, M.N.; Tansini, A.; Oliveira, R.J.S.; Martinho, O.; Lima, J.P.; Pianowski, L.F.; Reis, R.M. In Vitro Screening of Cytotoxic Activity of Euphol from Euphorbia tirucalli on a Large Panel of Human Cancer-Derived Cell Lines. Exp. Ther. Med. 2018, 16, 557–566. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Z.; Wang, Y.; Li, X. Highly Oxygenated Ent-Atisane and Podocarpane Diterpenoids from Excoecaria agallocha. Nat. Prod. Res. 2022, 36, 3924–3930. [Google Scholar] [CrossRef]
- Asep, S.; Hening, H.; Gema, S.P.; Gigih, S.; Widya, M.C. Sahidin Anticancer Activity of Jatrophone an Isolated Compound from Jatropha gossypifolia Plant against Hepatocellular Cancer Cell Hep G2 1886. Biomed. Pharmacol. J. 2017, 10, 667–673. [Google Scholar] [CrossRef]
- Byrappa, M.; Viswanathan, G.; Doss, J.; Ananthi, J.; Rajan, N.; Raja, L.; Venkateshan, N. Cytotoxic Pyrrolidinone from Leaves of Jatropha tanjorensis. Int. J. Res. Sci. Innov. 2018, 5, 45–50. [Google Scholar]
- Segun, P.A.; Ogbole, O.O.; Ismail, F.M.D.; Nahar, L.; Evans, A.R.; Ajaiyeoba, E.O.; Sarker, S.D. Bioassay-Guided Isolation and Structure Elucidation of Cytotoxic Stilbenes and Flavonols from the Leaves of Macaranga barteri. Fitoterapia 2019, 134, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Wanandri, R.; Rewa, S.; Saputri, R.D.; Tjahjandarie, S.; Tanjung, M. Cytotoxic Activity of Flavonols from Macaranga gigantea. Pharm. J. Farm. Indones. 2020, 17, 360–367. [Google Scholar]
- Yang, D.S.; Wei, J.G.; Peng, W.B.; Wang, S.M.; Sun, C.; Yang, Y.P.; Liu, K.C.; Li, X.L. Cytotoxic Prenylated Bibenzyls and Flavonoids from Macaranga Kurzii. Fitoterapia 2014, 99, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Tanjung, M.; Tjahjandarie, T.S. Dihydroflavonols from the Leaves of Macaranga recurvata and Their Cytotoxic and Antioxidant Activities. J. Chem. Pharm. Res. 2014, 6, 90–95. [Google Scholar]
- Zhang, Y.; Zhou, D.; Liu, W.; Li, C.; Hao, L.; Zhang, G.; Deng, S.; Yang, R.; Qin, J.; Li, J.; et al. Cytotoxic Activity and Related Mechanisms of Prenylflavonoids Isolated from Mallotus conspurcatus Croizat. Chem. Biodivers. 2019, 16, e1800465. [Google Scholar] [CrossRef]
- Mbeunkeu, A.B.D.; Azebaze, A.G.B.; Tala, M.F.; Teinkela, J.E.M.; Noundou, X.S.; Krause, R.W.M.; Vardamides, J.C.; Laatsch, H. Three New Pentacyclic Triterpenoids from Twigs of Manniophyton fulvum (Euphorbiaceae). Phytochem. Lett. 2018, 27, 1–8. [Google Scholar] [CrossRef]
- Toussaint-Douhoré, G.Y.; Soro, Y.; Ouédraogo, N.; Vaca-Garcia, C.; Koffi-Attioua, B.; Carraz, M. Liver Cancer Antiproliferative Activity of a New Nor-Cucurbitacin from Mareya micrantha Müll. Arg. Fitoterapia 2023, 166, 105471. [Google Scholar] [CrossRef]
- Johnson-Ajinwo, O.R.; Richardson, A.; Li, W.W. Cytotoxic Effects of Stem Bark Extracts and Pure Compounds from Margaritaria discoidea on Human Ovarian Cancer Cell Lines. Phytomedicine 2015, 22, 1–4. [Google Scholar] [CrossRef]
- Yakubu, O.F.; Adebayo, A.H.; Dokunmu, T.M.; Zhang, Y.J.; Iweala, E.E.J. Cytotoxic Effects of Compounds Isolated from Ricinodendron heudelotii. Molecules 2019, 24, 145. [Google Scholar] [CrossRef]
- Mangisa, M.; Tembu, V.J.; Fouche, G.; Nthambeleni, R.; Peter, X.; Langat, M.K. Ent-Abietane Diterpenoids from Suregada zanzibariensis Baill. (Euphorbiaceae), Their Cytotoxic and Anticancer Properties. Nat. Prod. Res. 2019, 33, 3240–3247. [Google Scholar] [CrossRef]
- Lei, C.; Li, Y.N.; Li, J.N.; Zhou, Y.B.; Cui, M.J.; Fu, K.C.; Li, J.; Hou, A.J. Two New Cytotoxic Maytansinoids Targeting Tubulin from Trewia nudiflora. Planta Med. 2021, 88, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Hu, S.; Wen, Q.; Ma, Y.L.; Jiang, Z.H.; Tang, J.Y.; Fu, Y.H. Novel γ-Lactone Derivatives from Trigonostemon heterophyllus with Their Potential Antiproliferative Activities. Bioorg. Chem. 2018, 79, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, G.Y.; Song, X.P.; Yang, L.Q.; Han, C.R.; Wu, X.Y.; Zheng, C.J.; Ran, X.; Tang, R.F. Trigoxyphins O-T, Six New Heterodimers from Trigonostemon xyphophylloides. Tetrahedron Lett. 2013, 54, 6434–6438. [Google Scholar] [CrossRef]
- de Abrantes, R.A.; Batista, T.M.; Mangueira, V.M.; de Sousa, T.K.G.; Ferreira, R.C.; Moura, A.P.G.; Abreu, L.S.; Alves, A.F.; Velozo, E.S.; Batista, L.M.; et al. Antitumor and Antiangiogenic Effects of Tonantzitlolone B, an Uncommon Diterpene from Stillingia loranthacea. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Adiga, P.G.; Shridhar, N.B.; Sanganal, J.S.; Rao, S.; Shilpa, N.; Aparna, V.; Santhosh, I.M.; Tirumala, M.; Sindhu, B.M. In Vivo Anti-Tumor Efficacy of Croton oblongifolius in DMBA Induced Mammary Tumor in Rats. Indian J. Anim. Res. 2018, 52, 144–147. [Google Scholar] [CrossRef]
- Majumder, M.; Debnath, S.; Gajbhiye, R.L.; Saikia, R.; Gogoi, B.; Samanta, S.K.; Das, D.K.; Biswas, K.; Jaisankar, P.; Mukhopadhyay, R. Ricinus communis L. Fruit Extract Inhibits Migration/Invasion, Induces Apoptosis in Breast Cancer Cells and Arrests Tumor Progression in Vivo. Sci. Rep. 2019, 9, 14493. [Google Scholar] [CrossRef]
- De Castro, J.B.R.; Wemmenson, F.; Moura, G.; Solheiro Bezerra, A.; De, P.; Rodrigues, A.; Da Costa, H.P.S.; Do, N.; Canabrava, V.; Matheus, C.; et al. Antitumoral activity and in vivo toxicity of Cnidoscolus quercifolius pohl (euphorbiaceae). Int. J. Dev. Res. 2020, 10, 20359. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, Y.; Wang, G.; Li, Y.; Huang, W. Penduliflaworosin, a Diterpenoid from Croton crassifolius, Exerts Anti-Angiogenic Effect via VEGF Receptor-2 Signaling Pathway. Molecules 2017, 22, 126. [Google Scholar] [CrossRef]
- Ma, L.; Chen, Z.; Wang, W.; Zhang, J.; Zhang, H.; Liu, J. The Molecular Mechanism of ESZM Extract on Treatment ER(−) Breast Cancer in Vivo: Application of “Combat Poison with Poison” Theory. Preprint 2021. [Google Scholar] [CrossRef]
- Cheng, J.; Han, W.; Wang, Z.; Shao, Y.; Wang, Y.; Zhang, Y.; Li, Z.; Xu, X.; Zhang, Y. Hepatocellular Carcinoma Growth Is Inhibited by Euphorbia helioscopia L. Extract in Nude Mice Xenografts. Biomed. Res. Int. 2015, 2015, 601015. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Chen, C.H.; Hsu, C.H.; Kuo, T.Y.; Liu, C.C.; Liao, A.T.C.; Lin, C.S. Inhibiting Autophagy Potentiates the Antitumor Efficacy of Euphorbia royleana for Canine Mammary Gland Tumors. BMC Vet. Res. 2020, 16, 193. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S. Evaluation of the Antioxidant and In Vivo Anticancer Activity of Excoecaria agallocha Bark Extrac. Ph.D. Thesis, Brac University, Dhaka, Bangladesh, 2019. [Google Scholar]
- Ghramh, H.A.; Khan, K.A.; Ibrahim, E.H.; Setzer, W.N. Synthesis of Gold Nanoparticles (AuNPs) Using Ricinus communis Leaf Ethanol Extract, Their Characterization, and Biological Applications. Nanomaterials 2019, 9, 765. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, M.S.; Al-Yousef, H.M.; Alqahtani, A.S.; Tabish Rehman, M.; AlAjmi, M.F.; Almarfidi, O.; Amina, M.; Alshememry, A.; Syed, R. Preparation, Characterization, and in Vitro-in Silico Biological Activities of Jatropha pelargoniifolia Extract Loaded Chitosan Nanoparticles. Int. J. Pharm. 2021, 606, 120867. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.A.; Attia, G.H.; Elgamal, A.; Aleraky, M.; Youns, M.; Ibrahim, A.M.; Abdou, R.; Shaikh, I.A.; El Raey, M.A. Cytotoxic Activity of Zinc Oxide Nanoparticles Mediated by Euphorbia retusa. Crystals 2022, 12, 903. [Google Scholar] [CrossRef]
- Aboulthana, W.M.; Omar, N.I.; El-Feky, A.M.; Hasan, E.A.; Ibrahim, N.E.S.; Youssef, A.M. In Vitro Study on Effect of Zinc Oxide Nanoparticles on the Biological Activities of Croton tiglium L. Seeds Extracts. Asian Pac. J. Cancer Prev. 2022, 23, 2671–2686. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, K.; Das, S.; Choudhury, P.; Ghosh, S.; Baral, R.; Choudhuri, S.K. A Novel Approach of Synthesizing and Evaluating the Anticancer Potential of Silver Oxide Nanoparticles in Vitro. Chemotherapy 2017, 62, 279–289. [Google Scholar] [CrossRef] [PubMed]
- El Raey, M.A.; El-Hagrassi, A.M.; Osman, A.F.; Darwish, K.M.; Emam, M. Acalypha wilkesiana Flowers: Phenolic Profiling, Cytotoxic Activity of Their Biosynthesized Silver Nanoparticles and Molecular Docking Study for Its Constituents as Topoisomerase-I Inhibitors. Biocatal. Agric. Biotechnol. 2019, 20, 101243. [Google Scholar] [CrossRef]
- Elemike, E.E.; Onwudiwe, D.C.; Singh, M. Eco-Friendly Synthesis of Copper Oxide, Zinc Oxide and Copper Oxide–Zinc Oxide Nanocomposites, and Their Anticancer Applications. J. Inorg. Organomet. Polym. Mater. 2020, 30, 400–409. [Google Scholar] [CrossRef]
- Cherian, A.M.; Snima, K.S.; Kamath, C.R.; Nair, S.V.; Lakshmanan, V.K. Effect of Baliospermum montanum Nanomedicine Apoptosis Induction and Anti-Migration of Prostate Cancer Cells. Biomed. Pharmacother. 2015, 71, 201–209. [Google Scholar] [CrossRef]
- Boomi, P.; Poorani, G.P.; Selvam, S.; Palanisamy, S.; Jegatheeswaran, S.; Anand, K.; Balakumar, C.; Premkumar, K.; Prabu, H.G. Green Biosynthesis of Gold Nanoparticles Using Croton sparsiflorus Leaves Extract and Evaluation of UV Protection, Antibacterial and Anticancer Applications. Appl. Organomet. Chem. 2020, 34, e5574. [Google Scholar] [CrossRef]
- Abd El-Moaty, H.I.; Ismail, E.H.; Abu-Khudir, R.; Soliman, N.A.; Sabry, D.Y.; Al Abdulsalam, N.K.; Sorour, W.A.; Khalil, M.M.H. Characterization and Evaluation of Multiple Biological Activities of Phytosynthesized Gold Nanoparticles Using Aqueous Extract of Euphorbia dendroides. Nanomater. Nanotechnol. 2022, 12, 18479804221141266. [Google Scholar] [CrossRef]
- Lingaraju, K.; Naika, H.R.; Nagaraju, G.; Nagabhushana, H. Biocompatible Synthesis of Reduced Graphene Oxide from Euphorbia heterophylla (L.) and Their in-Vitro Cytotoxicity against Human Cancer Cell Lines. Biotechnol. Rep. 2019, 24, e00376. [Google Scholar] [CrossRef] [PubMed]
- Ghramh, H.A.; Khan, K.A.; Ibrahim, E.H. Biological Activities of Euphorbia peplus Leaves Ethanolic Extract and the Extract Fabricated Gold Nanoparticles (AuNPs). Molecules 2019, 24, 1431. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Naveen; Dhatwalia, J.; Thakur, S.; Radhakrishnan, A.; Chauhan, A.; Chandan, G.; Choi, B.H.; Neetika; Nidhi. Antioxidant, Antimicrobial, and Cytotoxic Potential of Euphorbia royleana Extract-Mediated Silver and Copper Oxide Nanoparticles. Chem. Pap. 2023, 77, 4643–4657. [Google Scholar] [CrossRef]
- Bhuvaneswari, R.; Xavier, R.J.; Arumugam, M. Facile Synthesis of Multifunctional Silver Nanoparticles Using Mangrove Plant Excoecaria agallocha L. for Its Antibacterial, Antioxidant and Cytotoxic Effects. J. Parasit. Dis. 2017, 41, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.B.; Peng, G.; Wang, J.; Nie, S.; Li, J.; Jia, Y.C.; Zhang, Q.Y. Ebracteolatain A and Ebracteolatain B Induce Apoptosis of Human Hepatoma Cell Line (HepG2). Trop. J. Pharm. Res. 2015, 14, 1821–1828. [Google Scholar] [CrossRef]
- Chaitanya, G.V.; Alexander, J.S.; Babu, P.P. PARP-1 Cleavage Fragments: Signatures of Cell-Death Proteases in Neurodegeneration. Cell Commun. Signal. 2010, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y. Mechanisms of Caspase Activation and Inhibition during Apoptosis. Mol. Cell 2002, 9, 459–470. [Google Scholar] [CrossRef]
- Hao, Q.; Chen, J.; Lu, H.; Zhou, X. The ARTS of P53-Dependent Mitochondrial Apoptosis. J. Mol. Cell Biol. 2023, 14, mjac074. [Google Scholar] [CrossRef]
- Jaiswal, P.L.; Goel, A.; Mittal, R.D. Survivin: A Molecular Biomarker in Cancer. Indian J. Med. Res. 2015, 141, 389. [Google Scholar]
- Shi, S.-Q.; Fan, Y.-Y.; Xu, C.-H.; Ding, J.; Wang, G.-W.; Yue, J.-M. Supporting Information Cytotoxic 8,9-Seco-Ent-Kaurane Diterpenoids from Croton kongensis. J. Asian Nat. Prod. Res. 2018, 20, 920–927. [Google Scholar] [CrossRef] [PubMed]
Name of the Species | Part of the Plant | Type of Extract | Class of Compounds/Compounds Identified in Extract | Cell Lines | IC50 | Activity/ Mechanism/ Effect | Ref. |
---|---|---|---|---|---|---|---|
Acalypha fruticosa Forssk. | Aerial parts | Methanol | - | MCF-7, HCT-116, and HepG-2 | 12.2 ± 0.6 μg/mL, 4.81 ± 0.4 μg/mL, and 5.21 ± 0.7 μg/mL, respectively. | Cytotoxic | [72] |
Acalypha indica L. | Leaves | Hexane | - | MCF-7 | 50 μg/mL | Cytotoxic | [73] |
Acalypha monostachya Cav. | Aerial parts | Distilled water, absolute methanol, and n-hexane | Phenols, coumarins, lactones, flavonoids, saponins, aromatic compounds, carbohydrates, and carbonyl groups. Methanol and hexane: steroids and terpenoids. Aqueous: alkaloids. | HeLa and MDA-MB-231 | - | Cytotoxic | [74] |
Baliospermum montanum (Willd.) Müll.Arg. | Leaves | Methanol | - | Jurkat | 298 μg/mL | Cytotoxic | [75] |
Baliospermum montanum (Willd.) Müll.Arg. | Roots | Ethanol | Propiophenones | HepG2 and KKU M156 | HepG2 (0.06 ± 0.02 μg/mL) and KKU M157 (0.16 ± 0.02 μg/mL) | Cytotoxic | [76] |
Blumeodendron toxbrai (Blume.) | Stem Bark | Hexane, Dichloromethane, and Methanolic | - | MCF-7 | Hexane extract 121.24 ± 0.15 µg/mL, Dichloromethane extract 55 ± 0.48 µg/mL, and methanolic extract 70.71 ± 0.15 µg/mL | Cytotoxic | [77] |
Croton sylvaticus Hochst. | Leaves | Acetone and ethanol | - | A549, Caco-2, HeLa, and MCF-7 | Acetone extract: A549 (32.78 ± 2.55 μg/mL), Caco-2 (150.63 ± 8.79 μg/mL), HeLa (169.09 ± 13.0 μg/mL), MCF-7 (13.13 ± 2.76 μg/mL). Ethanol extract: A549 (1.75 ± 0.62 μg/mL), Caco-2 (103.73 ± 1.47 μg/mL), HeLa (106.52 ± 4.50 μg/mL), MCF-7 (6.02 ± 1.60 μg/mL). | Cytotoxic. casp-3/casp7 pathway. | [70] |
Chrozophora oblongifolia (Delile) Spreng. | Root Bark | Aqueous methanol, fractions with n-hexane, methylene chloride, and ethyl acetate | Carbohydrates and/or glycosides, sterols and/or triterpenes, tannins, alkaloids, and saponins | MCF-7 and Huh-7 | Cytotoxic activity (%) of the methanolic extracts MCF-7 (15.82 ± 0.66) and Huh-7 (31.28 ± 0.68). n-hexane MCF-7 (59.55 ± 0.76) and Huh-7 (54.17 ± 0.46). Methylene chloride, MCF-7 (83.83 ± 0.37) and Huh-7 (82.79 ± 0.55). Ethyl acetate MCF-7 (22.25 ± 0.13) and Huh-7 (72.52 ± 0.23). | Cytotoxic | [78] |
Chrozophora plicata (Vahl) A.Juss. ex Spreng. | Leaves | Petroleum ether, chloroform, hexane, ethyl acetate, methanol, and water | flavonoids, alkaloids, glycosides, and lignans. | DAL | 25–50 μg/mL | Cytotoxic | [79] |
Cnidoscolus aconitifolius (Mill.) I.M. Johnst. | Leaves | Methanol | Saponins, tannins, terpenes, and flavonoids | MCF-7 and NCI-H460 | 4.50 ± 0.58 μg/mL and 3.29 ± 4.57 μg/mL, respectively. | Cytotoxic | [80] |
Cnidoscolus chayamansa McVaugh. | Leaves | Ethanolic | - | HT-29 | CTC50 (μg/mL) ≥ 1000 ± 0.00 | Cytotoxic | [81] |
Cnidoscolus multilobus (Pax) I.M. Johnst | Leaves | Ethanol-water (70:30) | HeLa | 130–160 µg/mL | Cytotoxic | [82] | |
Cnidoscolus quercifolius Pohl | Bark root | Methanol, chloroform fraction | Faveline, Faveline methyl ether, Deoxofaveline, and Neofavelanone | OVCAR-8, HCT-116, and HL-60 | OVCAR-8 15.23 ± 2.0 μg/mL, HCT-116 7.07 ± 0.59 μg/mL, and HL-60 4.95 ± 0.19 μg/mL | Cytotoxic | [83] |
Croton acutifolius Esser | Twigs and leaves | Hexane, ethyl acetate, and methanol | Retusin | KKU-M213, FaDu, HT-29, MDA-M, B-231, SH-SY5Y, A 549 and MMNK-2 | Ethyl acetate extract against KKU-M213, MDA-MB-231, A-549, and MMNK-1 with the ED50 at 3.31 μg/mL, 0.58 μg/mL, 0.58 μg/mL, and 0.65 μg/mL, respectively. | Cytotoxic | [84] |
Croton bonplandianus Baill. | Leaves | Acetone | - | A549 | 15.68 ± 0.006 μg/mL | Cytotoxic, apoptosis, and G2M phase arrest | [85] |
Croton caudatus Geiseler | Leaves | Chloroform, ethanol and aqueous | - | HeLa | 80 μg/mL | Cytotoxic, increased DNA damage | [86] |
Croton caudatus Geiseler | Leaves | Chloroform, ethanol, and aqueous | Alkaloids, saponins, tannins, and cardiac glycosides. | Dalton’s lymphoma (DL) | 28.36 μg/mL | Cytotoxic | [87] |
Croton caudatus Geiseler | Leaves | Methanol | HeLa | 59.70 μg/mL | Cytotoxic | [88] | |
Croton fluviatilis Esser | Stems | Hexane, ethyl acetate, and methanol | β-amyrin (1), stigmasterol, and β-sitosterol | KKU-M213, FaDu, HT-29, MDA-M, B-231, SH-SY5Y, A-549, and MMNK-1 | Hexane extract cytotoxicity against KKU-M213, MDA-MB-231, and A-549 at the ED50 values of 1.70 μg/mL, 2.62 μg/mL, and 0.60 μg/mL, respectively | Cytotoxic | [84] |
Croton heliotropiifolius Kunth | Leaves | Methanol | Gallic acid | NCI-H292, MCF-7, Hep-2, and HL-60 | % inhibitor activity in NCI-H292 (46.5 ± 2.6), MCF-7 (21.7 ± 3.7), Hep-2 (26.7 ± 7.1), and HL-60 (59.5 ± 2.9) | Inhibitory activity | [89,90] |
Croton membranaceus Mϋll. Arg. | Roots | Hydroethanolic | 5-Hydroxypipecolic acid, Phenol, 3, 5-bis(1, 1-dimethylethyl)-, 2-Octenoic acid, 5, 5, 7-trihyroxy, 9, 10-Secocholeasta-5,7,10(19)-tiene-1,3-diol, 25-[(trimethylsilyl)oxy]-, Phenol, 4-(3-hydroxy-1-propenyl)-2-methoxy, n-Hexadecanoic acid, Benzene, 1,2,4,5-tetrakis(1-methylethyl)-, Prednisolone acetate, 1H, 4H-Pyrazolo[3,4-b]pyran-5-carbonitrile, 6-amino-4-(2, 4, 5-trimethoxyphenyl)-3-methyl and Astaxanthin | 22Rv1 | 3.809 μg/mL | Cytotoxic, inhibit colony-forming and migration abilities | [91] |
Croton sphaerogynus Baill. | Leaves | Hexane, dichloromethane, and methanol | Abieta-8,11-diene-3-one, Podocarp-7-ene,13-methyl-13-vinyl-3-one, Abieta-8,11,13-trien12-ol, Podocarp-7-ene-3-ol, 13-methyl-13-vinyl, 13-Hydroxy-abieta8,11-dien-7-one, and Crotonin derivative | 786-0, HT-29, K562, NCI-ADR/RES, NCI-H460, MCF-7, PC-3, OVCAR-3, U251, and UACC-62. | Hexane and dichloromethane against NCI-H460 (GI50 0.26 µg/mL and 0.33 µg/mL, respectively) and K562 (GI50 0.60 µg/mL and <0.25 µg/mL, respectively). | Antiproliferative | [92] |
Croton thorelii Gagnep. | Stems | Hexane, ethyl acetate, and methanol | 5-hydroxy-7,4′-dimethoxyflavone | KKU-M213, FaDu, HT-29, MDA-M, B-231, SH-SY5Y, A-549, and MMNK-3 | KKU-M213, MDA-MB-231, and A-549 had ED50 values of 0.55 μg/mL, 0.72 μg/mL, and 1.75 μg/mL, respectively. | Cytotoxic | [84] |
Croton tiglium L. | Seeds | Ethylether and methanol | Isoguanosine, 12-O-Acetylphorbol-13-tigliate, and 13-O-Acetylphorbol-20-linoleate | A549 | - | Apoptosis via apoptosis regulator or bcl-2-like protein 4/B-cell lymphoma 2 protein (Bax/Bcl-2) Pathways | [13] |
Croton urucurana Baill | - | Hydroalcoholic | - | U937 and THP1 | 402.2 μg/mL and 360.3 μg/mL, respectively. | Cytotoxic and Apoptosis | [93] |
Drypetes sepiaria (Wight & Arn.) Pax & K.Hoffm. | Leaves | Methanol | Phenolics and flavonoids | SiHa | 10 μg/mL | Cytotoxic, apoptosis, or necrosis. casp-3 activation. | [94] |
Euphorbia cactus Ehrenb. ex Boiss. | Methanol | Phenols, flavonoids, diterpenes, sesquiterpenoids, terpenoids, anthocyanins, tannins, steroids, cerebrosides, anthraquinones, phloracetophenones, glycerols, alkaloids, and carbohydrates | A549, LoVo, and MCF-7 | A549 (20.1 ± 0.5 μg/mL), LoVo (53.2 ± 0.4 μg/mL), and MCF-7 (58.80 ± 1.83 μg/mL) | Cytotoxic, in A549, G2M cell cycle arrest. changes in the level of gene expression of Bax, Bcl-2, and casp-3 | [95] | |
Euphorbia caducifolia Haines | Aerial parts | Ethanol and fractions: aqueous, ethyl acetate, and petroleum ether. | Friedooleanane-3- ol, (3α)-, 1,2-Benzendicarboxylic acid, mono (2- ethylhexyl) ester, Docosanoic acid, methyl ester; methyl behenate, Hexadecanoic acid methyl ester, methyl palmitate, 9, 12-Octadecadienoic Acid (Z,Z)-, methyl ester; methyl Linoleate (Z,Z)- isomer 9-Octadecenoic acid (z)-, methyl ester; methyl oleate | MCF-7, NCI-H460, PC-3, and HeLa | MCF-7 (61 ± 1.0 μg/mL), NCI-H460 (19 ± 6.3 μg/mL), PC-3 (135 ± 3 μg/mL), and HeLa (80 ± 2 μg/mL) | Cytotoxic | [96] |
Euphorbia davidii Subils | Whole plant | n-Hexane and chloroform | kaempferol 3-O-rhamnoside, myricetin 3-O-rhamnoside, and quercetin 3-O-rhamnoside. | HeLa, MCF7, A2781, and A431 | GI %: n-Hexane extract against HeLa (22.44 ± 2.66), MCF7 (45.88 ± 1.58), A2780 (26.72 ± 0.91) and A431 (25.65 ± 2.99) and chloroform extract against HeLa (22.28 ± 2.74), MCF7 (52.63 ± 0.88), A2781 (47.10 ± 0.68) and A431 (21.64 ± 0.37) | Cytotoxic | [97] |
Euphorbia dendroides L | Aerial parts | Ethanol | Ellagic acid, pyrogallol, e-vanillic acid, benzoic acid, catechin, epi-catechin, alpha-coumaric acid, and salicylic acid | HepG2, HCT116 and MCF | HepG2 (9.5 mg/mL), HCT-116 (13.6 mg/mL), and MCF-7 (20.9 mg/mL). | Antiproliferative | [98] |
Euphorbia graminea Jacq. | Leaves | Aqueous Methanol, fractions with n-hexane, ethyl acetate, chloroform, and water | Tannins, flavonoids, saponins, cardiac glycosides, and terpenes | MCF7 and NCI-H460 | At 250 µg/mL, the extract recorded −3.1 and +75% cytotoxic and growth inhibitory effects on MCF-7 and NCI-H460 cell lines, respectively. While the cytotoxic effect became more pronounced on MCF-7 cell lines as −2.19 and −9.6% cytotoxicities were recorded by the chloroform fraction at 75 and 100 µg/mL, the ethyl acetate fraction recorded +58.72 and +89.33% inhibitory effects at similar concentrations. | Cytotoxic | [99] |
Euphorbia grandicornis Blanc | Aerial parts | Dichloromethane | Methyl 2,5-dihydroxybenzoate, n-octylbenzoate, Friedelanol, Germanicol, β-glutinol, β-amyrin, Stigmasterol, β-Sitosterol, (24R)-tirucalla-8,25-diene-3β, 24-diol, Euphorbol, Hexyl (E)-3-(4-hydroxy-3-methoxyphenyl)-2 propenoate | HeLa | 83.84 ± 2.94 μg/mL | - | [100] |
Euphorbia grandicornis Blanc | Roots and aerial parts | Dichloromethane | β-glutinol, β-amyrin, 24-methylenetirucalla-8-en-3β-ol, (−)-tirucalla-8, 25-diene-3β-24R-diol, Stigmasterol, Sitosterol, Hexyl (E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate | MCF-7 and HCC70 | For roots, extract MCF-7 (0.83 ± 1.14 μg/mL) and HCC70 (0.83 ± 1.14 μg/mL), and for aerial parts, extract MCF-7 (1.03 ± 1.15 μg/mL), and HCC70 (0.31 ± 1.06 μg/mL) | Cytotoxic | [101] |
Euphorbia grantii Oliv. | Aerial parts | Methanol and dichloromethane fraction | Friedelin, 3-b-firedelinol, epifriedelanol, euphol, cycloartenol, cycloartenyl acetate, epifriedelinyl acetate, and euphylbenzoate | MCF-7 and MCF-7ADR | Methanol extracts MCF-7 (16.47 μg/mL) and MCF-7ADR (19.55 μg/mL)Dichloromethane fraction, MCF-7 (10.31 μg/mL) and MCF-7ADR (10.41 μg/mL) | Cytotoxic | [102] |
Euphorbia granulata Forssk. | Whole plant | Methanol | t-cinnamic acid, p-hydroxybenzoic acid, vanillic acid, 3,4-dihydroxybenzoic acid, syringic acid, p-coumaric acid, gallic acid, ferulic acid, caffeic acid, and sinapic acid | MCF-7, A2780 and HT-29 | MCF-7 (16.23 ± 4.50 μg/mL), A2780 (22.80 ± 1.55 μg/mL), and HT-29 (41.89 ± 0.07 μg/mL) | Cytotoxic | [103] |
Euphorbia helioscopia L. | Powdered | Hexane, acetone, methanol, and water | DLD-1 | 140.83 ± 0.31 μg/mL | Cytotoxic | [104], | |
Euphorbia helioscopia L. | Whole plant | Ethanol | - | Hep-2, T-47D, HT-29, and PC-3 | %GI Hep-2 (27), T-47D (7), HT-29 (0), and PC-3 (11) | Cytotoxic | [12] |
Euphorbia heterophylla Desf. | - | Methanol | HepG2 | - | cell cycle arrest | [105] | |
Euphorbia hierosolymitana Boiss. | Whole plant | Methanol | MCF-7, HepG-2, HCT-116, PC-3 | HCT-116 (4.22 ppm) | Cytotoxic. Changed the cell cycle and affected the gene expression of her2, Bax, and Bcl-2. | [106] | |
Euphorbia hierosolymitana Boiss. | Aerial parts | Ethyl acetate and n-butanol fraction | 2-Myristynoyl acid pantethene, Palmitic acid, methyl ester, Pyrrolidine,1-bicyclo 3,2,1Oct-2-En-3-Yl, Desulphosinigrin | MCF-7, PC3, A549 and Caco-2. | MCF-7 (93 μg/mL), PC3 (100 μg/mL), A549 (103 μg/mL), and Caco-2 (170 μg/mL). For the n-butanol fraction, for MCF-7, PC3, and A549 (>500 μg/mL), and for Caco-2 (152 μg/mL). | Cytostatic | [107] |
Euphorbia hirta L. | Leaves | Ethanol | Anthroquinone, terpenoids, alkaloids, phenolic compounds, tannins, flavonoids, steroids, coumarins, and saponins | DLA and EAC | DLA (560.83 µg/mL) and EAC (384.7 μg/mL) | Cytotoxic | [108] |
Euphorbia hirta L. | Roots | Ethanolic | - | MCF-7 | From 10 µg/mL (61.57 ± 0.16 µg/mL) to 100 µg/mL (48.08 ± 0.30 µg/mL) | Cytotoxic | [109] |
Euphorbia hirta L. | Whole plant | Ethanol | 9,12,15-Octadecatrien-1-ol, Pentadecylic acid, Ethyl palmitate, Methyl linoleate, 5-Hydroxymethyl-2-furancarboxaldehyde, Ethyl linoleolate | HL-60 | 50–100 μg/mL | Anticancer | [110] |
Euphorbia hirta L. | Whole plant | Petroleum Ether and Chloroform | - | HepG2 | Petroleum ether 200 μg/mL and Chloroform 150 μg/mL | Cytotoxic | [111] |
Euphorbia hirta L. | Whole plant | Methanol and distilled water | - | HCT-15 | 510.66 μg/mL | Cytotoxic | [112] |
Euphorbia hyssopifolia L. | Aerial parts | Ethanol | Mono and sesquiterpenes, triterpenes, steroids, flavonoids, cynnamic derivatives, hydrolysable tannins, and saponnins | HepG2 | - | Cytotoxic and genotoxic | [113] |
Euphorbia inarticulata Schweinf. | - | Ethanolic | Catechol, syringic acid, cinnamic acid, caffeic acid, gallic acid, ellagic acid, and benzoic acid | Huh-7 and HeLa | Huh-7 104.52 ± 2.74 μg/mL and HeLa 145.11 ± 6.21 μg/mL | Cytotoxic | [114] |
Euphorbia ingens E.Mey. ex Boiss. | Root | Dichloromethane:methanol (36.25%) and ethyl acetate fraction | Mayor constituents: 6-pentylidene-4,5-secoandrostane-4,17 beta-diol, 2-bornanol, 1-octadecene, 1-tridecene, and 1-dodecene | DU-145 | 9.71 ± 0.40 μg/mL | Cytotoxic, Regulation of the Phosphoinositide 3-kinases/Protein kinase B (PI3K/Akt), MAPK, and tumor protein p53 (p53) signalling pathways | [115] |
Euphorbia lactea Haw. | Stems | Hydroalcoholic | - | HN22 | 250–500 μg/mL | Cytotoxic and anti-migratory activity | [116] |
Euphorbia macroclada Boiss. | Leaves, flower and body | Acetone | - | MCF–7 and L-929 | Leaves (8.91 ± 0.10 μg/mL) | Cytotoxic | [117] |
Euphorbia milii Des Moul. | Aerial parts | Methanol | - | HepG-2 | HepG-2 (87.1 ± 9.4 μg/mL) | Cytotoxic | [118] |
Euphorbia nivulia Buch.-Ham | Aerial parts | Aqueous ethanol | Phenols, flavonoids, terpenoids, glycosides, alkaloids, saponins, steroids, and tannins | HeLa cells | - | Cytotoxic | [119] |
Euphorbia paralias L. | Aerial parts | Methanol, fractions with dichloromethane, and ethyl acetate | Gallic acid, ellagic acid, Kaempferol-3-O-(600-O-galloyl-b-D-glucopyranoside), Quercetin-3-O-b-D-glucopyranoside, and Quercetin-3-O-b-D-arabinopyranoside | HepG2 | HepG2 (26.4 ± 1.2 mg/mL) | Cytotoxic | [120] |
Euphorbia platyphyllos L. | Whole plant | Diethyl ether, petroleum ether, ethyl acetate, methanol, water infusion, and water decoction | - | MCF-7 | >300 μg/mL, 98.07 ± 0.58 μg/mL, 46.24 ± 0.57 μg/mL, 97.16 ± 0.51 μg/mL, 38.29 ± 0.57 μg/mL and 27.79 ± 0.58 μg/mL respectively. | Cytotoxic, Apoptosis | [121] |
Euphorbia pulcherrima Willd. ex Klotzsch | - | Methanol | HepG2 | - | cell cycle arrest | [105] | |
Euphorbia rigida M.Bieb. | Aerial parts | Methanol | - | Hep3B and HepG2 | - | Cytotoxic | [122] |
Euphorbia royleana Boiss. | Aerial parts | Methanol | - | HepG-2, HCT-116 and MCF-7 | HepG-2 (0.42 ± 0.7), and HCT-116 (285.1 ± 19.2) | Cytotoxic | [118] |
Euphorbia tirucalli L. | Aerial parts | Ethanol and fractions with ethanol, hexane, dichloromethane, ethyl acetate, and aqueous fractions AGS | Aqueous and ethyl acetate fractions (ellagic acid, 1-o-Galloyl-β-d-glucose, sucrose or isomers, Quercitrin, 2,3-hexahydroxydiphenoyl-d-glucose or isomers, rutin, corilagin or isomers, and pedunculagin/casuariin) | AGS | AGS fractions: ethanol (11.73 ± 0.31 μg/mL), hexane (10.33 ± 2.01 μg/mL), dichloromethane (85.00 ± 9.5 μg/mL), ethyl acetate (120.9 ± 2.21 μg/mL), and aqueous (13.08 ± 0.99 μg/mL) | Cytotoxic | [123] |
Euphorbia tirucalli L. | Aerial parts | Hexanic and hydroalcoholic | - | HCT-116 | 25.26 ± 0.18 μg/mL | Cytotoxic, Increase in the expression of casp-3 and p53 | [124] |
Euphorbia triaculeata Forssk. | Whole plant | Methanol | - | MCF-7, PC-3, HEPG2 and MCF-10A | 0–50 μg/mL | Cytotoxicity and genotoxicity | [125] |
Euphorbia turcomanica Boiss. | Aerial parts | Heptane, ethyl acetate, dichloromethane, acetone, methanol, and methanol-water (70–30) | Flavonoid, alkaloid, anthraquinone, and tannin. | Hela and HT-29 | Methanol-water (50 μg/mL), acetone (90 μg/mL), dichloromethane (230 µg/mL), methanol (420 µg/mL), and heptane (450 µg/mL) in HeLa cells. Methanol-water (43 µg/mL), acetone (115 µg/mL), dichloromethane (125 µg/mL), methanol (250 µg/mL), and heptane (390 µg/mL) in HT-29 cells. | Cytotoxic | [126] |
Euphorbia umbellata (Pax) Bruyns | Fresh stems and leaves | Methanol | - | U-251, MCF-7, 786-0, NCI-H460 | Stems extract (GI50 between 8.1 and 30.3 mg/mL) Leaf extract (GI50 between 35.6 and >250 mg/mL). Acetone fraction (GI50, between 0.37 and 2.9 mg/mL) | Antiproliferative | [127] |
Euphorbia umbellata (Pax) Bruyns | Bark | Ethanol:water (70:30), chloroform fraction | Euphol, sitosterol, lanosterol, lupeol, cycloartenol, friedelin-3b-ol, friedelin | Jurkat clone E6-1 | 29.00 ± 1.49 µg/mL, 10.06 ± 1.48 µg/mL and 4.83 ± 2.25 µg/mL for 24, 48 and 72 h | Cytotoxic, apoptosis and cell cycle arrest | [128] |
Euphorbia umbellata (Pax) Bruyns | Green branches and leaves | Water, methanol, ethanol, and chloroform | Flavonoids, phenols and tannins, terpenoids, steroids, carbohdraates, alkaloids and saponins. | A549 | Water (90.15 ± 2.50 µg/mL), ethanol (125.27 ± 2.00 µg/mL), chloroform (197.66 ± 2.40 µg/mL), and methanol (4.30 ± 0.44 µg/mL) | Cytotoxic | [129] |
Excoecaria agallocha L. | Leaves | Methanol and Chloroform | - | Hep 2 | Methanol extract range between 125–200 µg/mL and chloroform extract, 15–30 µg/mL | Cytotoxic | [130] |
Excoecaria agallocha L. | Leaves | Methanol | - | M14, SKMEL5, SKMEL2, SKMEL28, MALME3M, UACC62, UACC257, U251, SNB19, MDA-MB-231, MCF-7, T47D, BT549, Ovcar3, Ovcar5, HCC2998, Colo205, HCT15, KM12, HeLa, SIHA and C33A | M14 (47.5 ± 4.12 μg/mL), SKMEL5 (89.2 ± 4.62 μg/mL), SKMEL2 (30.0 ± 2.12 μg/mL), SKMEL28 (29.8 ± 2.46 μg/mL), MALME3M (35.0 ± 3.12 μg/mL), UACC62 (34.0 ± 2.90 μg/mL), UACC257 (26.0 ± 3.12 μg/mL), U251 (19.44 ± 1.14 μg/mL), SNB19 (19.84 ± 1.60 μg/mL), MDA-MB-231 (15.56 ± 1.14 μg/mL), MCF-7 (20.24 ± 1.16 μg/mL), T47D (19.20 ± 0.15 μg/mL), BT549 (63.42 ± 5.12 μg/mL), Ovcar3 (39.44 ± 1.14 μg/mL), Ovcar5 (19.84 ± 0.60 μg/mL), HCC2998 (20.28 ± 0.56 μg/mL), Colo205 (12.0 ± 2.12 μg/mL), HCT15 (39.0 ± 3.82 μg/mL), KM12 (20.0 ± 1.70 μg/mL) HeLa (18.60 ± 2.20 μg/mL), SIHA (23.42 ± 1.90 μg/mL) and C33A (39.9 ± 3.10 μg/mL) | Cytotoxic | [131] |
Flueggea leucopyrus Willd. | Leaves and bark | Ethyl acetate and methanol. | Bergenin and bergenin isomers | A2780 | Methanol extract of bark 12.58 ± 1.02 µg/mL, Ethyl acetate extract of leaves 36.35 ± 0.17 µg/mL | Cytotoxic and antiproliferative effect | [132] |
Hura crepitans L. | Leaves | Methanol and n-butanol | - | HepG2 | - | Cytotoxic | [133] |
Jatropha curcas L. | Leaves | Methanol | Hexadecanoic acid, hexadecanoic acid methyl ester, anethole, estragol, oleic acid, phytol, and carvacrol, octadecanoic acid methyl ester, and thymol | HepG2 | 47.2 ± 2.48 μg/mL | Cytotoxic | [11] |
Jatropha curcas L. | Leaves | Ethanol | - | T-47D, SiHa, and OVCAR-7 | %GI T-47D (0), SiHa (47), and OVCAR-7 (30) | Cytotoxic | [12] |
Jatropha dioica Sesse ex Cerv. | Roots | Aqueous | Alkaloids, flavonoids, saponins, phenols, tannins, and carbohydrates | - | |||
Jatropha gossypifolia L. | Leaves | Methanol | - | HepG2 | 15.3 ± 0.95 μg/mL | Cytotoxic | [11] |
Jatropha multifida L. | Leaves | Methanol | - | HepG2 | 29.6 ± 1.27 μg/mL | Cytotoxic | [11] |
Jatropha podagrica Hook. | Leaves | Methanol and distilled water (80:20) | - | A549 and PC12 | GI > 80% at 100 µg/mL | Antiproliferative | [11] |
Jatropha zeyheri Sond. | Roots | Ethyl acetate | Mayor contents: Hexadecanoic acid, Octadecanoic acid, (Z)-9-Octadecenamide, 11-n-Decylheneicosane, Octacosane, 9-Hexacosene, Ethyl vallesiachotamate, Cyclooctacosane, Cyclotetracosane, and Tricosane | Caco-2, A547 and MCF-7 | 8.83 ± 0.00 μg/mL, 224.48 ± 0.01 μg/mL, and 102.88 ± 2.17 μg/mL respectively | Cytotoxic | [134] |
Mallotus cumingii Müll.Arg. | Leaves | Methanol, fractions with hexane and ethyl acetate | Phenolic compounds, flavonoids, terpenoids, cardiac glicosides and saponins. | HCT-116 | Methanol (31.51 μg/mL), hexane fraction (17.49 μg/mL) and ethyl acetate fraction (7.75 μg/mL) | Cytotoxic | [135] |
Mallotus phillippensis (Lam.) Müll.Arg. | Leaves | Methanol | alkaloids, flavonoids, tannins, diterpenes, steroids, and phenolic compounds | MCF-7 | 190 g/mL | Cytotoxic and apoptosis through the intrinsic pathway | [136] |
Manihot esculenta Crantz | Aerial parts | Ether and chloroform fraction | - | A-549 | Inhibition ratio % (69.71 ± 1.18) at 50 μg/mL | Cytotoxic | [137] |
Mercurialis annua L. | Aerial parts | Ethanolic | Kaempferol, Isorhamnetin, Quercetin, and Rutin | K562, MCF-7, Hela, and A562 | %GI 100 µM K562 (28.52 ± 0.57), MCF-7 (20.74 ± 6.96), Hela (14.44 ± 2.16), and A562 (10.33 ± 2.75) | Antiproliferative | [138] |
Plukenetia volubilis L. | Leaves | Methanol, ethanol, chloroform, hexane, and water | terpenoids, saponins, and flavonoids | HeLa, and A549 | Inhibition of 40–50% rate. | Antiproliferative effect | [139] |
Ricinus communis L | Leaves | Aqueous | - | A375 | 48 µg/mL. | Cytotoxic | [140] |
Ricinus communis L | Stems and seeds | Ethanol | - | A549, HT-29, SW-20, SiHa, Hep-2, T-47D, OVCAR-5 and PC-3 | Seed extract activity was 41%, 11%, 12%, and 14% against A549, OVCAR-5, PC-5 respectively. Stem extract activity was 9%, 31% and 40% activity against Hep-2, HT-29, and SiHa cell lines (100 µg/mL). | Cytotoxic | [141] |
Ricinus communis L. | Stems | Ethanol | - | Hep-2, HT-29, SiHa, and OVCAR-6 | %GI Hep-2 (9), HT-29 (31), SiHa (47), and OVCAR-6 (30). | Cytotoxic | [12] |
Ricinus communis L. | Seeds | Ethanol | - | 502713, A549, OVCAR-5, and PC-6 | %GI 502713 (41), A549 (11), OVCAR-5(12) and PC-5(14). | Cytotoxic | [12] |
Ricinus communis L. | Different part of the seeds (testa, tegmen, embryo, endosperm, etc) | Methanol | Phorbol esters | THP-1 | testa extract in THP-1 (109.9 μg/mL) | Cytotoxic | [142] |
Schinziophyton rautanenii (Schinz) Radcl.-Sm. | Root and bark | Aqueous and methanolic | Alkaloids, flavonoids, anthraquinones, coumarins and triterpenenes | TK10, MCF–7, and UACC-62 | Aqueous (100–150 µg/mL) and methanolic (70–120 µg/mL) for both cell lines. | Cytotoxic | [143] |
Tragia involucrata L. | Whole plant | Ethanol | Clionasterol, Squalene, 2-Ethylhexyl phthalate, Phytol, neophytadiene, ethyl palmitate, ethyl linolate, linolenic acid, viminalol, etc | YAC-1 | - | Cytotoxic | [144] |
Name of the Species | Part of the Plant | Type of Extract | Class of Compounds/ Compounds Identified in Extract | Cell Lines | IC50 | Activity/ Mechanism/Effect | Ref. |
---|---|---|---|---|---|---|---|
Croton crassifolius Geiseler | Roots | Ethanol | Crotonpyrone A | HeLa and NCI-446 | HeLa (10.21 μg/mL) and NCI-446 (6.59 μg/mL) | Cytotoxic | [150] |
Croton crassifolius Geiseler | Roots | Ethanol | Crotonpyrone B | HeLa and NCI-446 | HeLa (9.54 μg/mL) and NCI-446 (6.52 μg/mL) | Cytotoxic | [150] |
Croton damayeshu Y.T.Chang | Twigs and leaves | Ethanol | Crodamoid H | A549 | A549 (0.9 ± 0.6 μM) | Cytotoxic | [151] |
Croton damayeshu Y.T.Chang | Twigs and leaves | Ethanol | Crodamoid I | A549 and HL-60 | A549 (1.3 ± 0.2 μM) and HL-60 (2.4 ± 1.0 μM) | Cytotoxic | [151] |
Croton damayeshu Y.T.Chang | Twigs and leaves | Ethanol | 4α-deoxyphorbol-12-tiglate-13-isobutyrate | A549 and HL-60 | A549 (1.9 ± 0.1 μM) and HL-60 (1.8 ± 0.8 μM) | Cytotoxic | [151] |
Croton echioides Baill. | Stem bark | EtOH/H2O | N-trans-4-Methoxy-cinnamoyl-5-hydroxytryptamine | HCT-116 | HCT-116 (86.8 μmol L−1) | Cytotoxic | [21] |
Croton floribundus SPRENG. | Root bark | Hexane | ent-kaur-16-en-6a,19-diol | HCT-116, HL60, MDA-MB-435, and HCT-8 | HCT-116 (12.1 μg/mL), MDA-MB-435 (14.3 μg/mL), and HCT-9 (13.5 μg/mL) | Cytotoxic | [152] |
Croton lachnocarpus Benth. | Leaves | Ethanol | 7b,15-dihydroxy-ent-abieta-8,11,13-trien-3-one | A549, BGC-823, HepG2, HL-60, MCF-7, | A549 (56.3 μM), BGC-823 (68.7 μM), HepG2 (66.9 μM), HL-60 (52.3 μM), MCF-7 (56.2 μM), W480 (59.4 μM) | Cytotoxic | [49] |
Croton lachnocarpus Benth. | Leaves | Ethanol | 2b,15-dihydroxy-ent-abieta-8,11,13-triene | A549, BGC-823, HepG2, HL-60, MCF-7, W480 | A549 (52.3 μM), BGC-823 (52.2 μM), HepG2 (59.7 μM), HL-60 (49.4 μM), MCF-7 (60.1 μM), W480 (57.6 μM) | Cytotoxic | [49] |
Croton lachnocarpus Benth. | Leaves | Ethanol | 7b,13a,15-tri-hydroxy-ent-abieta-8(14)-en-3-one | A549, BGC-823, HepG2, HL-60, MCF-7, W480 | A549 (28.7 μM), BGC-823 (26.6 μM), HepG2 (25.3 μM), HL-60 (31.7 μM), MCF-7 (27.1 μM), W480 (24.9 μM) | Cytotoxic | [49] |
Croton laui Merr. & F.P.Metcalf | crotonolide A | HL-60 and P-388 | HL-60 (9.42 μM) and P-388 (7.45 μM) | Cytotoxic | [153] | ||
Croton tiglium L. | Seeds | Ethanol | 4-deoxy-20-oxophorbol 12-tiglyl 13-acetate | K562, A549, and Huh-7 | K562 (0.03 μM), A549 (6.88 μM), and Huh-7(3.85 μM) | Cytotoxic | [154] |
Croton tiglium L. | Seeds | Ethanol | 7-oxo-5-ene-phorbol-13-(2-methylbutyrate | K562, A549, and Huh-7 | K562 (0.03 μM), A549 (6.33 μM), and Huh-7(20.9 μM) | Cytotoxic | [154] |
Croton tiglium L. | Seeds | Ethanol | crotignoid C | K562, A549, and Huh-7 | K562 (0.07 μM), A549 (8.86 μM), and Huh-7(11.6 μM) | Cytotoxic | [154] |
Croton tiglium L. | Seeds | Ethanol | 13-O-(2-metyl)butyryl-phorbol | K562, A549, and Huh-7 | K562 (0.05 μM), A549 (43.5 μM), and Huh-7(34.2 μM) | Cytotoxic | [154] |
Croton tiglium L. | Seeds | Ethanol | 12-O-tiglylphorbol-13-acetate | K562, A549, and Huh-7 | K562 (0.07 μM), A549 (8.50 μM), and Huh-7(3.36 μM) | Cytotoxic | [154] |
Croton tiglium L. | Seeds | Ethanol | crotignoid F | K562, A549, and Huh-7 | K562 (0.05 μM), A549 (3.11 μM), and Huh-7(4.41 μM) | Cytotoxic | [154] |
Croton tiglium L. | Seeds | Ethanol | phorbol | K562, A549, and Huh-7 | K562 (0.10 μM), A549 (15.3 μM), and Huh-7(5.93 μM) | Cytotoxic | [154] |
Croton tiglium L. | Seeds | Methanol | 13-O-acetylphorbol-20-oleate. | SNUB387 | SNUB387 (1.2 ± 0.1 μM) | Cytotoxic | [155] |
Croton tiglium L. | Seeds | Methanol | 13-O-acetyl-4-deoxy-4α-phorbol-20-linoleate. | SNUB387 | SNUB387 (8.1 ± 1.3 μM) | Cytotoxic | [155] |
Croton tiglium L. | Seeds | Methanol | 13-O-acetyl-4-deoxy-4α-phorbol-20-oleate. | SNUB387 | SNUB387 (6.6 ± 0.9 μM) | Cytotoxic | [155] |
Croton tiglium L. | Branches and leaves | Ethanol | 12-O-acetylphorbol-13-isobutyrate | K562, MOLT-4, U937, MCF-7, Hela, DU145, A549, SGC-7091, H1975, HL60 | K562 (4.0 μM), MOLT-4 (2.4 μM), U937 (6.8 μM), MCF-7 (13 μM), Hela (3.9 μM), DU145 (7.2 μM), A549 (5.8 μM) SGC-7091 (13 μM), H1975 (10 μM), HL60 (12 μM) | Cytotoxic | [156] |
Croton tiglium L. | Branches and leaves | Ethanol | 12-O-benzoylphorbol-13-(2-methyl)butyrate | K562, MOLT-4, U937, MCF-7, Hela, DU145, A549, SGC-7091, H1975, HL60 | K562 (15 μM), MOLT-4 (12 μM), U937 (17 μM), MCF-7 (20 μM), Hela (4.6 μM), DU145 (4.3 μM), A549 (6.9 μM), SGC-7091 (10 μM), H1975 (3.3 μM), HL60 (6.8 μM) | Cytotoxic | [156] |
Croton tiglium L. | Branches and leaves | Ethanol | 12-O-tiglyl-7-oxo-5-ene-phorbol-13-(2-methylbutyrate) | K562, MOLT-4, U937, MCF-7, Hela, DU145, A549, SGC-7091, H1975, HL60 | K562 (17 μM), MOLT-4 (4.8 μM), U937 (21 μM), MCF-7 (20 μM), Hela (5.0 μM), DU145 (10 μM), A549 (19 μM), SGC-7091 (23 μM), H1975 (10 μM), HL60 (10 μM) | Cytotoxic | [156] |
Croton tiglium L. | Branches and leaves | Ethanol | 13-O-(2-metyl)butyryl-4-deoxy-4a-phorbol. | K562, MOLT-4, U937, MCF-7, Hela, DU145, A549, SGC-7091, H1975, HL60 | K562 (8 μM), MOLT-4 (9.9 μM), U937 (18 μM), MCF-7 (24 μM), Hela (10 μM), DU145 (10 μM), A549 (4.5 μM), SGC-7091 (5.4 μM), H1975 (3.3 μM), HL60 (9.8 μM) | Cytotoxic | [156] |
Croton tiglium L. | Branches and leaves | Ethanol | 12-O-tiglylporbol-13-propionate | K562, MOLT-4, U937, MCF-7, Hela, DU145, A549, SGC-7091, H1975, HL60 | K562 (4.4 μM), MOLT-4 (1.1 μM), U937 (5.5 μM), MCF-7 (>50 μM), Hela (9.2 μM), DU145 (1.1 μM), A549 (32 μM), SGC-7091 (43 μM), H1975 (10 μM), HL60 (1.2 μM) | Cytotoxic | [156] |
Croton tiglium L. | Branches and leaves | Ethanol | 12-O-tiglylphor-bol-13-isobutyrate | K562, MOLT-4, U937, MCF-7, Hela, DU145, A549, SGC-7091, H1975, HL60 | K562 (2.2 μM), MOLT-4 (1.0 μM), U937 (2.6 μM), Hela (10 μM), DU145 (5.0 μM), H1975 (10 μM), HL60 (1.2 μM) | Cytotoxic | [156] |
Croton tiglium L. | Branches and leaves | Ethanol | 12-O-tiglylphorbol-13-(2-methyl)butyrate | K562, MOLT-4, U937, MCF-7, Hela, DU145, A549, SGC-7091, H1975, HL60 | K562 (7.2 μM), MOLT-4 (10 μM), U937 (14 μM), MCF-7 (>50 μM), Hela (10 μM), DU145 (11 μM), A549 (>50 μM), SGC-7091 (>50 μM), H1975 (10 μM), HL60 (9.9 μM) | Cytotoxic | [156] |
Croton tiglium L. | Branches and leaves | Ethanol | tiglin A | K562, MOLT-4, U937, MCF-7, Hela, DU145, A549, SGC-7091, H1975, HL60 | K562 (15 μM), MOLT-4 (12 μM), U937 (17 μM), MCF-7 (20 μM), Hela (4.6 μM), DU145 (4.3 μM), A549 (6.9 μM), SGC-7091 (10 μM), H1975 (3.3 μM), HL60 (6.8 μM) | Cytotoxic | [156] |
Croton tiglium L. | Seeds | Acetone | 7-Keto-12-O-tiglylphorbol-13-acetate | HL60 and A549 | HL60 (6.22 ± 3.24 μg/mL) and A549 (18.0 ± 9.48 μg/mL) | Cytotoxic | [157] |
Croton tiglium L. | Seeds | Acetone | Phorbol-12-isobutyrate | HL60 and A549 | HL60 (0.22 ± 0.15 μg/mL) and A549 (0.74 ± 0.48 μg/mL) | Cytotoxic | [157] |
Croton tiglium L. | Seeds | Acetone | 12-O-Tiglylphorbol-13-acetate | HL60 and A549 | HL60 (0.02 ± 0.01 μg/mL) and A549 (0.10 ± 0.03 μg/mL) | Cytotoxic | [157] |
Croton tiglium L. | Seeds | Acetone | 12-O-(2-methyl)-butyrylphorbol-13-aetate | HL60 and A549 | HL60 (<0.01μg/mL) and A549 (0.01 ± 0.00 μg/mL) | Cytotoxic | [157] |
Croton tiglium L. | Seeds | Acetone | 12-O-tiglyl-phorbol-13-isobutyrate | HL60 and A549 | HL60 (<0.01 μg/mL) and A549 (<0.01 μg/mL) | Cytotoxic | [157] |
Croton tiglium L. | Seeds | Acetone | phorbol-12-tigliate | HL60 and A549 | HL60 (83.1 ± 2.89 μg/mL) and A549 (38.6 ± 30.1 μg/mL) | Cytotoxic | [157] |
Croton tiglium L. | Seeds | Acetone | phorbol-12-tetradecanoate | HL60 and A549 | HL60 (3.14 ± 2.17 μg/mL) and A549 (4.71 ± 1.92 μg/mL) | Cytotoxic | [157] |
Croton tiglium L. | Seeds | Acetone | phorbol-13-aetate | HL60 and A549 | HL60 (80.9 ± 11.6 μg/mL) | Cytotoxic | [157] |
Croton tiglium L. | Seeds | Acetone | phorbol-13-decanoate | HL60 and A549 | HL60 (0.02 ± 0.02 μg/mL) and A549 (0.94 ± 0.01 μg/mL) | Cytotoxic | [157] |
Croton tiglium L. | Seeds | Acetone | 4-deoxy-4α-phorbol-13-acetate | HL60 and A549 | HL60 (89.0 ± 0.76 μg/mL) | Cytotoxic | [157] |
Croton urucurana Baill. | Bark | Ethanol | Orbitide [1−9-NαC]-crourorb A1 | 786-O, HT29, MCF7, ADR-RES, Hep-G2, and PC-03 | 786-O (18.69 ± 0.82 μg/mL), HT29 (37.28 ± 0.57 μg/mL), MCF7 (35.49 ± 2.59 μg/mL), ADR-RES (3.98 ± 0.20 μg/mL), Hep-G2 (41.31 ± 2.70 μg/mL) and PC-03 (29.80 ± 0.34 μg/mL) | Cytotoxic | [158] |
Croton velutinus Baill. | Roots | Methanol | (E)-1-(7,8-epoxypropen) phenyl benzoate | B16F10, HL-60, HCT116, MCF-7, and HepG2 | B16F10 (14.4 ± 0.5 μM), HL-60 (9.8 ± 2.6 μM), HCT116 (12.9 ± 1.8 μM), MCF-7 (6.8 ± 1.59 μM) and HepG2 (16.7 ± 0.7 μM) | Cytotoxic | [159] |
Croton velutinus Baill. | Roots | Methanol | sellovicine B | B16F10, HL-60, HCT116, MCF-7, and HepG2 | B16F10 (13.8 ± 01 μM), HL-60 (11.4 ± 3.6 μM), HCT116 (13.2 ± 1.0 μM), MCF-7 (11.1 ± 1.4 μM) and HepG2 (18.3 ± 1.8 μM) | Cytotoxic | [159] |
Drypetes hainanensis Merr. | Leaves and stems | Ethanol | 4β-hydroxy-23-nor-friedel-3-one | BEL-7402, A549, HL60 | GI rates: BEL-7402(3.0%), A549 (9.7%), HL60 (4.1%) | Cytotoxic | [160] |
Drypetes hainanensis Merr. | Leaves and stems | Ethanol | friedelin | BEL-7402, A549, HL60 | HL60 (1.3%) | Cytotoxic | [160] |
Drypetes hainanensis Merr. | Leaves and stems | Ethanol | friedelane-3,7-dione | BEL-7402, A549, HL60 | BEL-7402 (4.6%), A549 (21.1%), HL60 (43.1%) | Cytotoxic | [160] |
Euphorbia ammak Schweinf. | Leaves | Ethanol | euphol | HeLa | HeLa (9.25 mg/mL) | Cytotoxic | [161] |
Euphorbia ammak Schweinf. | Leaves | Ethanol | α-glutinol | HeLa | HeLa (7.6 mg/mL) | Cytotoxic | [161] |
Euphorbia ammak Schweinf. | Leaves | Ethanol | stigmasterol | HeLa | HeLa (10 mg/mL) | Cytotoxic | [161] |
Euphorbia balsamifera Aiton | Aerial parts | Ethanol | Kampferol-3,40-dimethyl ether | HCT-116, HePG2, and MCF7 | HCT116 (111.46 mM), HePG2 (42.67 mM) and MCF7 (44.90 mM) | Cytotoxic | [162] |
Euphorbia connata Boiss. | Aerial flowering parts | Dichloromethane/Acetone | 3,7,14,15-tetraacetyl-5-propanoyl-13(17)-epoxy-8,10(18)-myrsinadiene | MDA-MB-231 and MCF-7 | MDA-MB-231 (24.53 ± 3.39 μM) and MCF-7 (37.73 ± 3.41 μM) | Cytotoxic | [163] |
Euphorbia connata Boiss. | Aerial flowering parts | Dichloromethane/Acetone | 3,7,10,14,15-pentaacetyl-5-butanoyl-13,17-epoxy-8-myrsinene | MDA-MB-231 and MCF-7 | MDA-MB-231 (26.67 ± 1.41 μM) and MCF-7 (34.57 ± 2.12 μM) | Cytotoxic | [163] |
Euphorbia dendroides L. | Aerial parts | Methanol | 23 R/S-3b-hydroxycycloart-24-ene23-methyl ether | HepG2, Huh-7, KLM-1, 1321N1, HeLa | HepG2 (20.67 ± 0.72 μM), Huh-7 (16.24 ± 0.53 μM), KLM-1 (22.59 ± 0.94 μM), 1321N1 (25.99 ± 0.31 μM), HeLa (40.50 ± 3.14 μM) | Cytotoxic | [164] |
Euphorbia dendroides L. | Aerial parts | Methanol | 24-methylene cycloartan-3b-ol | HepG2, Huh-7, KLM-1, 1321N1, HeLa | HepG2 (10.93 ± 0.21 μM), Huh-7 (7.42 ± 0.16 μM), KLM-1 (21.48 ± 0.60 μM), 1321N1 (12.32 ± 0.58 μM), HeLa (13.68 ± 0.16 μM) | Cytotoxic | [164] |
Euphorbia dendroides L. | Aerial parts | Methanol | cycloart-23-ene-3b,25-diol monoacetate | HepG2, Huh-7, KLM-1, 1321N1, HeLa | HepG2 (12.81 ± 0.73 μM), Huh-7 (<0.47 μM), KLM-1 (22.48 ± 0.64 μM), 1321N1 (25.17 ± 0.32 μM), HeLa (54.05 ± 1.11 μM) | Cytotoxic | [164] |
Euphorbia dendroides L. | Aerial parts | Methanol | 3b-hydroxy-cycloart-23-ene-25 methyl ether | HepG2, Huh-7, KLM-1, 1321N1, HeLa | HepG2 (12.72 ± 2.38 μM), Huh-7 (<0.44 μM), KLM-(<0.44 μM), 1321N1 (0.63 ± 0.15 μM), HeLa (3.7 ± 0.39 μM) | Cytotoxic | [164] |
Euphorbia dendroides L. | Aerial parts | Methanol | 24 R/S-3b-hydroxy-25-methylene Figure 1. Chemical structures of compounds 1–11, isolated from Euphorbia dendroides L. aerial parts. 830 A. R. HASSAN ET AL. cycloartan-24-ol | HepG2, Huh-7, KLM-1, 1321N1, HeLa | HepG2 (15.54 ± 1.95), Huh-7 (16.33 ± 1.22), KLM-1 (22.38 ± 1.29), 1321N1 (13.53 ± 0.33), HeLa (>4.52) | Cytotoxic | [164] |
Euphorbia denticulata Lam | - | Acetone | taraxast-12-ene-3β,20,21(α)-triol | DU-145 | DU-145 (12.2 ± 2.9 µM) | Cytotoxic | [165] |
Euphorbia denticulata Lam | - | Acetone | cycloartane-3β,25-diol | DU-145 | DU-145 (27.5 ± 4.9 µM) | Cytotoxic | [165] |
Euphorbia denticulata Lam | - | Acetone | cycloartane-3β,24,25-triol | DU-145 | DU-145 (18.3 ± 1.4 µM) | Cytotoxic | [165] |
Euphorbia ebracteolata Hayata | Roots | Ethanol | Ebracteolata A | HL60, A549, SMMC-7721, MCF-7, and SW480 | HL60 (17.5 μM), A549 (11.0 μM), SMMC-7721 (16.8 μM), MCF-7 (17.5 μM), and SW480 (18.0 μM) | Cytotoxic | [166] |
Euphorbia ebracteolata Hayata | Roots | Ethanol | Yuexiandajisu F | HL60, A549, SMMC-7721, MCF-7, and SW480 | HL60 (16.8 μM), A549 (19.7 μM), SMMC-7721 (18.4 μM), MCF-7 (15.3 μM), and SW480 (15.3 μM) | Cytotoxic | [166] |
Euphorbia ebracteolata Hayata | Roots | Ethanol | jolkinol B | HL60, A549, SMMC-7721, MCF-7, and SW480 | HL60 (5.0 μM), A549 (11.5 μM), SMMC-7721 (3.5 μM), MCF-7 (15.8 μM), and SW480 (9.5 μM) | Cytotoxic | [166] |
Euphorbia fischeriana Steud | Roots | Ethanol | ebracteolatas D | HCT116, A549, HeLa, SW620, MCF-7, HepG-2 | HCT116 (>40 μM), A549 (22.03 μM), HeLa (>40 μM), SW620 (>40 μM), MCF-7 (>40 μM), HepG-2 (>40 μM) | Cytotoxic | [48] |
Euphorbia fischeriana Steud | Roots | Ethanol | ebractenoid Q | HCT116, A549, HeLa, SW620, MCF-7, HepG-2 | HCT116 (33.18 μM), A549 (2.81 μM), HeLa (>40 μM), SW620 (>40 μM), MCF-7 (>40 μM), HepG-2 (27.24 μM) | Cytotoxic | [48] |
Euphorbia fischeriana Steud | Roots | Ethanol | Euphonoid H | MDA-MB-231, HCT-15, RKO, C4-2B, C4-2B/ENZR | MDA-MB-231 (21.80 ± 2.35 μM), HCT-15 (28.57 ± 1.16 μM), RKO (20.46 ± 1.43 μM), C4-2B (5.52 ± 0.65 μM), C4-2B/ENZR (4.16 ± 0.42 μM) | Cytotoxic | [47] |
Euphorbia fischeriana Steud | Roots | Ethanol | Euphonoid I | MDA-MB-231, HCT-15, RKO, C4-2B, C4-2B/ENZR | MDA-MB-231 (7.95 ± 0.82 μM), HCT-15 (12.45 ± 3.24 μM), RKO (8.78 ± 2.45 μM), C4-2B (4.49 ± 0.78 μM), C4-2B/ENZR (5.74 ± 0.45 μM) | Cytotoxic | [47] |
Euphorbia fischeriana Steud | Roots | EtOH | 17-Hydroxyljolkinolide B | MCF-10A, MCF-7, ZR-75-1 and MDA-MB-231 | MCF-10A (3.4 ± 0.1 μg/mL), MCF-7 (4.7 ± 0.2 μg/mL), ZR-75-1 (2.2 ± 0.1 μg/mL) and MDA-MB-231 (1.1 ± 0.1 μg/mL) | Cytotoxic | [167] |
Euphorbia fischeriana Steud | Roots | EtOH | 17-Acetyljolkinolide B | MCF-10A, MCF-7, ZR-75-1 and MDA-MB-231 | MCF-10A (4.3 ± 0.1 μg/mL), MCF-7 (3.4 ± 0.1 μg/mL), ZR-75-1 (1.2 ± 0.1 μg/mL) and MDA-MB-231 (1.7 ± 0.1 μg/mL) | Cytotoxic | [167] |
Euphorbia fischeriana Steud | Roots | Ethanol | Euphorfiatnoid B | HepG2, H460, and MCF-7 | H460 (9.97 μM) | Cytotoxic | [168] |
Euphorbia fischeriana Steud | Roots | Ethanol | Euphorfiatnoid A | HepG2, H460, and MCF-7 | HepG2 (11.64 μM), H460 (28.54 ± 1.20 μM), and MCF-7 (40.02 ± 0.47 μM) | Cytotoxic | [168] |
Euphorbia fischeriana Steud | Roots | Ethanol | Euphorfiatnoid C | HepG2, H460, and MCF-7 | HepG2 (13.10 ± 0.35 μM), H460 (14.88 ± 0.57 μM), and MCF-7 (32.95 ± 0.40 μM) | Cytotoxic | [168] |
Euphorbia fischeriana Steud. | Roots | Ethanol | Euphorfischerin A | HeLa, N460 and Namalwa | HeLa (4.6 ± 0.11 μM), N460 (11.5 ± 0.04 μM) and Namalwa (16.4 ± 0.07 μM) | Cytotoxic | [169] |
Euphorbia fischeriana Steud. | Roots | Ethanol | Euphorfischerin B | HeLa, N460 and Namalwa | HeLa (9.5 ± 0.16 μM), N460 (17.4 ± 0.34 μM) and Namalwa (13.3 ± 0.19 μM) | Cytotoxic | [169] |
Euphorbia fischeriana Steud. | Aerial parts | Methanol | 3α-acetoxy-14-hydroxy-ent-abieta-8(9),13(15)-dien-16,12-olide | HL-60, SMMC-7721 and SGC-7901 | HL-60 (15.3 μM), SMMC-7721 (23.2 μM) and SGC-7901 (29.0 μM) | Cytotoxic | [170] |
Euphorbia helioscopia L. | Aerial parts | Ethanol aqueous | Euphoheliphane A | OS-RC-2, Ketr-3, 769-P, G401, GRC-1 and ACHN | OS-RC-2 (47 μM), Ketr-3 (45 μM), 769-P (43 μM), G401 (38 μM), GRC-1 (41 μM) and ACHN (40 μM) | Cytotoxic | [171] |
Euphorbia helioscopia L. | Aerial parts | Ethanol aqueous | Euphoheliphane B | OS-RC-2, Ketr-3, 769-P, G401, GRC-1 and ACHN | OS-RC-2 (31 μM), Ketr-3 (32 μM), 769-P (30 μM), G401 (34 μM), GRC-1 (33 μM) and ACHN (35 μM) | Cytotoxic | [171] |
Euphorbia helioscopia L. | Aerial parts | Ethanol aqueous | Euphoheliphane C | OS-RC-2, Ketr-3, 769-P, G401, GRC-1 and ACHN | OS-RC-2 (35 μM), Ketr-3 (41 μM), 769-P (39 μM), G401 (32 μM), GRC-1 (38 μM) and ACHN (36 μM) | Cytotoxic | [171] |
Euphorbia heliosocpia L | Whole plant | Methanol | Euphohelinoid A | HepG2, Hela, HL-60, SMMC-7721 | HepG2 (24.3 ± 1.5 μM), Hela (28.4 ± 1.8 μM), HL-60 (18.6 ± 1.1 μM), SMMC-7721 (29.6 ± 1.5 μM) | Cytotoxic | [172] |
Euphorbia heliosocpia L | Whole plant | Methanol | Euphohelinoid B | HepG2, Hela, HL-60, SMMC-7721 | HepG2 (10.2 ± 1.4 μM), Hela (9.3 ± 1.2 μM), HL-60 (8.1 ± 0.7 μM), SMMC-7721 (9.8 ± 1.3 μM) | Cytotoxic | [172] |
Euphorbia heliosocpia L | Whole plant | Methanol | Euphohelinoid C | HepG2, Hela, HL-60, SMMC-7721 | HepG2 (>50 μM), Hela (>50 μM), HL-60 (>50 μM), SMMC-7721 (>50 μM) | Cytotoxic | [172] |
Euphorbia heliosocpia L | Whole plant | Methanol | Euphohelinoid D | HepG2, Hela, HL-60, SMMC-7721 | HepG2 (>50 μM), Hela (34.5 ± 2.3 μM), HL-60 (34.1 ± 1.6 μM), SMMC-7721 (30.1 ± 1.9 μM) | Cytotoxic | [172] |
Euphorbia heliosocpia L | Whole plant | Methanol | Euphohelinoid F | HepG2, Hela, HL-60, SMMC-7721 | HepG2 (12.5 ± 1.6 μM), Hela (14.1 ± 0.8 μM), HL-60 (13.3 ± 1.2 μM), SMMC-7721 (11.1 ± 1.7 μM) | Cytotoxic | [172] |
Euphorbia heliosocpia L | Whole plant | Methanol | euphornin L | HepG2, Hela, HL-60, SMMC-7721 | HepG2 (22.8 ± 1.7 μM), Hela (25.7 ± 2.2 μM), HL-60 (13.1 ± 1.8 μM), SMMC-7721 (14.3 ± 2.2 μM) | Cytotoxic | [172] |
Euphorbia heliosocpia L | Whole plant | Methanol | helioscopianoid O | HepG2, Hela, HL-60, SMMC-7721 | HepG2 (>50 μM), Hela (26.2 ± 1.4 μM), HL-60 (18.2 ± 1.9 μM), SMMC-7721 (19.5 ± 1.2 μM) | Cytotoxic | [172] |
Euphorbia heliosocpia L | Whole plant | Methanol | euphoscopin I | HepG2, Hela, HL-60, SMMC-7721 | HepG2 (24.1 ± 1.2 μM), Hela (29.7 ± 2.1 μM), HL-60 (14.3 ± 1.1 μM), SMMC-7721 (18.7 ± 1.1 μM) | Cytotoxic | [172] |
Euphorbia heliosocpia L | Whole plant | Methanol | euphoscopin J | HepG2, Hela, HL-60, SMMC-7721 | HepG2 (14.9 ± 1.3 μM), Hela (13.7 ± 1.4 μM), HL-60 (12.4 ± 1.2 μM), SMMC-7721 (15.0 ± 1.7 μM) | Cytotoxic | [172] |
Euphorbia heliosocpia L | Whole plant | Methanol | euphoscopin B | HepG2, Hela, HL-60, SMMC-7721 | HepG2 (23.3 ± 1.3 μM), Hela (29.2 ± 1.6 μM), HL-60 (20.2 ± 1.5 μM), SMMC-7721 (27.1 ± 1.4 μM) | Cytotoxic | [172] |
Euphorbia heterophylla L. | Roots | n-hexane, DCM and MeOH | 13-epicupressic acid | EJ-138, HepG2, A549, MCF-7 and PC3 | EJ-138 (>200 μg/mL), HepG2 (>200 μg/mL), A549 (157.4 ± 3.24 μg/mL), MCF-7 (139.1 ± 2.14 μg/mL) and PC3 (>200 μg/mL) | Cytotoxic | [173] |
Euphorbia heterophylla L. | Roots | n-hexane, DCM and MeOH | imbricatholic acid | EJ-138, HepG2, A549, MCF-7, and PC3 | EJ-138 (>200 μg/mL), HepG2 (>200 μg/mL), A549 (>200 μg/mL), MCF-7 (173.5 ± 4.34 μg/mL) and PC3 (>200 μg/mL) | Cytotoxic | [173] |
Euphorbia heterophylla L. | Roots | n-hexane, DCM and MeOH | α-hydroxy sandaracopimaric acid | EJ-138, HepG2, A549, MCF-7, and PC3 | EJ-138 (173.3 ± 2.37 μg/mL), HepG2 (>200 μg/mL), A549 (>200 μg/mL), MCF-7 (>250 μg/mL) and PC3 (>250 μg/mL) | Cytotoxic | [173] |
Euphorbia heterophylla L. | Roots | n-hexane, DCM and MeOH | 13-epicupressic acid | EJ-138, HepG2, A549, MCF-7, and PC3 | EJ-138 (182.2 ± 1.18 μg/mL), HepG2 (>200 μg/mL), A549 (>200 μg/mL), MCF-7 (>200 μg/mL) and PC3 (>250 μg/mL) | Cytotoxic | [173] |
Euphorbia heterophylla L. | Roots | n-hexane, DCM and MeOH | β-hydroxy sandaracopimaric acid 13-epicupressic acid | EJ-138, HepG2, A549, MCF-7, and PC3 | EJ-138 (>200 μg/mL), HepG2 (>200 μg/mL), A549 (67.4 ± 2.45 μg/mL), MCF-7 (111.7 ± 3.75 μg/mL) and PC3 (>200 μg/mL) | Cytotoxic | [173] |
Euphorbia heterophylla L. | Roots | n-hexane, DCM and MeOH | 5,7,3′,4′-pentahydroxyflavone | EJ-138, HepG2, A549, MCF-7, and PC3 | EJ-138 (>200 μg/mL), HepG2 (>200 μg/mL), A549 (135.8 ± 7.41 μg/mL), MCF-7 (117.4 ± 3.71 μg/mL) and PC3 (>200 μg/mL) | Cytotoxic | [173] |
Euphorbia heterophylla L. | Roots | n-hexane, DCM and MeOH | quercitrin | EJ-138, HepG2, A549, MCF-7, and PC3 | EJ-138 (>250 μg/mL), HepG2 (>200 μg/mL), A549 (138.1 ± 4.62 μg/mL), MCF-7 (105.3 ± 6.19 μg/mL), and PC3 (>200 μg/mL) | Cytotoxic | [173] |
Euphorbia hypericifolia L | Whole herb | Ethanol | euphypenoid A | HCT-116 | HCT-116 (12.8 ± 1.6 μM) | Cytotoxic | [174] |
Euphorbia hypericifolia L | Whole herb | Ethanol | 20(S),24(R)-20,24-epoxy-24-methyldammaran-3β-ol | HCT-116 | HCT-116 (26.8 ± 4.6 μM) | Cytotoxic | [174] |
Euphorbia hypericifolia L | Whole herb | Ethanol | 3β-hydroxycycloart-24-one | HCT-116 | HCT-116 (7.4 ± 0.2 μM) | Cytotoxic | [174] |
Euphorbia hypericifolia L | Whole herb | Ethanol | isomotiol | HCT-116 | HCT-116 (10.6 ± 1.2 μM) | Cytotoxic | [174] |
Euphorbia kansui S.L.Liou ex S.B.Ho | Roots | Ethanol | Euphorikanin A | HeLa and NCI-446 | HeLa (28.85 ± 1.41 μM) and NCI-446 (20.89 ± 1.67 μM) | Cytotoxic | [175] |
Euphorbia lactea Haw. | Aerial parts | Ethanol, n-hexane fraction | friedelin | HN22, HepG2, and HCT116 | - | Cytotoxic | [149] |
Euphorbia lactea Haw. | Aerial parts | Ethanol, n-hexane fraction | taraxerol | HN22, HepG2, and HCT116 | - | Cytotoxic | [149] |
Euphorbia lactea Haw. | Aerial parts | Ethanol, n-hexane fraction | friedelan-3α-ol | HN22, HepG2, and HCT116 | - | Cytotoxic | [149] |
Euphorbia lagascae Spreng. | Seeds | Methanol | Esculetin | LoVo and LoVo/Dx | LoVo (56.81 ± 5.42%) and LoVo/Dx (68.42 ± 7.56%) | Cytotoxic | [145] |
Euphorbia microsphaera Boiss | Aerial parts | Hexane, chloroform and methanol | Aryanin (3aR,4S,4aS,5R,7aS,9aS)-5-hydroxy-5,8-dimethyl-3-methylene-2-oxo2,3,3a,4,4a,5,6,7,7a, 9a decahydroazuleno [6,5-b] furan-4-yl acetate) | MCF-7 | MCF-7 (13.81 μg/mL) | Cytotoxic | [61] |
Euphorbia nematocypha Hand.-Mazz. | Roots | Ethanol | 16-O-caffeoyl-16-hydroxyldodecanoic acid | MCF-7 and HeLa | MCF-7 (20.22 ± 1.2 µmol/L) and HeLa (27.8 ± 1.4 µmol/L) | Cytotoxic | [176] |
Euphorbia nematocypha Hand.-Mazz. | Aerial parts | Methylene chloride | trans, trans-2′,4′-hexadienedioicacid-1′-β-amyrin ester | MCF7 and HeLa | MCF7 (29.5 ± 3.4 μmol /L) and HeLa (23.2± 4.2 μmol /L) | Cytotoxic | [177] |
Euphorbia nematocypha Hand.-Mazz. | Roots | Ethanol | Nematocynine | HCC1806, ST486, CT26, HeLa, and A549 | HCC1806 (16.96 ± 0.16 μM), ST486 (60.94 ± 0.74 μM), CT26 (52.04 ± 1.96 μM), and HeLa (52.70 ± 0.52 μM) | Cytotoxic | [178] |
Euphorbia neriifolia Linn. | Aerial parts | Ethanol | Phonerilin B | A549 and HL60 | A549 (8.6 ± 1.7 μM) and HL60 (9.1 ± 0.02 μM) | Cytotoxic | [179] |
Euphorbia neriifolia Linn. | Aerial parts | Ethanol | Phonerilin E | A549 and HL60 | A549 (4.9 ± 0.06 μM) and HL60 (9.2 ± 0.09 μM) | Cytotoxic | [179] |
Euphorbia neriifolia Linn. | Aerial parts | Ethanol | Phonerilin F | A549 and HL60 | A549 (3.8 ± 0.2 μM) and HL60 (4.5 ± 0.7 μM) | Cytotoxic | [179] |
Euphorbia neriifolia Linn. | Aerial parts | Ethanol | Phonerilin H | A549 and HL60 | A549 (7.5 ± 0.8 μM) and HL60 (5.7 ± 1.0 μM) | Cytotoxic | [179] |
Euphorbia neriifolia Linn. | Aerial parts | Ethanol | 20-O-diacetyl-ingenol | A549 and HL60 | HL60 (3.1 ± 0.2 μM) | Cytotoxic | [179] |
Euphorbia neriifolia Linn. | Aerial parts | Ethanol | 7,12-O-diacetyl-8-O-tigloylingol | A549 and HL60 | A549 (6.4 ± 0.2 μM) and HL60 (9.5 ± 0.04 μM) | Cytotoxic | [179] |
Euphorbia osyridea Bioss. | Aerial flowering parts | Dichloromethane/Acetone | 2,7,9,14-tetraacetyl-3-benzoyl-8-butanoyl-5,15-dihydroxy-6(17),11(E)-jatrophadiene | Caov-4, and OVCAR | Caov-4 (46.27 ± 3.86 μM) and OVCAR (38.81 ± 3.30 μM) | Cytotoxic | [180] |
Euphorbia osyridea Bioss. | Aerial flowering parts | Dichloromethane/Acetone | 2,7,9,14-tetraacetyl-3-benzoyl-propionyl ester-5,15-dihydroxy-6(17),11(E)-jatrophadiene | Caov-4, and OVCAR | Caov-4 (36.48 ± 3.18), and OVCAR (42.59 ± 4.50 μM) | Cytotoxic | [180] |
Euphorbia pekinensis Rupr. | Roots | Ethanol | Pekinenin G (11a,12b-epoxy-18-hydroxy-1bH, 2aH-casba-3E and 7E-dien-5-one) | BGC823, A549, HT-29, and MCF-7 | BGC823 (42.7 μM), A549 (40.8 μM), HT-29 (47.8 μM), and MCF-7 (48.5 μM) | Cytotoxic | [181] |
Euphorbia pekinensis Rupr. | Roots | Ethanol | Pekinenin G (11a,12b-epoxy-18-hydroxy-1bH, 2aH-casba-3E and 7E-dien-5-one) 2 | BGC823, A549, HT-29, and MCF-8 | BGC823 (53.9 μM), A549 (88.8 μM), HT-29 (70.1 μM), and MCF-7 (70.5 μM) | Cytotoxic | [181] |
Euphorbia pekinensis Rupr. | Roots | Ethanol | Pekinenin G (11a,12b-epoxy-18-hydroxy-1bH, 2aH-casba-3E and 7E-dien-5-one) 3 | BGC823, A549, HT-29, and MCF-9 | BGC823 (15.6 μM), A549 (21.9 μM), HT-29 (25.1 μM), and MCF-7 (22.3 μM) | Cytotoxic | [181] |
Euphorbia pekinensis Rupr. | Roots | Ethanol | Pekinenin G (11a,12b-epoxy-18-hydroxy-1bH, 2aH-casba-3E and 7E-dien-5-one) 4 | BGC823, A549, HT-29, and MCF-10 | BGC823 (25.1 μM), A549 (35.1 μM), HT-29 (30.2 μM), and MCF-7 (32.3 μM) | Cytotoxic | [181] |
Euphorbia pekinensis Rupr. | Roots | Ethanol | Pekinenin G (11a,12b-epoxy-18-hydroxy-1bH, 2aH-casba-3E and 7E-dien-5-one) 5 | BGC823, A549, HT-29, and MCF-11 | BGC823 (54.8 μM), A549 (90.2 μM), HT-29 (110.7 μM), and MCF-7 (87.9 μM) | Cytotoxic | [181] |
Euphorbia pekinensis Rupr. | Roots | Ethanol | Pekinenin G (11a,12b-epoxy-18-hydroxy-1bH, 2aH-casba-3E and 7E-dien-5-one) 6 | BGC823, A549, HT-29, and MCF-12 | BGC823 (12.1 μM), A549 (15.6 μM), HT-29 (11.3 μM), and MCF-7 (21.2 μM) | Cytotoxic | [181] |
Euphorbia pekinensis Rupr. | Roots | Ethanol | (−)-(1S)-15-hydroxy-18-carboxycembrene | Hela, PC-3, HT1080, A375-S2, and MDA23 | Hela (35.3 ± 3.6 μM), PC-3 (53.9 ± 6.2 μM), HT1080 (37.3 ± 2.0 μM), A375-S2 (28.7 ± 3.8 μM), and MDA24 (43.5 ± 5.1 μM) | Cytotoxic | [182] |
Euphorbia pekinensis Rupr. | Roots | Ethanol | Jolkinol B | U-937 and LOVO | U-937 (3.60 ± 0.02 μM) and LOVO (8.44 ± 0.03 μM) | Cytotoxic | [183] |
Euphorbia pekinensis Rupr. | Roots | Ethanol | Euphodane A | U-937 | U-937 (5.92 ± 0.38 μM) | Cytotoxic | [183] |
Euphorbia pekinensis Rupr. | Roots | Ethanol | Isopimara-7,15-dien-3β-ol | K-562 | K-562 (0.87 ± 0.02 μM) | Cytotoxic | [183] |
Euphorbia pseudocactus A.Berger | Aerial parts | Methanol | Gallic acid | LS-174T | LS-174T (18.27 μg/mL) | Cytotoxic | [184] |
Euphorbia pseudocactus A.Berger | Aerial parts | Methanol | Ethyl gallate | LS-174T | LS-174T (25.42 μg/mL) | Cytotoxic | [184] |
Euphorbia royleana Boiss. | Whole plant | Ethanol | (3b,23Z)-9,19-cyclolanost-23-ene-3,25-diol | A549 | A549 (4.84 ± 0.56 μM) | Cytotoxic | [185] |
Euphorbia royleana Boiss. | Whole plant | Ethanol | taraxerol | A549 | A549 (7.11 ± 1.65 μM) | Cytotoxic | [185] |
Euphorbia sanctae-catharinae Fayed | Aerial parts | Dichloromethane/Methanol (1:1) | 4,12,20-trideoxyphorbol-13-(2,3-dimethyl) butyrate | A549 and Caco-2 | A549 (3.3 (0.996) μM) and Caco-2 (29.4 (0.972) μM) | Cytotoxic | [175] |
Euphorbia schimperi C.Presl | Aerial parts | MeOH/H2O (70:30 V/V) | Cycloschimperol A | MCF-7, HepG2, and HCT-116 | MCF-7 (55.4 ± 3 μM), HepG2 (19.7 ± 3 μM), and HCT-116 (20.25 ± 5 μM) | Cytotoxic | [186] |
Euphorbia schimperi C.Presl | Aerial parts | MeOH/H2O (70:30 V/V) | Cycloschimperol B | MCF-7, HepG2, and HCT-116 | MCF-7 (2.1 ± 0.01 μM), HepG2 (1.4 ± 0.1 μM), and HCT-116 (1.8 ± 0.1 μM) | Cytotoxic | [186] |
Euphorbia schimperi C.Presl | Aerial parts | MeOH/H2O (70:30 V/V) | Cycloart-25-en-3-one | MCF-7, HepG2, and HCT-116 | MCF-7 (4.7 ± 0.1 μM), HepG2 (2.3 ± 0.2 μM), and HCT-116 (1.9 ± 0.4 μM) | Cytotoxic | [186] |
Euphorbia schimperiana Scheele | Aerial parts | Ethanol | 3,30-di-O-methylellagic acid | PC3 | PC3 (5.5 mg/mL) | Cytotoxic | [187] |
Euphorbia sogdiana Popov | Aerial parts | Acetone/Dichloromethane (1:2) | Tigliane diterpene | EJ-138 and Jurkat T | EJ-138 (12.1 μM) and Jurkat T (16.1 μM) | Cytotoxic | [188] |
Euphorbia stracheyi Boiss | Whole plant | Methanol | 3-O-benzoyl-20-deoxymgenol | HL-60, A-549, SMMC-7721, MCF-7, and SW480 | HL-60 (0.5 ± 0.18 μM), A-549 (21.47 ± 0.17 μM), SMMC-7721 (18.36 ± 1.17 μM), MCF-7 (18.82 ± 0.84 μM), and SW481 (16.25 ± 0.71 μM) | Cytotoxic | [189] |
Euphorbia stracheyi Boiss. | Roots | Methanol | Euphstrachenol A | MV4-11 | MV4-11 (12.29 μM) | Cytotoxic | [190] |
Euphorbia stracheyi Boiss. | Roots | Methanol | Euphstrachenol B | MV4-11 | MV4-11 (14.80 μM) | Cytotoxic | [190] |
Euphorbia stracheyi Boiss. | Roots | Methanol | Euphstrachenol C | MV4-11 | MV4-11 (5.92 μM) | Cytotoxic | [190] |
Euphorbia taurinensis All. | Whole plant | MeOH | Ingenane diterpene | L5178Y mouse T-lymphoma cells parent and MDR L5178Y | L5178Y mouse T-lymphoma cells parent (82.47 μM) and MDR L5178Y (62.81 μM) | Cytotoxic | [191] |
Euphorbia tirucalli L. | Sap | Hexane | euphol | 73 human cancer lines from 15 tumor types | Range from 1.41 to 38.89 μM | Cytotoxic | [192] |
Euphorbia tithymaloides L. | Stems | Methanol | friedelane-3β-ol, 3-oxo-friedelane, euphane-7, 24-diene, 3β-ol (butyrospermol), and euphane -7, 25-diene, 3, 24-β- diols in addition to the diterpene derivative 1 α, 13 β, 14 α-trihydroxy-3 β, 7 β-dibenzenzoyloxy-9 β, 15 β-diacetoxyjatropha-5, 11-E-diene and the phytosterol β-sitosterol | HepG2, HCT-116, MCF-7 and PC-3 | Only for compound: 1 α, 13 β, 14 α-trihydroxy-3 β, 7 β-dibenzenzoyloxy-9 β, 15 β-diacetoxyjatropha-5, 11-E-diene, HepG2(12.99 ± 0.9 μM), HCT-116(18.63 ± 1.4 μM), MCF-7 (24.40 ± 1.9 μM), and PC-3(37.12 ± 2.3 μM) | Cytotoxic | [164] |
Euphorbia umbellata (Pax) Bruyns | Stems and leaves | Methanol | 3,4,12,13-tetraacetylphorbol-20-phenylacetate | U251, MCF-7, NCI-ADR/RES, 786-0, NCI-H460, HT29, and K562 | U251 (25.2 mg/mL), MCF-7 (>250 mg/mL), NCI-ADR/RES (>250 mg/mL), 786-0 (24.1 mg/mL), NCI-H460 (31.1 mg/mL), HT29 (>250 mg/mL), and K563 (65.3 mg/mL) | Cytotoxic | [127] |
Excoecaria agallocha L. | Leaves and twigs | Ethanol | excagallonoid A | RKO | RKO (8.7 ± 1.98 μM) | Cytotoxic | [193] |
Excoecaria agallocha L. | Leaves and twigs | Ethanol | 2-hydroxy-atis-1,16-diene-3,14-dione | RKO | RKO (2.6 ± 2.81 μM) | Cytotoxic | [193] |
Jatropha gossypifolia L. | Stem bark | - | Jatrophone | HepG2, WiDr, HeLa, and AGS | HepG2 (3.2 µM), WiDr (8.97 µM), HeLa (5.13), and AGS (2.5 µM) | Cytotoxic | [194] |
Jatropha gossypiifolia L. | Branches and leaves | Ethanol | Jatrogrossidione | RKO | 2.6 μM | Cytotoxicity Apoptosis associated with G2/M-phase cell cycle arrest. | [58] |
Jatropha tanjorensis J.L.Ellis & Saroja | Leaves | Hexane, chloroform and methanol | R (+) 4-hydroxy-2-pyrrolidinone | HEP-2, B16F10, A549, and NRK 49F | HEP-2 (42.26 ± 0.03 μg/mL), B16F10 (44.56 ± 0.02 μg/mL), A549 (48.26 ± 0.03 μg/mL), and NRK 49F (47.28 ± 0.03 μg/mL). | Cytotoxic | [195] |
Macaranga barteri Müll.Arg. | Leaves | N-hexane, dichloromethane and methanol | macabartebenes A | MCF7, HeLa, A549, and PC3 | MCF7 (0.68 ± 0.01 μM), HeLa (0.60 ± 0.01 μM), A549 (0.79 ± 0.01 μM), and PC3 (0.66 ± 0.01 μM) | Cytotoxic | [196] |
Macaranga barteri Müll.Arg. | Leaves | N-hexane, dichloromethane and methanol | macabartebenes B | MCF7, HeLa, A549, and PC3 | MCF7 (0.71 ± 0.02 μM), HeLa (0.72 ± 0.01 μM), A549 (0.74 ± 0.01 μM), and PC3 (0.69 ± 0.01 μM) | Cytotoxic | [196] |
Macaranga barteri Müll.Arg. | Leaves | N-hexane, dichloromethane and methanol | macabartebenes C | MCF7, HeLa, A549, and PC3 | MCF7 (1.73 ± 0.01 μM), HeLa (1.67 ± 0.01 μM), A549 (1.81 ± 0.00 μM), and PC3 (1.61 ± 0.01 μM) | Cytotoxic | [196] |
Macaranga barteri Müll.Arg. | Leaves | N-hexane, dichloromethane and methanol | vedelianin | MCF7, HeLa, A549, and PC3 | MCF7 (0.32 ± 0.03 μM), HeLa (0.51 ± 0.01 μM), A549 (0.54 ± 0.02 μM), and PC3 (0.39 ± 0.01 μM) | Cytotoxic | [196] |
Macaranga barteri Müll.Arg. | Leaves | N-hexane, dichloromethane and methanol | schweinfurthin G | MCF7, HeLa, A549, and PC3 | MCF7 (0.95 ± 0.02 μM), HeLa (1.18 ± 0.01 μM), A549 (1.10 ± 0.09 μM), and PC3 (0.91 ± 0.01 μM) | Cytotoxic | [196] |
Macaranga barteri Müll.Arg. | Leaves | N-hexane, dichloromethane and methanol | 8-prenylkaempferol | MCF7, HeLa, A549, and PC3 | MCF7 (6.22 ± 0.13 μM), HeLa (6.88 ± 0.16 μM), A549 (6.61 ± 0.21 μM), and PC3 (6.53 ± 0.11 μM) | Cytotoxic | [196] |
Macaranga barteri Müll.Arg. | Leaves | N-hexane, dichloromethane and methanol | mappain | MCF7, HeLa, A549, and PC3 | MCF7 (0.71 ± 0.02 μM), HeLa (0.71 ± 0.01 μM), A549 (0.81 ± 0.02 μM), and PC3 (0.77 ± 0.01 μM) | Cytotoxic | [196] |
Macaranga barteri Müll.Arg. | Leaves | N-hexane, dichloromethane and methanol | broussoflavonol F | MCF7, HeLa, A549, and PC3 | MCF7 (4.13 ± 0.00 μM), HeLa (4.10 ± 0.01 μM), A549 (3.83 ± 0.01 μM), and PC3 (3.99 ± 0.01 μM) | Cytotoxic | [196] |
Macaranga barteri Müll.Arg. | Leaves | N-hexane, dichloromethane and methanol | isomacarangin | MCF7, HeLa, A549, and PC3 | MCF7 (8.43 ± 0.26 μM), HeLa (8.49 ± 0.21 μM), A549 (8.72 ± 0.21 μM), and PC3 (8.5 ± 0.31 μM) | Cytotoxic | [196] |
Macaranga gigantea (Rchb.f. & Zoll.) Müll.Arg. | Leaves | Methanol | Glyasperin | P-388 | P-388 (3.44 μg/mL) | Cytotoxic | [197] |
Macaranga gigantea (Rchb.f. & Zoll.) Müll.Arg. | Leaves | Methanol | Meliternatin | P-388 | P-388 (30.04 μg/mL) | Cytotoxic | [197] |
Macaranga gigantifolia Merr. | Leaves | Methanol, ethyl acetate fraction | Apigenin | P-388 | P-388 (14.13 μg/mL) | Cytotoxic | [64] |
Macaranga hispida (Blume) Mull.Arg | Leaves | Methanol | 5,7,3′,4′-tetrahydroxy-6-geranyl flavonol | P388 | P388 (0.22 μg/mL) | Cytotoxic | [19] |
Macaranga hispida (Blume) Mull.Arg | Leaves | Methanol | kaemferol 7–O-β-glucoside | P388 | P388 (101.5 μg/mL) | Cytotoxic | [19] |
Macaranga kurzii (Kuntze) Pax & K.Hoffm. | Twigs | Ethanol | kurzphenol A | HepG2 | HepG2 (30.14 μg/mL) | Cytotoxic | [198] |
Macaranga kurzii (Kuntze) Pax & K.Hoffm. | Twigs | Ethanol | kurzphenol C | A549 | A549 (17.11 μg/mL) | Cytotoxic | [198] |
Macaranga kurzii (Kuntze) Pax & K.Hoffm. | Twigs | Ethanol | 8-prenylnaringenin | A549 | A549 (9.76 μg/mL) | Cytotoxic | [198] |
Macaranga kurzii (Kuntze) Pax & K.Hoffm. | Twigs | Ethanol | glepidotin B | A549 | A549 (15.32 μg/mL) | Cytotoxic | [198] |
Macaranga kurzii (Kuntze) Pax & K.Hoffm. | Twigs | Ethanol | acetylatractylodinol | A549 | A549 (18.22 μg/mL) | Cytotoxic | [198] |
Macaranga kurzii (Kuntze) Pax & K.Hoffm. | Twigs | Ethanol | blumenol A | A549 | A549 (18.23 μg/mL) | Cytotoxic | [198] |
Macaranga kurzii (Kuntze) Pax & K.Hoffm. | Twigs | Ethanol | alicylic acid | A549 | A549 (12.01 μg/mL) | Cytotoxic | [198] |
Macaranga recurvata Gage | Leaves | Methanol | Macarecurvatin A | MCF7 and MCF7/TAMR | MCF7 (5.26 μM) and MCF7/TAMR (5.66 μM) | Cytotoxic | [199] |
Macaranga recurvata Gage | Leaves | Methanol | Macarecurvatin B | MCF7 and MCF7/TAMR | MCF7 (0.96 μM) and MCF7/TAMR (1.25 μM) | Cytotoxic | [199] |
Macaranga recurvata Gage | Leaves | Methanol | 6,8-diisoprenylaromadendrin | MCF7 and MCF7/TAMR | MCF7 (5.03 μM) and MCF7/TAMR (5.83 μM) | Cytotoxic | [199] |
Mallotus conspurcatus Croizat | Aerial parts | Methanol | 6-Prenylnaringenin | HeLa and A549 | HeLa (30.12 ± 1.21 μM) and A549 (70.25 ± 0.89 μM) | Cytotoxic | [200] |
Mallotus conspurcatus Croizat | Aerial parts | Methanol | 8-Prenylnaringenin | HeLa and A549 | HeLa (60.16 ± 0.91 μM) and A549 (99.36 ± 1.94 μM) | Cytotoxic | [200] |
Mallotus conspurcatus Croizat | Aerial parts | Methanol | 7-O-Methyl-8-prenylnaringenin | HeLa and A549 | HeLa (45.03 ± 0.82 μM) and A549 (89.16 ± 0.61 μM) | Cytotoxic | [200] |
Mallotus conspurcatus Croizat | Aerial parts | Methanol | 7-O-Methyl-6-prenylnaringenin | HeLa and A549 | HeLa (19.69 ± 0.65 μM) and A549 (55.26 ± 1.87 μM) | Cytotoxic | [200] |
Mallotus conspurcatus Croizat | Aerial parts | Methanol | 4′-O-Methyl-6-prenylnaringenin | HeLa and A549 | HeLa (10.08 ± 1.06 μM) and A549 (47.26 ± 0.82 μM) | Cytotoxic | [200] |
Manniophyton fulvum Müll.Arg. | Twigs | Methanol | Betulinic acid | HeLa | 4% at 62.5 μg/mL | Cytotoxic | [201] |
Mareya micrantha Müll. Arg. | Leaves | Ethanol/Water | 29-nor-2β,15α,20β-trihydroxy-16α-acetyl-3,1,22-trioxo-cucurbita-4,23-diene | Hep3B | Hep3B (0.12 ± 0.05 μM) | Cytotoxic | [202] |
Mareya micrantha Müll. Arg. | Leaves | Ethanol/Water | 29-nor-2β,15α,20β-trihydroxy-16α-acetyl-3,1,22-trioxo-cucurbita-4,23-diene 29-nor-1,2,3,4,5,10-dehydro-3,15α,20β-trihydroxy-16α-acetyl-11,22-dioxo-cucurbita-23-ene 2-O-β-D-glucopyranoside | Hep3B | Hep3B (43.8 ± 5.7 μM) | Cytotoxic | [202] |
Mareya micrantha Müll. Arg. | Leaves | Ethanol/Water | 29-nor-2β,15α,20β-trihydroxy-16α-acetyl-3,11,22 trioxo-cucurbita-4,23-diene 2-O-β-D glucopyranoside | Hep3B | Hep3B (>50 μM) | Cytotoxic | [202] |
Mareya micrantha Müll. Arg. | Leaves | Ethanol/Water | dihydro-epi-isocucurbitacin D | Hep3B | Hep3B (18.2 ± 2.8 μM) | Cytotoxic | [202] |
Mareya micrantha Müll. Arg. | Leaves | Ethanol/Water | tetrahydro-cucurbitacin I | Hep3B | Hep3B (14.9 ± 3.3 μM) | Cytotoxic | [202] |
Mareya micrantha Müll. Arg. | Leaves | Ethanol/Water | cucurbitacin L | Hep3B | Hep3B (11.3 ± 6.2 μM) | Cytotoxic | [202] |
Margaritaria discoidea (Baill.) G. L. Webste | Stem bark | Dichloromethane and methanol (1:1). | Securinine | OVCAR-8, A2780, and A2780cis | OVCAR-8 (16.2 ± 0.5 μM), A2780 (2.7 ± 0.7 μM), and A2780cis (6.5 ± 0.4 μM) | Cytotoxic | [203] |
Margaritaria discoidea (Baill.) G. L. Webste | Stem bark | Dichloromethane and methanol (1:1). | Gallic acid | OVCAR-8, A2780, and A2780cis | OVCAR-8 (5.2 ± 0.1 μM), A2780 (6.2 ± 0.3 μM), and A2780cis (5.4 ± 0.3 μM) | Cytotoxic | [203] |
Ricinodendron heudelotii (Baill.) Heckel | Leaves | Ethanol | Corilagin | HL-60, SMMC-7721, A-549, MCF-7, and SW-480 | HL-60 (25.81 ± 0.67 μg/mL), MCF-7 (33.18 ± 0.76 μg/mL), and SW-480 (37.04 ± 1.06 μg/mL) | Cytotoxic | [204] |
Suregada zanzibariensis Baill. | Stem bark | Dichloromethane/Methanol (1:1) | Mangiolide | TK10, UACC62, and MCF7 | TK10 (0.02 μg/mL), UACC62 (0.03 μg/mL), and MCF7 (0.05 μg/mL) | Cytotoxic | [205] |
Suregada zanzibariensis Baill. | Stem bark | Dichloromethane/Methanol (1:1) | Jolkinolide B | TK10, UACC62, and MCF8 | TK10 (3.31 μg/mL), UACC62 (0.94 μg/mL), and MCF7 (2.99 μg/mL) | Cytotoxic | [205] |
Trewia nudiflora L. | Fruits | Ethanol | N-methyltreflorine | HeLa, MV-4–11, MCF-7, and MCF-7/ADR | HeLa (0.54 nM), MV-4–11 (3.6 nM), MCF-7 (8.6 nM), and MCF-7/ADR (13 nM) | Cytotoxic and in- hibited tubulin polymerization in vitro | [206] |
Trewia nudiflora L. | Fruits | Ethanol | Methyltrewiasine | HeLa, MV-4–11, MCF-7, and MCF-7/ADR | HeLa (1.6 nM), MV-4–11 (3.1 nM), and MCF-7 (10 nM) | Cytotoxic and in- hibited tubulin polymerization in vitro | [206] |
Trewia nudiflora L. | Fruits | Ethanol | Treflorine | HeLa, MV-4–11, MCF-7, and MCF-7/ADR | HeLa (0.74 nM), MV-4–11 (0.12 nM), and MCF-7 (5.5 nM) | Cytotoxic | [206] |
Trewia nudiflora L. | Fruits | Ethanol | Trenudine | HeLa, MV-4–11, MCF-7, and MCF-7/ADR | HeLa (0.41 nM), MV-4–11 (4.8 nM), MCF-7 (11 nM), and MCF-7/ADR (28) | Cytotoxic | [206] |
Trewia nudiflora L. | Fruits | Ethanol | Colubrinol | HeLa, MV-4–11, MCF-7, and MCF-7/ADR | HeLa (0.28 nM), MV-4–11 (0.21 nM), and MCF-7 (3.2 nM) | Cytotoxic | [206] |
Trigonostemon heterophyllus Merr. | Stems and leaves | Ethanol | Trigoheterophines A | HL60, SMMC-7721, A-549, MCF-7, and SW480 | HL60 (0.58 ± 0.06 μM), SMMC-7721 (1.42 ± 0.07 μM), A-549 (3.18 ± 0.11 μM), MCF-7 (0.28 ± 0.02 μM), and SW480 (0.93 ± 0.05 μM) | Antiproliferative | [207] |
Trigonostemon heterophyllus Merr. | Stems and leaves | Ethanol | Trigoheterophines B | HL60, SMMC-7721, A-549, MCF-7, and SW480 | HL60 (0.66 ± 0.04 μM), SMMC-7721 (1.98 ± 0.08 μM), A-549 (0.52 ± 0.03 μM), MCF-7 (0.75 ± 0.05 μM), and SW480 (2.08 ± 0.11 μM) | Antiproliferative | [207] |
Trigonostemon heterophyllus Merr. | Stems and leaves | Ethanol | (Z, Z, E, E)-1, 4-epoxy-16-hydroxyheneicos-1, 3, 12, 14- tetraene | HL60, SMMC-7721, A-549, MCF-7, and SW480 | HL60 (2.12 ± 0.10 μM), SMMC-7721 (3.26 ± 0.09 μM), A-549 (2.20 ± 0.07 μM), MCF-7 (1.68 ± 0.06 μM), and SW480 (2.72 ± 0.08 μM) | Antiproliferative | [207] |
Trigonostemon heterophyllus Merr. | Stems and leaves | Ethanol | (Z, Z, E, E, E)-1, 4-epoxy-16-hydroxyheneicos-1, 3, 12, 14, 18-pentaene | HL60, SMMC-7721, A-549, MCF-7, and SW480 | HL60 (3.98 ± 0.12 μM), SMMC-7721 (1.42 ± 0.07 μM), A-549 (3.18 ± 0.11 μM), MCF-7 (0.45 ± 0.05 μM), and SW480 (2.23 ± 0.10 μM) | Antiproliferative | [207] |
Trigonostemon heterophyllus Merr. | Stems and leaves | Ethanol | 2-(hexadecyl)furan | HL60, SMMC-7721, A-549, MCF-7, and SW480 | HL60 (2.07 ± 0.06 μM), SMMC-7721 (1.83 ± 0.03 μM), A-549 (4.86 ± 0.10 μM), MCF-7 (1.78 ± 0.06 μM), and SW480 (4.28 ± 0.09 μM) | Antiproliferative | [207] |
Trigonostemon heterophyllus Merr. | Stems and leaves | Ethanol | 2-(octadecyl)furan | HL60, SMMC-7721, A-549, MCF-7, and SW480 | HL60 (1.05 ± 0.06 μM), SMMC-7721 (2.97 ± 0.13 μM), A-549 (6.32 ± 0.15 μM), MCF-7 (3.02 ± 0.07 μM), and SW480 (12.06 ± 0.11 μM) | Antiproliferative | [207] |
Trigonostemon xyphophylloides (Croizat) L.K.Dai & T.L.Wu | Twigs | Ethanol | Trigoxyphin P | SPC-A-1, BEL-7402, SGC-7901, and K-562 | SPC-A-1 (1.70 μM) and K-562 (2.24 μM) | Cytotoxic | [208] |
Trigonostemon xyphophylloides (Croizat) L.K.Dai & T.L.Wu | Twigs | Ethanol | Trigoxyphin Q | SPC-A-1, BEL-7402, SGC-7901, and K-562 | SPC-A-1 (1.42 μM), SGC-7901 (2.88 μM), and K-562 (0.37 μM) | Cytotoxic | [208] |
Trigonostemon xyphophylloides (Croizat) L.K.Dai & T.L.Wu | Twigs | Ethanol | Trigoxyphin R | SPC-A-1, BEL-7402, SGC-7901, and K-562 | SPC-A-1 (12.42 μM) and K-562 (17.18 μM) | Cytotoxic | [208] |
Trigonostemon xyphophylloides (Croizat) L.K.Dai & T.L.Wu | Twigs | Ethanol | Trigoxyphin T | SPC-A-1, BEL-7402, SGC-7901, and K-562 | SPC-A-1 (0.24 μM), BEL-7402 (3.89 μM), and SGC-7901 (5.59 μM) | Cytotoxic | [208] |
Name of the Species | Part of the Plant | Type of Extract | Class of Compounds/Compounds Identified in Extract | Animal Model | Treatment | Activity/Mechanism/ Effect | Ref. |
---|---|---|---|---|---|---|---|
Cnidosculos quercifolius Pohl | Root bark | Methanol, chloroform fraction (Favelin rich fraction) | Favelin, Methyl-faveline, Deoxofavelin, Neofavelanone and Coumarin | Mice | 250 and 500 mg/kg/day of favelin rich fraction. | Inhibition rates of tumor growth were 58.08 and 48.71% for the 250 mg/kg and 500 mg/kg treatment groups, respectively. | [212] |
Croton crassifolius Geiseler | Roots | Ethanol | Penduliflaworosin | Mice and Rats | 12.5–50 µM | Exerts its anti-angiogenic effect via the VEGF receptor-2 signaling pathway | [213] |
Euphorbia fischeriana S. + Ziziphus jujuba M. | - | Water | Jokinolide B and 2,4-dihydroxy-6-methoxy-acetophenone | Mice | 2.5, 5.0, and 10.0 g/kg groups of ESZM extract | PI3k/Akt pathway regulation of apoptosis. | [214] |
Euphorbia helioscopia L. | Whole plant | Ethyl acetate | - | Mice | 50 µg/mL, 100 µg/mL, and 200 µg/mL | Growth inhibition and Cyclin D1 protein expression decreased. Cell apoptosis by changing Bcl-2, Bax, and caspase-3 protein expressions. | [215] |
Euphorbia royleana Boiss. | - | Hexane | - | Mice | 10 mg/kg. | Tumor volumes were decreased. Necrotic areas in tumor tissue. | [216] |
Excoecaria agallocha L. | Bark | Methanol | Quercetin-3-O-rutinoside, Quercetin 3-O- α -L-rhamnoside, Kaempferol-3-O-(2-O-acetyl-α-Lrhamnopyranoside), Kaempferol 3-O-α-Lrhamnopyranoside, Excoecarin A, Excoecarin G1, Excoecarin G2, Taraxerone, 3beta-[(2E,4E)-6-oxo-decadienoyloxy]- olean-12-ene, 2,3-secoatisane, Exoecarin B, Exoecarin C, Exoecarin D, Excoecarin E, Exoecarin F, Exoecarin H | Mice | Different doses up to 200 mg/kg | Normal hemaetological values. | [217] |
Tragia involucrata L. | Whole plant | Ethanol | Phenylacetaldehyde- diethylacetal, Neophytadiene, (E)-Phytol, Ethyl palmitate, Phytol, Ethyl linolate, Ethyl elaidate, Linolenic acid, Ethyl octadecanoate, 2-Ethylhexyl phthalate, Squalene, Vitamin E, Clionasterol, Viminalol, Agathisflavone, Loquatoside, Leufolin A, Quercetin, Echinacin, Apigetrin, Cynaroside, 1,2,36-tetrakis-O- galloyl-B-D-glucose, Isoquercetin and Corilagin | Mice | 200 mg/kg and 400 mg/kg | Reduction of tumors | [144] |
Tested Plant | Components | Type of Nanoparticles | Cells | Effect | Ref. |
---|---|---|---|---|---|
Acalypha wilkesiana Müll.Arg. | Flowers | Ag NPs | MCF-7 (4.00 μg/mL) and PC-3 (3.60 μg/mL) | Cytotoxicity | [223] |
Alchornea cordifolia (Schumach. & Thonn.) Müll.Arg. | Leaves | CuO–ZnO, ZnO, and CuO NPs | HeLa treatment with 100 μg/mL—CuO–ZnO (39.94 ± 5.01). ZnO (44.05 ± 0.91) and CuO NPs (63.64 ± 8.34) | Cytotoxicity | [224] |
Baliospermum montanum (Willd.) Müll.Arg. | Roots | Nanoparticles | Aqueous NPS (22%) and Ethanol NPs (6%) | Cytotoxicity | [225] |
Croton sparsiflorus Morong | Leaves | AuNPs | HepG2 (116.7 μg/mL) | Cytotoxicity | [226] |
Euphorbia dendroides L. | Aerial parts | AuNPs | HepG2 (41.72 ± 1.26 mg/mL) and HCT-116 (44.96 ± 3.23 mg/mL) | Cytotoxicity | [227] |
Euphorbia heterophylla L. | Leaves | rGO | A549 (297.81 mg/mL) and HepG2 (357.53 mg/mL) | Cytotoxicity | [228] |
Euphorbia peplus L. | Leaves | AuNPs | HepG2 and Hela cells | Inhibitory effect | [229] |
Euphorbia royleana Boiss. | Pulp | Ag NPs and Cu2O NPs | HCT-116 Ag NPs (50.12 μg/mL) and Cu2O NPs (61.93 μg/mL) | Cytotoxicity | [230] |
Excoecaria agallocha L. | Leaves | AgNPs | 1.00 lg/mL AgNPs in MCF-7 (8.00% viability) | Cytotoxicity | [231] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-González, V.; Kowalczyk, T.; Piekarski, J.; Szemraj, J.; Rijo, P.; Sitarek, P. Nature’s Green Potential: Anticancer Properties of Plants of the Euphorbiaceae Family. Cancers 2024, 16, 114. https://doi.org/10.3390/cancers16010114
Jiménez-González V, Kowalczyk T, Piekarski J, Szemraj J, Rijo P, Sitarek P. Nature’s Green Potential: Anticancer Properties of Plants of the Euphorbiaceae Family. Cancers. 2024; 16(1):114. https://doi.org/10.3390/cancers16010114
Chicago/Turabian StyleJiménez-González, Víctor, Tomasz Kowalczyk, Janusz Piekarski, Janusz Szemraj, Patricia Rijo, and Przemysław Sitarek. 2024. "Nature’s Green Potential: Anticancer Properties of Plants of the Euphorbiaceae Family" Cancers 16, no. 1: 114. https://doi.org/10.3390/cancers16010114
APA StyleJiménez-González, V., Kowalczyk, T., Piekarski, J., Szemraj, J., Rijo, P., & Sitarek, P. (2024). Nature’s Green Potential: Anticancer Properties of Plants of the Euphorbiaceae Family. Cancers, 16(1), 114. https://doi.org/10.3390/cancers16010114