Direct Cell Death Induced by CD20 Monoclonal Antibodies on B Cell Lymphoma Cells Revealed by New Protocols of Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Processing of Patient Samples
2.3. Cell Lines and Cell Culture
2.4. Measurement of Direct Target Cells Killing with the Muse Device
2.5. Measurement of Cell Death, without Staining/Centrifugation, Using Gallios 3L
2.6. Measurement of Cell Death by Staining and Cytometry Assay
2.7. Measurement of Cell Death by Using an Unsensitive, Control, Cell Line
2.8. CD20 Quantification
2.9. Tumor B Cell Death Assessment by Using Beads
2.10. Constitutive Ca2+ Entry Measurements
2.11. Calcium Deprivation and Calcium Ionophore Impact on Direct Killing by CD20 mAbs
2.12. Cytometry Experiments
2.13. Statistical Analysis
3. Results
3.1. RTX and OBI Induced Cell Death on CD20+ Cells One Hour after Treatment: A Muse® Cell Analyzer Protocol
3.2. RTX and OBI Induced Cell Death on CD20+ Cells One Hour after Treatment: A FACs Protocol
3.3. RTX and OBI Induced Cell Death on CD20+ Cells One Hour after Treatment: A FACs Protocol without Centrifugation
3.4. RTX and OBI Induced Cell Death on CD20+ Cells: A FACs Protocol with Control Cells
3.5. Cells That Survive to CD20 mAbs Treatment Showed Low CD20 Expression
3.6. Primary Tumor B Cells Were Very Sensitive to Direct CD20 mAb Killing
3.7. RTX and OBI Affect Constitutive Calcium Entry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierpont, T.M.; Limper, C.B.; Richards, K.L. Past, Present, and Future of Rituximab-The World’s First Oncology Monoclonal Antibody Therapy. Front. Oncol. 2018, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Seyfizadeh, N.; Seyfizadeh, N.; Hasenkamp, J.; Huerta-Yepez, S. A molecular perspective on rituximab: A monoclonal antibody for B cell non Hodgkin lymphoma and other affections. Crit. Rev. Oncol. Hematol. 2016, 97, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Bezombes, C.; Fournié, J.-J.; Laurent, G. Direct effect of rituximab in B-cell-derived lymphoid neoplasias: Mechanism, regu-lation, and perspectives. Mol. Cancer Res. 2011, 9, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.; Beers, S.A.; Walshe, C.A.; Honeychurch, J.; Alduaij, W.; Cox, K.L.; Potter, K.N.; Murray, S.; Chan, C.H.; Klymenko, T.; et al. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lyso-some-mediated cell death in human lymphoma and leukemia cells. J. Clin. Investig. 2009, 119, 2143–2159. [Google Scholar] [PubMed]
- Rubenstein, J.L.; Fridlyand, J.; Abrey, L.; Shen, A.; Karch, J.; Wang, E.; Issa, S.; Damon, L.; Prados, M.; McDermott, M.; et al. Phase I study of intraventricular administration of rituximab in patients with recurrent CNS and in-traocular lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Takami, A.; Hayashi, T.; Kita, D.; Nishimura, R.; Asakura, H.; Nakao, S. Treatment of primary central nervous system lymphoma with induction of complement-dependent cytotoxicity by intraventricular administration of autologous-serum-supplemented rituximab. Cancer Sci. 2006, 97, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Amitai, I.; Gafter-Gvili, A.; Shargian-Alon, L.; Raanani, P.; Gurion, R. Obinutuzumab-related adverse events: A systematic review and meta-analysis. Hematol. Oncol. 2020, 39, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Carden, M.A.; Gaddh, M.; Hoskote, A.; Brown, M.; Merrill, V.; Stowell, S.R.; Chandrakasan, S.; Antun, A.; Kudchadkar, R.; Kotanchiyev, S.; et al. Rituximab leads to early elimination of circulating CD20+ T and B lymphocytes in patients with iTTP despite ongoing TPEx. Blood Adv. 2020, 4, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Golay, J.T.; Bologna, L.; André, P.-A.; Buchegger, F.; Mach, J.P.; Boumsell, L.; Introna, M. Possible misinterpretation of the mode of action of therapeutic antibodies in vitro: Homotypic adhesion and flow cytometry result in artefactual direct cell death. Blood 2010, 116, 3372–3373. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.-C.; Hernandez-Ilizaliturri, F.J.; Bangia, N.; Olejniczak, S.H.; Czuczman, M.S.V. Regulation of CD20 in Rituxi-mab-Resistant Cell Lines and B-cell Non-Hodgkin Lymphoma. Clin. Cancer Res. 2012, 18, 1039–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraga, J.; Tomita, A.; Sugimoto, T.; Shimada, K.; Ito, M.; Nakamura, S.; Kiyoi, H.; Kinoshita, T.; Naoe, T. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: Its prevalence and clinical significance. Blood 2009, 113, 4885–4893. [Google Scholar] [CrossRef] [PubMed]
- Spasevska, I.; Matera, E.L.; Chettab, K.; Ville, J.; Potier-Cartereau, M.; Jordheim, L.P.; Thieblemont, C.; Sahin, D.; Klein, C.; Dumontet, C. Calcium Channel Blockers Impair the Antitumor Activity of Anti-CD20 Monoclonal Antibodies by Blocking EGR-1 Induction. Mol. Cancer Ther. 2020, 19, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
- Navarrete, F.A.; García-Vázquez, F.A.; Alvau, A.; Escoffier, J.; Krapf, D.; Sánchez-Cárdenas, C.; Salicioni, A.M.; Darszon, A.; Visconti, P.E. Biphasic Role of Calcium in Mouse Sperm Capacitation Signaling Pathways. J. Cell. Physiol. 2015, 230, 1758–1769. [Google Scholar] [CrossRef] [PubMed]
- Dalle, S.; Reslan, L.; de Horts, T.B.; Herveau, S.; Herting, F.; Plesa, A.; Friess, T.; Umana, P.; Klein, C.; Dumontet, C. Preclinical Studies on the Mechanism of Action and the Anti-Lymphoma Activity of the Novel Anti-CD20 Antibody GA101. Mol. Cancer Ther. 2011, 10, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Herter, S.; Herting, F.; Mundigl, O.; Waldhauer, I.; Weinzierl, T.; Fauti, T.; Muth, G.; Ziegler-Landesberger, D.; Van Puijenbroek, E.; Lang, S.; et al. Preclinical Activity of the Type II CD20 Antibody GA101 (Obinutuzumab) Compared with Rituximab and Ofatumumab In Vitro and in Xenograft Models. Mol. Cancer Ther. 2013, 12, 2031–2042. [Google Scholar] [CrossRef] [PubMed]
- Manches, O.; Lui, G.; Chaperot, L.; Gressin, R.; Molens, J.-P.; Jacob, M.-C.; Sotto, J.-J.; Leroux, D.; Bensa, J.-C.; Plumas, J. In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 2003, 101, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Svenningsson, A.; Bergman, J.; Dring, A.; Vågberg, M.; Birgander, R.; Lindqvist, T.; Gilthorpe, J.; Bergenheim, T. Rapid depletion of B lymphocytes by ultra-low-dose rituximab delivered intrathecally. Neurol.-Neuroimmunol. Neuroinflammation 2015, 2, e79. [Google Scholar] [CrossRef] [PubMed]
- Van der Haar Àvila, I.; Marmol, P.; Cany, J.; Kiessling, R.; Pico de Coaña, Y. Evaluating Antibody-Dependent Cell-Mediated Cytotoxicity by Flow Cytometry. In Immune Checkpoint Blockade; Pico de Coaña, Y., Ed.; Springer: New York, NY, USA, 2019; Volume 1913, pp. 181–194. [Google Scholar]
- Yamashita, M.; Kitano, S.; Aikawa, H.; Kuchiba, A.; Hayashi, M.; Yamamoto, N.; Tamura, K.; Hamada, A. A novel method for evaluating antibody-dependent cell-mediated cytotoxicity by flowcytometry using cryopreserved human peripheral blood mononuclear cells. Sci. Rep. 2016, 6, 19772. [Google Scholar] [CrossRef] [PubMed]
- Herting, F.; Herter, S.; Friess, T.; Muth, G.; Bacac, M.; Sulcova, J.; Umana, P.; Dangl, M.; Klein, C. Antitumour activity of the glycoengineered type II anti- CD 20 antibody obinutuzumab (GA 101) in combination with the MDM 2-selective antagonist idasanutlin (RG 7388). Eur. J. Haematol. 2016, 97, 461–470. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantinides, M.; Fayd’herbe De Maudave, A.; Potier-Cartereau, M.; Campos-Mora, M.; Cartron, G.; Villalba, M. Direct Cell Death Induced by CD20 Monoclonal Antibodies on B Cell Lymphoma Cells Revealed by New Protocols of Analysis. Cancers 2023, 15, 1109. https://doi.org/10.3390/cancers15041109
Constantinides M, Fayd’herbe De Maudave A, Potier-Cartereau M, Campos-Mora M, Cartron G, Villalba M. Direct Cell Death Induced by CD20 Monoclonal Antibodies on B Cell Lymphoma Cells Revealed by New Protocols of Analysis. Cancers. 2023; 15(4):1109. https://doi.org/10.3390/cancers15041109
Chicago/Turabian StyleConstantinides, Michael, Alexis Fayd’herbe De Maudave, Marie Potier-Cartereau, Mauricio Campos-Mora, Guillaume Cartron, and Martin Villalba. 2023. "Direct Cell Death Induced by CD20 Monoclonal Antibodies on B Cell Lymphoma Cells Revealed by New Protocols of Analysis" Cancers 15, no. 4: 1109. https://doi.org/10.3390/cancers15041109
APA StyleConstantinides, M., Fayd’herbe De Maudave, A., Potier-Cartereau, M., Campos-Mora, M., Cartron, G., & Villalba, M. (2023). Direct Cell Death Induced by CD20 Monoclonal Antibodies on B Cell Lymphoma Cells Revealed by New Protocols of Analysis. Cancers, 15(4), 1109. https://doi.org/10.3390/cancers15041109