Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Role of Extracellular Vesicles in Colorectal Tumor Progression
2.1. CRC-Derived EVs in Microenvironment Remodeling
2.2. CRC-Derived EVs in Angiogenesis
Protein | Full Name | Function | Producing Cells | Exosome Isolation | Recipient Cells | Biological Effect | Clinical Implication | References |
---|---|---|---|---|---|---|---|---|
14-3-3 zeta/delta | 14-3-3 protein zeta/delta | Adapter protein, binds phosphorylated serine and threonine-containing proteins | Human colorectal tissue; colon cancer HCT116 cells | Conditioned medium; differential centrifugation | Human colon fibroblasts (1459 cell line) | Anchorage independent growth | Malignant phenotype? Tissue remodeling? | [28] |
ANGPTL1 | Angiopoietin-like 1 | Member of vascular endothelial growth factor family | Human CRC, SW5620, cells overexpressing ANGPTL1 | Conditioned medium, colonic tissue; differential centrifugation | Kupffer cells | Kupffer cells reprogramming, decreased MMP9 release | Attenuates CRC liver metastasis and impedes vascular leakiness | [38] |
DNAJB8 | DnaJ heat shock protein family (Hsp40) member B8 | Chaperone | Blood samples from patients with CRC; SW480 and SW620 cell derivatives resistant to oxaliplatin after long term treatment | Blood samples, conditioned medium from SW480 and SW620 cell lines; density gradient centrifugation | Parental SW480 and SW620 cell lines | Inhibits P53 ubiquitination and degradation leading to MDR1 upregulation and resistance to oxaliplatin | Transfer of resistance to oxaliplatin | [39] |
FZD10 | Frizzled-10 | Member of the Wnt receptor family | Human colon cancer cells (Caco-2) | Conditioned medium; Total Exosome Isolation kit (Invitrogen) | Colonic epithelial cells | Activation of Wnt/β-catenin signaling pathway; EMT | Invasiveness | [26] |
HSP70 | Heat shock 70 kDa protein | Chaperone | Mouse and human cancer cells (colonic CT26 and SW480 cells | Conditioned medium; differential centrifugation | Mouse myeloid-derived suppressive cells (MDSCs) | Binds TLR2 and activates immunosuppressive MDSCs | Decreased antitumor immune response; Cisplatin and 5FU increase the amount of HSP70 exosomes | [40] |
HSPC111, NOP16 | Nucleolar protein 16 | Nucleolar protein | Human colon cancer cell lines | Conditioned medium; ExoQuick-TC Exosome Isolation kit (System Biosciences) | Hepatic stellate cells | Education of stellate cells into cancer associated fibroblasts (CAFs) | Liver metastasis | [41] |
HUR, ELAV1 | Hu antigen R, ELAV-like protein 1 | RNA binding protein | Human colon cancer HCT116 cell line | Conditioned medium, colonic tissue; differential centrifugation | Human bronchial epithelial cell line BEAS-2B | Stabilizes c-Myc transcripts and downregulates p21 expression | Increased proliferation and migration of bronchial cells. Tissue remodeling? Premetastatic niche formation? | [42] |
IDH1 | Isocitrate dehydrogenase 1 | Glucose metabolism | Human colorectal cancer HCT8 cell derivatives resistant to 5- fluorouracil (5-FU) | Conditioned medium; ultracentrifugation | Parental HCT8 cell line | Glycometabolism reprogramming; increased intracellular levels of NADPH | Transfer of resistance to 5-FU | [43] |
IRF2 | Interferon regulatory factor 2 | Transcription factor; inhibits IRF1-mediated transcriptional activation | Blood samples from patients with CRC; mouse colon cancer CT26 cell lines | Density gradient centrifugation | Macrophages | VEGF-C release | Lymphangiogenesis and lymph node metastasis | [44] |
ITGBL1 | Integrin beta-like 1 | Beta integrin-related protein | Human colon cancer cell lines | Conditioned medium; differential centrifugation | Hepatic fibroblasts and stellate cells | Interacts with TNFAIP3, leading to NF-κB signaling pathway activation | Premetastatic niche formation | [45] |
KRAS (activated) | GTPase KRas | Member of the small GTPase superfamily; proto-oncogene, upstream regulator of the RAS/MAPK and PI3K/Akt pathways | Human colon cancer cells (DLD1 cells and isogenic derivatives) | Conditioned medium; filtration, differential centrifugation | Human colon cancer cells | Mutant KRas is preferentially enriched in EVs, concurrently with EGFR, RAP1, SRC, LYN, integrins, cortactin, and p120 catenin; promotes anchorage independent growth of colon cancer cells with wild type KRAS | Tissue remodeling? Tumor niche development? Remote impact on metastatic sites? | [30] |
GAS6 | Growth arrest specific protein 6 | Ligand of AXL receptor tyrosine kinase | Tumor perivascular cells | Conditioned medium, colonic tissue; ExoQuick-TC Exosome kit (EXOTC50A-1, System Biosciences) | Endothelial progenitor cells | Recruits endothelial progenitor cells via activating the Axl pathway | Tumor revascularization after antiangiogenic therapy withdrawal | [46] |
p-AKT | Phosphorylated AKT | Ser/Thr kinase | Human colorectal cancer HCT116 and LoVo cell lines | Conditioned medium; Differential centrifugation | Hepatic stellate cells | Stimulates interleukin-6 (IL-6) release by stellate cells leading to enhanced lactate metabolism of hypoxic CRC cells | Resistance to SN38 (active metabolite of irinotecan) | [47] |
p-ERK | Phosphorylated extracellular signal-regulated kinase; mitogen-activated protein kinase | Ser/Thr kinase; member of the MAP kinase family | Human colorectal cancer HCT116 and LoVo cell lines | Conditioned medium; Differential centrifugation | Hepatic stellate cells | Stimulates IL-6 release by stellate cells leading to enhanced lactate metabolism of hypoxic CRC cells | Resistance to SN38 (active metabolite of irinotecan) | [47] |
p-Stat3 | Phosphorylated signal transducer and activator of transcription 3 | Transcription activator | Human colorectal cancer RKO cell derivatives resistant to 5-FU after long-term treatment | Conditioned medium, colonic tissue; differential centrifugation | Parental RKO and HCT116 colon cancer cells | Decreased apoptosis | Transfer of resistance to 5-FU | [48] |
tmTGF-α | Pro-transforming growth factor alpha | Ligand of EGFR, transmembrane form of TGF-α | Intestinal organoids from APCMin/+ mice | Conditioned medium; differential centrifugation | Mouse intestinal organoids | Activation of EGFR pathway; autocrine growth regulation; tetraspanin 6 impairs the recruitment of tmTGF-α into EVs | Resistance to anti-EGFR inhibitor (cetuximab)? | [29] |
Wnt3a | Protein Wnt-3a | Member of the Wnt family; ligand of frizzled receptor | CAFs isolated from human CRC | Conditioned medium; Total Exosome Isolation Kit (Invitrogen) | Human colon cancer HT-29 and SW620 cell lines | Activates β-catenin signaling pathway; triggers colon cancer cell dedifferentiation and stemness | Resistance to oxaliplatin and 5-FU | [49] |
2.3. Impact of CRC-Derived EVs on Immune Response
2.4. Microbiota-Derived EVs in Colorectal Carcinogenesis
2.5. Depletion of Tumor-Suppressive ncRNAs in CRC Cells through Exosomes
ncRNA | Producing Cell/Compartment | Recipient Cell | Exosome Isolation | Biological Effect | Clinical Implication | Molecular Target | References |
---|---|---|---|---|---|---|---|
miR-16-5p | Mesenchymal stem cells (MSCs) transduced with miR-16-5p expression vector | Human colon cancer Caco-2 and LoVo cell lines | Conditioned medium from MSCs overexpressing miR-16-5p; differential centrifugation | Decreased cancer cell proliferation, migration, and invasion in vitro, induction of apoptosis, decreased tumor growth in nude mice | Therapeutic approach? | Exhausts ITGA2 (integrin subunit alpha 2) | [79] |
miR-17-5p | Human colon cancer cells (SW480, SW620 cell lines, control epithelial intestinal NCM460 cells) | NA | Human serum from healthy individuals and patients with nonmetastatic and metastatic CRCs; conditioned medium; differential centrifugation | Increased circulating exosomal miR-17-5p in nonmetastatic CRC vs. healthy individuals; higher levels in patients with metastatic CRC | Diagnosis | NA | [80] |
miR-19b | Human colon cancer LIM1863, HCT116, and DLD1 cell lines | Human colon cancer HCT116, and DLD1 cell lines | Conditioned medium; ExoQuick Precipitation Kit (System Biosciences) | Stemness, radioresistance, increased tumor growth in nude mice | Radioresistance | Exhausts FBXW7, leading to the activation of the β-catenin signaling pathway | [81] |
miR-21 | CAFs | Colorectal cancer cells | Primary culture of fibroblasts from human CRCs and control tissue; differential ultracentrifugation | NA | Liver metastasis (orthotopic xenograft) | Known targets: transcripts of PTEN and PDCD4 tumor suppressors | [82] |
miR-21 | Human colon cancer LS174 cell line | Human colon cancer HT29 and T84 cell lines; human colon FHC cells | Conditioned medium; differential centrifugation | Increased CRC cells proliferation and invasiveness; PDC4 downregulation involved in resistance to 5-FU | Increased proliferation and invasiveness; resistance to 5-FU | Exhausts PDCD4, PTEN and TPM1 transcripts | [83] |
miR-21 | Colorectal cancer cells (SW480, SW620 and LoVo cell lines) | Liver macrophages/Kupfer cells (membrane-labeled fluorescent EVs injected in mice); THP-1 macrophage cell line | Conditioned medium; filtration, centrifugation | Macrophage polarization into a proinflammatory phenotype (IL-6 release) | Liver metastasis (human liver metastases; orthotopic xenograft in mice) | Binding and activation of TLR7 in liver macrophages; noncanonical miRNA mechanism | [84] |
miR-21 | Colorectal cells; increased expression from normal epithelium to adenoma and adenocarcinoma | NA | Serum from healthy individuals and patients with colorectal adenomas; ExoQuick kit (System Biosciences, EXOQ20A-1) | Higher level in serum form patients with adenomas vs. healthy individuals | Diagnosis; biomarker for patients with high-risk adenomas | NA | [85] |
miR-21-5p | Human colorectal cancer; human colon cancer Lovo, SW620, HT29, SW480, HCT116 and LS174T cell lines | Human endothelial cells (HUVECs) | Serum from CRC patients; conditioned medium; ultracentrifugation | Increased HUVECs proliferation, migration, tubulogenesis | Angiogenesis, vascular permeability in vitro and in vivo (xenografts in nude mice) | Exhausts KRIT1 leading to the activation of the β-catenin signaling pathway, upregulation of VEGFa and Ccnd1 | [35] |
miR-21-5p | Human colon cancer SW-620 cell line, human colonic epithelial NCM460 cells | Human monocytic leukemia cell line THP-1, murine macrophage line RAW264.7 | Plasma; conditioned medium; differential centrifugation | M2 like polarization and PD-L1 expression, resulting in increased PD-L1+CD206+ macrophage abundance and decreased T cell activity; increased tumor growth of mouse CT26.WT cells in syngeneic BALB/c mice | Immunosuppression, inhibition of CD8+ T cell activity | Exhausts PTEN and SOCS1, leading to activation of the PI3K/Akt and STAT1 signaling pathways, respectively | [58] |
miR-21-5p | M2 macrophages | Human colon cancer SW48, SW480, and CO-115 cell lines | Conditioned medium; differential centrifugation | Increased proliferation and migration of colon cancer cells | Increased number of lung metastatic nodules (mouse model) | Exhausts transcripts of the transcriptional regulator BRG1 | [60] |
miR-22-3p | Human bone marrow mesenchymal stem cells (MSCs) transfected with mir-22-3p | Human colon cancer cell lines (Caco-2, SW480, SW620, LoVo and HT29 cell lines) and control colonic epithelial NCM460 cells | Conditioned medium from MSCs overexpressing miR-22-3p; centrifugation/kit extraction | Decreased colon cancer cells proliferation and invasiveness in vitro | Therapeutic approach? | Exhausts RAP2B leading to decreased PI3K levels and p-AKT | [86] |
miR-25-3p | Human colorectal cancer cells (SW480, HCT-116 cells) | Endothelial cells (HUVECs), liver and lung endothelial cells | Conditioned medium; differential centrifugation | Increased vascular permeability, angiogenesis | Liver metastasis; high serum exosomal miR-25-3p level in patients with CRC, further increased in patients with metastasis | Silencing of KLF2 and KLF4 leading to decreased expression of ZO-1, occludin and cClaudin-5; increased expression of VEGFR2, p-AKT and p-ERK | [87] |
miR-25-3p | Human colorectal cancer cells (HCT-116 cells) | Macrophages | Human serum from healthy individuals and patients with CRC; conditioned medium from HCT-116 cells; Exoquick exosome precipitation solution (System Biosciences); ultracentrifugation | Activation of CXCR4 by CXCL12 increases accumulation of miR-25-3p in exosomes from HCT-116 cancer cells that triggers M2 polarization of macrophages | EMT, invasiveness, angiogenesis, metastasis (experimental) resulting from VEGF release by M2 macrophages | Exhausts PTEN leading to activation of the PI3K/AKT signaling pathway and STAT6 activation | [88] |
miR-27b-3p | Human colon cancer LOVO, HCT-116, DLD-1, SW620 and SW480 cells | Endothelial cells (HUVECs) | Conditioned medium; differential centrifugation | Increased blood vessel permeability; increased circulating tumor cells, experimental metastasis; increased level in circulating exosomes from patients with CRC, decreased after tumor resection | Biomarker for CRC metastasis? | Exhausts VE-cadherins | [89] |
miR-34a | Murine colon cancer CT-26 cell line | Murine colon cancer CT-26 tumors in Balb/c mice | Conditioned media; Exocib kit (Cibzist fan); loading miR-34a mimic using CaCl2 | Decreased tumor growth, prolonged survival of mice, T cell polarization toward CD8+ T subsets among tumor-infiltrating lymphocytes | Cancer nanotherapy; engineered exosomes | NA | [90,91] |
miR-92a-3p | Human colon cancer cells (SW480 and SW620 cell lines, control epithelial intestinal NCM460 cells) | NA | Human serum from healthy individuals and patients with nonmetastatic and metastatic CRCs; conditioned culture medium; differential centrifugation | Increased circulating exosomal miR-92a-3p in nonmetastatic colorectal cancer vs. healthy individuals, higher levels in patients with metastatic colorectal cancer | Diagnosis | NA | [80] |
miR-92a-3p | Human colon cancer cells (DLD1) | Endothelial cells (HUVEC) | Culture medium; filtration, differential centrifugation | Partial endothelial to mesenchymal transition; increased cell proliferation and loosening intercellular adhesion, which promotes migration | Angiogenesis | Targets the transcripts of claudin-11; integrin subunit alpha 5 (ITGA5), Dickkopf WNT signaling pathway inhibitor 3 (DKK3) and CD69 | [92] |
miR-92a-3p | CAFs | Colon cancer cells (SW480, SW620 and LoVo cells) | Primary culture of fibroblasts from human colorectal cancer and control tissue; differential ultracentrifugation | Promotes stemness, epithelial-mesenchymal transition (EMT), metastasis and chemotherapy resistance of CRC cells | Liver metastases, resistance to chemotherapies (5-FU/oxaliplatin) | Sponge transcripts of FBXW7 (ubiquitin protein ligase) and MOAP1 (effector of BAX), leading to accumulation of β-catenin transcripts and inhibition of mitochondrial apoptosis | [93] |
miR-93-5p | CAFs and control fibroblasts | Human colon cancer HT-29, SW480 and LoVo cell lines; human intestinal epithelial HIEC cells | Conditioned medium; filtration, Ultracentrifugation | Increased growth of SW-480 cells xenografted on nude mice | Radioresistance | Exhausts FoxA1, leading to transcription of TGF-β3 and the activation of TGF-β signaling pathway | [94] |
miR-100 | Human colon cancer DLD-1 cells and their isogenic derivatives homozygous for wild-type or mutant KRAS | Human colon cancer DLD1 cells | Culture medium; filtration, ultracentrifugation | DLD-1 derivatives expressing wild-type KRAS (DKs-8 cells) | Repression of miR-100 targets in neighboring cells | Involvement of neutral sphingomyelinase in miR-100 sorting in exosomes | [31] |
miR-100 | Human mesenchymal stem cells | Human colon cancer HCT116 and SW480 cells | Culture medium; ultracentrifugation | Decreased cell proliferation, migration and invasiveness; induction of apoptosis | Therapeutic strategy? | Exhausts mTOR transcripts, leading to downregulation of mTOR, Cyclin D1, K-RAS and HK2, and upregulation of miR-143 and p27 | [95] |
miR-106b-3p | Human colorectal cancer cells (HCT116, SW480, SNU-C1, SW1116, LoVo and KM12SM) | Colorectal cancer cells | Serum from patients with metastatic or nonmetastatic CRC, Conditioned medium from colonic cell lines. Ultracentrifugation | Induction of EMT, increased experimental metastases; increased level of exosomal miR-106-6p in serum form patients with lung metastasis | Biomarker, therapeutic target | Exhausts deleted in liver cancer-1 (DLC-1) | [96] |
miR-106b-5p | Human colorectal cancers; human colon cancer HCT116 and HT29 cell lines | Human monocyte-like THP-1 cells differentiated into macrophages | Serum from patients with CRC; exoRNAeasy Serum/Plasma MaxiKits (QIAGEN, Germany); conditioned medium, ultracentrifugation | M2-like macrophages trigger EMT, facilitating intravasation and liver and lung metastasis of CRC (experimental metastasis) | EMT, metastases | Exhausts PDCD4, leading to PI3Kg/AKT/mTOR signaling pathway activation and M2 macrophage-like polarization | [97] |
miR-130b-3p | Human colorectal cancer cells | Macrophages | Human serum from healthy individuals and patients with colorectal cancer; Exoquick exosome precipitation solution (System Biosciences); culture supernatant of HCT-119 cells; ultracentrifugation | Activation of CXCR4 by CXCL12 increases accumulation of miR-130b-3p in exosomes from HCT-116 cancer cells; MiR-130b-3p triggers M2 polarization of macrophages | EMT, invasiveness, angiogenesis and metastasis (experimental) resulting from VEGF release by M2 macrophages | Exhausts PTEN, leading to activation of the PI3K/AKT signaling pathway and STAT6 activation | [88] |
miR-135b-5p | CAFs | Colorectal cancer cells (SW480 and HCT116 cells) | Primary culture of fibroblasts from human CRCs and control tissue; differential ultracentrifugation | Increased proliferation, migration and angiogenesis of endothelial cells (HUVECs cells) in vitro and in vivo (xenograft SW482 cells) | Angiogenesis | Exhausts FOXO1, leading to VEGF expression | [98] |
miR-135b-5p | CAFs | Colorectal cancer cells (LoVo and HT29 cells); endothelial cells (HUVEC) | Primary culture of fibroblasts from human thyroid cancer and control tissue; differential ultracentrifugation | Enhanced proliferation, migration and invasion, decreased apoptosis of colon cancer cells, HUVEC angiogenesis (in vitro) | Tumor growth, angiogenesis | Exhausts thioredoxin-interacting protein (TXNIP) | [99] |
miR-141 | Human colonic cancer DLD1 (epithelial phenotype), HCT116 and SW620 (mesenchymal phenotype) cell lines | Human MRC5 fibroblast cell line; normal colon fibroblasts | Conditioned medium; differential centrifugation | Exosomes released by epithelial (differentiated) CRC cells are enriched in miR-200 compared with cell lines with a mesenchymal phenotype | Stromal infiltration in CMS4 CRC subtype (mesenchymal) | Suppresses TGF-β-driven fibroblast differentiation into myofibroblast by depleting ZEB1 | [32] |
miR-146a-5p | Human colon cancer cells HCT-116 overexpressing CXCR7 | Mouse CAFs | Human serum from healthy individuals and patients with CRC; conditioned media from human colon cancer HCT-116 cells overexpressing CXCR7; Exoquick exosome precipitation solution (System Biosciences, USA) | Activation of CAFs; induction of EMT and invasiveness of HCT116 and SW620 cell lines | Liver and lung metastasis (experimental mouse models) | Exhausts ZBTB2 transcript, leading to activation of NFkB signaling pathway, secretion of chemokines by CAFs driving EMT of colorectal cancer cells | [100] |
miR-146a-5p | Human colon cancer HT-29 and HCT15 cell lines grown as spheroids (stem cell-like) | Colon cancer HT29, HCT15 and CT26 cell lines | Conditioned medium; differential centrifugation | Reprograming into CRC stem cells | Stemness expansion | Promotes stem-like properties and tumorigenicity by targeting Numb in recipient CRC cells | [101] |
miR-150 | Colonic epithelial cells? | Colon cancer cells | Plasma exosomes; Plasma Exosome Extraction Kits (Thermo Fisher Scientific), cell-culture exosomes; ExoQuick-TC exosome precipitation solution (System Biosciences) | Decreases availability and invasiveness of human colon cancer SW620 cells (in vitro and experimental metastasis) | Downregulation in serum from patients with metastatic colorectal cancer | Targets FTO (α-ketoglutarate dependent dioxygenase/fat mass and obesity-associated gene) | [102] |
miR-155-5p | Human colon cancer cells HCT-116 overexpressing CXCR7 | Mouse CAFs | Conditioned media from human colon cancer HCT-116 cells overexpressing CXCR7. Exoquick exosome precipitation solution (System Biosciences, USA) | Activation of CAFs; induction of EMT and invasiveness of HCT116 and SW620 cell lines | Liver and lung metastasis (experimental mouse models) | Exhausts SOCS1 transcript leading to activation of JAK/STAT3 signaling pathway, secretion of chemokines | [100] |
miR-155-5p | Human M2 macrophages isolated from CRC | Human colon cancer SW48 cells, nontumorigenic CCD 841 CoN cells | Conditioned medium; differential centrifugation | Decreased ZC3H12B accumulation leading to enhanced IL6 transcript stability in cancer cells and inhibition of T cell immune response | IL-6 immune escape | Exhausts ZC3HB12B transcripts | [59] |
miR-155-5p | M2 macrophages | Human colon cancer SW48, SW480 and CO-115 cell lines | Conditioned medium; differential centrifugation | Increased proliferation and migration of colon cancer cells | Increased number of lung metastatic nodules (mouse model) | Exhausts transcripts of the transcriptional regulator BRG1 | [60] |
miR-155 | Murine colon cancer CT-26 cell line | Murine bone marrow-derived dendritic cells (DCs); in vitro treatment with engineered exosomes | Conditioned media; Exosome isolation kit (Exospin, Cell Guidance Systems); loading miR-155 mimics by electroporation | Decreased tumor growth, prolonged survival of mice; increased infiltration of CD4+ T cells and CD8+ T cells into tumor microenvironment, decreased Tregs abundance | Cancer immunotherapy; engineered exosomes | Increased IL-12p70 and IFN-γ in serum, enhanced differentiation, proliferation and cytotoxicity of CD4+ and CD8+ T cells | [103] |
miR-181a-5p | Colorectal cancer cells | Hepatic stellate cells | Human plasma samples; conditioned medium from HT29, SW480, RKO and SW620 colon cancer cell lines; differential centrifugation | Premetastatic niche formation | Liver metastasis | Sponging SOCS3 leads to inflammatory IL6/STAT3 signaling | [104] |
miR-183-5p | Human colorectal cancer cells (DLD-1, HT29, HCT116 and NCI-H508; control colonic epithelial FHC cells) | Endothelial cells (HMEC-1) | Conditioned medium from human colonic epithelial cells; Exosome extraction kit (Shanghai Yeasen Company, China) | Increased proliferation, migration and tube formation of HMEC-1 cells and tumor growth | Angiogenesis | Exhausts FOXO1 transcripts | [37] |
miR-186-5p | M2 macrophages | Human colon cancer SW480 and HCT-8 cell lines | Conditioned medium from THP1 cells differentiated in M0 or M2 macrophages; differential centrifugation | Increased colon cancer cell proliferation and motility | Induction of EMT | Exhausts DLC1, increased activation of β-catenin signaling pathway | [61] |
miR-193a | Human colonic cancer SW620 cell line; mouse CT26 cell line | Mouse plasma; differential centrifugation | Inhibits tumor progression (experimental mouse models) | Biomarker prognosis; diagnosis? Increased levels in patients with CRC in a stage dependent manner; therapeutic target? | Exhausted from CRC cells; targets caprin-1, leading to downregulation of Ccnd2 and c-Myc and decreased cell proliferation; MVP favors miR-193a sorting | [75] | |
miR-200a/b/c | Human colonic cancer DLD1 (epithelial phenotype), HCT116 and SW620 (mesenchymal phenotype) cell lines | Human MRC5 fibroblast cell line; normal colon fibroblasts | Conditioned medium; differential centrifugation | Exosomes released by epithelial (differentiated) CRC cells are enriched in miR-200 compared with cell lines with mesenchymal phenotypes | Stromal infiltration in CMS4 CRC subtype (mesenchymal) | Suppresses TGF-β-driven fibroblast differentiation into myofibroblast by depleting ZEB1 | [32] |
miR-200a | Human colon cancer SW-620 cell line, human colonic epithelial NCM460 cells | Human monocytic leukemia cell line THP-1, murine macrophage line RAW264.7 | Plasma; conditioned medium; differential centrifugations | M2-like polarization and PD-L1 expression, resulting in increased PD-L1+CD206+ macrophage abundance and decreased T cell activity; increased tumor growth of mouse CT26.WT cells in syngeneic BALB/c mice | Immunosuppression, inhibition of CD8+ T cell activity | Exhausts PTEN, leading to activation of the PI3K/Akt signaling pathway | [58] |
miR-203 | Colon cancer (RKO cells) | Myeloid cells (THP-1 cells) | Human serum from patients with nonmetastatic or metastatic CRCs; conditioned medium from colon cancer cell lines; differential centrifugation | M2 macrophage polarization; high serum exosomal miR-203 associated with poor prognosis; conversely, high miR-203 in tumor tissue is associated with a better prognosis; promotes experimental metastases of RKO cells; in vitro proliferation, invasiveness and motility of cancer cells unaffected | Liver metastasis | NA | [105] |
miR-204-5p | HEK293T cells stably expressing miR-204-5p | Human colon cancer LoVo and HCT116 cells | Conditioned medium; differential centrifugation | Decreases cell proliferation and colony formation of CRC cells, induction of apoptosis, sensitization to oxaliplatin in vitro and in vivo (mouse models) | Cancer nanotherapy | miR-204-5p exhausts RAB22A and Bcl2 | [106] |
miR-208b | Human colon cancer SW-480 cell line and oxaliplatin-resistant derivatives; human colon NCM-460 cell line | Mouse CD4+ T lymphocytes | Serum from patients with CRC; conditioned medium from cell lines; gradient centrifugation | Increased growth of mouse CT-26 tumors in syngeneic Balb/c mice | Oxaliplatin resistance; putative biomarker of resistance | Exhausts PDCD4, leading to Treg expansion | [63] |
miR-210 | Human colon cancer HCT-8 cells (subpopulation growing in suspension) | Human colon cancer HCT-8 cells | Conditioned medium; Exosome Precipitation Solution (Macherey-Nagel) | Promotes EMT and resistance to anoikis | Oxaliplatin and 5-FU resistance | NA | [107] |
miR-217 | Colorectal cancer cells | NA | Serum from patients with colorectal tumors; conditioned medium from human colon cancer HT-29, SW480, HCT-116, SW620, LoVo, SW48, DLD-1, Caco2 and HT-15 cells, and human colonic epithelial NCM460 cells. ExoQuick kit (SBI, USA) | Decreased exosomal miR-217 level in serum from patients with CRC compared to patients with adenoma and healthy individuals; increased level following chemotherapy | Diagnosis, prognosis | NA | [108] |
miR-221 | Colon cancer (SW480 cells) | Liver stromal cells | Serum; exosome isolation kit (Invitrogen); conditioned medium; differential centrifugation | NA | Liver metastases; decreased overall survival | Exhausts SPINT1 transcripts, leading to hepatocyte growth factor activation and liver metastatic niche formation | [109] |
miR-221-3p | Colon cancer cells (HCT116 and Caco-2 cell lines) | Human endothelial cells (HUVECs) | Conditioned medium from HCT116 and Caco-2 cells; centrifugation; ExoQuick™ Exosome Precipitation Solution (System Biosciences) | Increased proliferation and motility of endothelial cells in vitro | Angiogenesis | Exhausts SOCS3, leading to STAT3 signaling pathway and upregulation of VEGFR2 | [34] |
miR-222 | Colon cancer (SW480 cells) | Liver stromal cells | Serum exosomes: exosome isolation kit (Invitrogen); colon cancer cell lines. Derived exosomes: differential centrifugations | NA | Liver metastases; decreased overall survival | Exhausts SPINT1 transcripts, leading to hepatocyte growth factor activation and liver metastatic niche formation | [109] |
miR-224-5p | Human colon cancer SW-620 cells | Human colon CCD 841 CoN and colon cancer SW-620 cell lines | Conditioned medium; GETTM Exosome Isolation Kit (GeneExosome technologies). | Increased viability, proliferation, migration and invasiveness | Increased growth of SW-620 cells xenografted in nude mice | Exhausts CMTM4 (CKLF-like MARVEL Transmembrane Domain Containing 4) | [27] |
miR-224-5p | CAFs | Human colon cancer CT116, SW480, Caco-2, LoVo and T84 cells and control colonic epithelial NCM-460 cell line | Conditioned medium from CAFs; differential centrifugation | Promotes proliferation, migration, invasiveness and antiapoptotic abilities of CRC cells | miR-224-5p overexpressed in CRC and in CAFs | Exhausts SLC4A4 | [110] |
mir-320c | Human colorectal cancer, human colon cancer HT-29 and HCT-116 cell lines | NA | Plasma from healthy individuals and patients with CRC; conditioned medium; ExoEasy Plasma (QIAGEN) | Enrichment in Evs | Diagnosis, follow-up; reprogramming metastasized cells into a metastasis-favorable mesenchymal-epithelial transition state? | NA | [111] |
miR-335-5p | Human colon cancer SW620 cells | Human colon cancer SW480 cells | Conditioned medium from human colon cancer SW480 and SW620 cells; ultracentrifugation | Transfer EMT phenotype; increased metastatic ability in vivo | EMT; metastasis | Exhausts RASA1 (GTPase-activating protein) | [112] |
miR-424 | Human CRC cell lines HT116, HT29, DLD-1, HCT-8, Caco-2, WiDr and SW480 and mouse CRC cell lines CT26 and MC38 | Human primary T cells; primary human dendritic cells from PBMCs | Conditioned medium; density gradient centrifugation | Hypoxia up-regulates miR-424 and enhances EV production | Resistance immune checkpoint blockade; putative therapeutic target | Exhausts CD28 and CD80 expression levels in T cells and dendritic cells | [55] |
miR-425-5p | Human colon cancer HCT116 and SW620 cells | Macrophages (murine macrophages RAW264.7 and human monocytic leukemia cells THP-1) | Human serum from healthy individuals and patients with colorectal cancer; Exoquick exosome precipitation solution (System Biosciences); conditioned medium; ultracentrifugation | Activation of CXCR4 by CXCL12 increases accumulation of miR-425-5p in exosomes from HCT-116 cancer cells that triggers M2 polarization of macrophages | EMT, invasiveness, angiogenesis and metastasis (experimental) resulting from VEGF release by M2 macrophages | Exhausts PTEN, leading to activation of the PI3K/AKT signaling pathway and STAT6 activation | [88] |
miR-548c-5p | Human colon cancer HCT116 and SW480 cells | Human colon cancer HCT116 and SW480 cells | Conditioned medium; Exosome Isolation and Purification Kit (Umibio) | Decreased cell proliferation, migration and invasiveness | Low levels associated with a poor prognosis; biomarker prognosis? | Decreased miR-548c-5p in serum exosomes from patients with CRC; exhausts HIF1 transcripts leading to CDC42 downmodulation | [113,114] |
miR-590-3p | CAFs | Human colon cancer SW480, SW620, HCT116, LOVO, HT29 and SW116 cell lines and control colon epithelialNCM-460 cells | Conditioned medium; filtration; ExoQuick Exosome Precipitation Kit (System Biosciences) | Enhanced resistance of CRC cells to radiotherapy in vitro and in vivo (xenografts in nude mice) | Radioresistance; putative biomarker of CRC and of response to radiotherapy | Exhausts CLCA4, leading to activation of the PI3K/AKT signaling pathways | [115] |
miR-934 | Colorectal cancer cells | M2 macrophages, Kupffer cells | Human serum; centrifugation | Premetastatic niche formation | Liver metastases; decreased overall survival (OS) and disease-free survival | PTEN downregulation, activation of PI3K/AKT signaling pathway; CXCL13 secreted by recipient cells triggers invasiveness of colorectal cancer cells | [116] |
miR-1229 | Human colorectal cancer, human colon cancer HCT-116 cells | Human umbilical vein endothelial cells (HUVECs) | Serum, conditioned medium; filtration, ultracentrifugation | Increased proliferation, migration and tubulogenesis of HUVECs | Angiogenesis; high circulating miR-1229 associated with poor overall survival in CRC patients | Exhausts HIPK2 (Homeodomain Interacting Protein Kinase 2), promoting transcriptional activity of MEF2C and VEGF accumulation | [50] |
miR-1246 | Human colon cancer DLD-1, WiDr, SW480 and COLO201 cell lines | Human umbilical vein endothelial cells (HUVECs) | Conditioned medium; filtration, ultracentrifugation | Increased proliferation, migration and tubulogenesis of HUVECs | Angiogenesis | Enriched in circulating EVs; exhausts PML (promyelocytic leukemia) protein, leading to activation of Smad 1/5/8 signaling in HUVECs | [51] |
miR-1255b-5p | Human colorectal cancer cells | Human colon cancer SW480, HCT116, LOVO and HT29 cell lines and a control colon cell line (FHC) | Human serum from patients with colorectal cancer; conditioned medium from SW480 cells grown in normoxia or hypoxia; differential centrifugation | Induction of EMT; increased experimental metastasis | hTERT targeting therapy? | Exhausts telomerase, leading to activation of β-catenin pathway | [117] |
miR-6869-5p | Human colorectal cancers | Human colon cancer colo-205 and HCT-116 cells | Serum from patients with CRC; Total exosome isolation kit (Invitrogen) | Decreased cell proliferation, promotes apoptosis in vitro; does not affect cell migration in vitro; enhanced tumor growth in vivo (xenograft in nude mice) | Low levels associated with poor prognoses; biomarker prognosis? | Downregulated in colorectal tumors and CRC-derived exosomes; exhausts TLR4 and downmodulates NFkB signaling pathway | [113,118] |
miR-8073 | Human colon cancer HCT116 and HT-29 cell lines | NA | Conditioned medium; differential centrifugation | Inhibits proliferation of cancer cells but not of normal HMVEC cells (microvascular endothelium); decreased tumor growth (experimental mouse model) | Therapeutic strategy? | Tumor suppressor miRNA exhausted from cancer cells; targets OXM1, CASP2, MBD3, KLK10 and CCND1 | [76] |
PGM5-AS1 (PGM5 antisense RNA 1) | HEK293T cells overexpressing PGM5-AS1 | Human colon cancer DLD1 cell derivative resistant to oxaliplatin | Conditioned medium; differential centrifugation; oxaliplatin loading by electroporation | Inhibition of proliferation, metastasis and acquired oxaliplatin resistance of colon cancer cells in vivo; reversion of drug resistance | Cancer nanotechnology; engineered exosomes | PGM5-AS1 upregulates the nucleoside diphosphate kinase NME1 by sponging hsa-miR-423-5p, and it downregulates PAEP (member of the kernel lipocalin superfamily) by recruiting SRSF3 to promote alternative splicing | [119] |
lncRNA CCAL | CAFs, tumor stroma | Human colon cancer cells (SW480, HCT-116 cells) | Conditioned medium of control fibroblasts and CAF primary cultures; differential centrifugation | Activation of Wnt pathway | Oxaliplatin resistance in vitro and in vivo | Interaction with the RNA binding protein HuR leads to stabilization of β-catenin transcript and activation of the Wnt pathway | [120] |
lncRNA CRNDE-h | Colorectal cancer cells | NA | Serum from patients with colorectal tumors; conditioned medium from human colon cancer HCT116, SW620, SW480, HT29 and LoVo cells and human colonic epithelial FHC cells; ExoQuick kit (SBI, USA) | Gradual increased levels of exosomal CRNDE-h in serum from patients with adenoma to adenocarcinoma; associated with poor prognoses | Diagnosis, prognosis | NA | [121] |
lncRNA CRNDE-p | Human colorectal cancer HT-29, SW480, HCT-116, SW620, LoVo, SW48, DLD-1, Caco2 and HT-15 cell lines and human colonic epithelial NCM460 cells | NA | Serum from patients with colorectal tumors; conditioned medium from human colonic cell lines; ExoQuick kit (SBI, USA) | Increased levels of exosomal CRNDE-h in serum from patients with adenocarcinoma compared to patients with adenomas and healthy individuals; associated with poor prognoses | Diagnosis, prognosis | NA | [108] |
lncRNA H19 | CAFs | Human colon cancer SW480 and HCT116 cell lines | Conditioned medium from primary control fibroblasts and CAFs of CRC patients; differential centrifugation | Activation of Wnt pathway; stemness | Resistance to oxaliplatin in vitro and in vivo | Sponges miR-141 that exhausts β-catenin | [122] |
lncRNA HOTTIP | Human colon cancer SW620 and HCT116 cell lines and the colonic epithelial FHC cells | Colorectal cancer cells (autocrine effect) | Conditioned medium; differential centrifugation | Transfer of resistance | Resistance to mitomycin C | Sponges miR-214, which exhausts transcripts of the importin KPNA3 | [123] |
LncRNA KCNQ1OT1 | The human rectal cancer SW1463 cell line and the colonic epithelial FHC cells | Colorectal cancer cells (autocrine effect) | Conditioned medium; differential centrifugation | Proliferation and invasion of colorectal cell lines; decreased infiltration of CD8+ and CD4+ T cells in experimental tumors | Immune escape | Sponges miR-30a-5p that exhausts USP22 (Ubiquitin Specific Peptidase 22) transcripts and triggers ubiquitination and degradation of PD-L1 | [124] |
LncRNA LINC00659 | CAFs | Human colon cancer LOVO and SW48 cell lines | Conditioned medium from primary control fibroblasts and CAFs of CRC patients; differential centrifugation | Increased proliferation, migration, invasion and EMT | Sponges miR-342-3p that exhausts ANXA2 | [125] | |
lncRNA MALAT1 | Human colon cancer LoVo, HCT-8, SW620 and SW480 cell lines | Colorectal cancer cells | Conditioned medium from human colon cancer cells; differential centrifugation | Increased proliferation, migration and invasiveness; increased metastatic properties (experimental) | Diagnostic biomarker? Therapeutic target? | Sponges miR-26a/26b leading to upregulation of fucosyltransferase 4 (FUT4); activation of the PI3K pathway | [126] |
LncRNA RPPH1 | Human colon cancer HCT8, SW620 and HT-29 cell lines | Human monocyte-derived macrophages | Conditioned medium; differential centrifugation | Macrophage M2 polarization; increased tumor growth and metastasis (experimental) | Metastasis, biomarker? | NA | [127] |
lncRNA SNHG3 | Cancer-associated fibroblasts (CAFs), normal fibroblasts | Human colon cancer SW-480 and HCT116 cells; control colonic epithelial cell line NCM460 | Conditioned medium; ultracentrifugation | Increased colon cancer cell proliferation; increased tumor growth (xenografts in nude mice) | Sponges miR-34b-5p that exhaust HUR transcripts, leading to HUR accumulation and stabilization of HOXC6 transcripts | [128] | |
lncRNA SNHG10 | Human colon cancer SW480 cell line | Human natural killer NK92-MI cell line | Conditioned medium; differential centrifugation | Decreased proliferation, viability and cytotoxicity (production of IFN-γ, perforin and granzyme B) of NK cells. Increased growth of SW480 cells xenografted in nude mice | Immunosuppression of NK cells | lncRNA SNHG10 promotes the accumulation of INHBC (Inhibin Subunit Beta C) in NK cells, a member of the TGF-β superfamily | [56] |
lncRNA UCA1 (urothelial carcinoma-associated 1) | Cetuximab-resistant Caco2-CR cells | Parental human colon cancer Caco-2 cells | Serum from patients with colorectal cancer; centrifugation; conditioned medium from Caco-2 cells; ExoQuick TC kit (SBI) | Resistance to cetuximab in vitro and in vivo (experimental); transfer of resistance to sensitive cells | Resistance cetuximab, biomarker response treatment | Sponges miR-495 that exhausts the MET receptor tyrosine kinase and its ligand HGF; LncRNA UCA1 proved also to promote 5-FU resistance by sponging miR-204-5p, leading to the activation of the CREB1/BCL2/RAB22A axis | [129,130,131] |
lncRNA UCA1 (urothelial carcinoma-associated 1) | Colorectal cancer cells | Human colon cancer CT116, DLD1, SW480, RKO and HT-29 cell lines | Upregulated in CRC. Increased proliferation, migration and invasiveness of colonic cell in vitro; enhanced metastatic potential (experimental) | Upregulated in CRC; increased proliferation in vitro and in vivo | Metastasis? | Sponges miR-143, which exhausts MYO6 | [132] |
lncRNA WEE2-AS1 | CAFs | Colorectal cancer cells (HCT 116, HT-29 cells); AOM/DSS experimental carcinogenesis | Conditioned medium from human CAFs and control fibroblasts; plasma from patients with CRC; differential centrifugation | Inhibition of Hippo pathway | Increased cancer cell proliferation in vitro; promotes experimental carcinogenesis in mouse; High level in plasma of patients with CRC associated with poor prognoses | Increased MOB1A proteasomal degradation by enhancing its binding to the E3 ligase praja2. | [133] |
circ_0000338 | Human colon cancer cells (human colon cancer SW-480 and HCT-116 cells) | Colon cancer cells | Serum from patients with CRC; conditioned medium; differential centrifugation | Upregulated in human colorectal cancers | Resistance to 5-FU, transfer of resistance to sensitive cells | Sponges miR-217 and miR-485-3p | [134] |
circ-ABCC1 (hsa_circ_0000677) | CD133+, CD133-Caco-2 and HCT15 colon cancer cells | Caco-2 and HCT15 colon cancer cells | Conditioned medium of the human colon cancer Caco-2 and HCT-15 cells; ExoQuick precipitation reagent (Invitrogen) | Activation of Wnt signaling pathway | Cancer cell stemness | Interaction and translocation of β-catenin to the nucleus | [135] |
circ-FBXW7 | FHC cells, engineered exosomes | Human colon cancer SW-480 and HCT-116 cell derivatives resistant to oxaliplatin | Conditioned medium from FHC cells; ultracentrifugation; electroporation of circ-FBXW7 into exosomes | Restauration of sensitivity to oxaliplatin | Cancer nanotherapy; engineered exosomes | Sponges miR-18b-5p | [136] |
circ_IFT80 | Human colorecta cancers | Human colon cancer SW480 and SW620 cells | Serum from patients with colorectal cancers; ExoQuick precipitation kit (SBI, System Biosciences) | Increased SW480 and SW620 cell proliferation; reduced radiosensitivity; increased growth of SW-480 cells xenografted in nude mice | Radioresistance | Sponges miR-296-5p leading to upregulation of the RNA binding protein musashi1 | [137] |
circLPAR1 | Normal colonic epithelial cells | Colorectal cancer cells | Plasma from patients with colorectal cancer; ExoQuick Plasma Prep with Thrombin kit (SBI, USA); conditioned medium from human colonic epithelial cells FHC cells and colon cancer HCT116 and DLD1 cells; ExoQuick TC kit (SBI, USA) | Decreased during CRC development, normalized after tumor resection | Diagnosis | circLPAR1 binds eIF3h and suppresses the METTL3-eIF3h interaction, decreasing the translation of oncogene BRD4 | [138] |
circN4BP2L2 | CAFs | Human colon cancer cells (Lovo cell line) | Conditioned medium from CAFs and control fibroblasts; differential centrifugation | Increased proliferation and migration in vitro; increased tumor growth and experimental metastases | Liver metastasis (experimental) | Sponges miR-664b-3p, which exhausts HMGB3 (high mobility group box 3) involved in Wnt signaling | [139] |
circN4BP2L2 | CAFs | Human colon cancer cells (Lovo cell line) | Conditioned medium from CAFs and control fibroblasts; differential centrifugation | Increased cell proliferation, decreased apoptosis | Cancer cells stemness and oxaliplatin resistance | Interacts with the RNA binding protein EIF4A3, leading to its upregulation and activation of the PI3K/AKT signaling pathway | [140] |
circPABPC1 | Colon cancer cells | NA | Plasma from patients with colorectal cancer; ExoQuick Exosome Precipitation Solution (SBI); conditioned medium of the human colon cancer Caco-2, SW60 and LoVo cells | Recruitment of KDM4C lysine demethylase to the promoter of the transcriptional regulating factor HMGA2, leading to upregulation of effectors of EMT; protection of ADAM19 and BMP4 transcripts from miR-874/miR-1292; decreased colon cancer SW620 and Lovo cell proliferation, invasion and migration in vitro and in vivo (xenograft growth of SW480 cells and experimental liver metastasis) | Liver metastasis | [141] | |
circPACRGL | Colon cancer cells (HCT116 and SW48 cells) | Colon cancer cells, polymorphonuclear neutrophils | Human colon cancer HCT116 and SW48 cells; differential centrifugation | Activation of TGF-β1 pathways | Promotes proliferation, migration and invasion of colorectal cancer cells; drives N1/N2 neutrophil differentiation | Sponges miR-142-3p/miR-506-3p that exhausts TGFB1 transcripts | [142] |
circRHOBTB3 | Human colon cancer RKO, SW480, HCT8 and HCT116 cells and NCM4060 colonic epithelial cells | NA | Serum from healthy individuals and patients with colorectal cancers; conditioned medium; ultracentrifugation | Tumor-suppressive role in CRC, excreted out of cells to sustain cancer cell fitness; intracellular accumulation inhibits EMT, cell proliferation and invasion | Therapeutic strategy? | Decreased circRHOBTB3 accumulation in tumor samples, increased in circulating exosomes | [77] |
ciRS-122 (hsa_circ_0005963) | Oxaliplatin-resistant SW480 and HCT-116 cell lines | SW480 and HCT-116 parental cell lines | Conditioned medium of the human colon cancer SW-480 and HCT-116 cells; differential centrifugation | PK2 up-regulation promotes glycolysis and drug resistance | Resistance to oxaliplatin, transfer of resistance to sensitive cells | Sponges miR-122 that exhausts pyruvate kinase M1/2 (PKM2) | [143] |
3. Role of Extracellular Vesicles on Premetastatic Niche Formation
3.1. EV Protein Cargo in Premetastatic Niche Formation
3.2. EV ncRNA Cargo in Premetastatic Niche Formation
3.3. Stroma-Derived EVs in Premetastatic Niche Formation
4. Extracellular Vesicles in Colorectal Cancer Diagnosis and Follow-Up
4.1. EV Lipid Cargo as Biomarker for the Diagnosis and Prognosis of CRC
4.2. EV Protein Cargo as Biomarker for the Diagnostic and Prognostic of CRC
4.3. EV Nucleic Acid Cargo as Biomarker for the Diagnostic and Prognostic of CRC
5. Extracellular Vesicles and Colorectal Cancer Cells’ Response to Conventional and Targeted Therapies
6. Exosomes for Colorectal Cancer Nanotherapy
6.1. Preclinical Studies
6.2. Clinical Trials
Type, Origin of Exosomes | Official Title of the Study | Biological, Clinical Parameters | Type of Cancer | Type | Clinical Trials.Gov Identifier |
---|---|---|---|---|---|
Exosomes from peripheral venous blood drawn immediately prior to surgery | A Study of Imaging, Blood, and Tissue Samples to Guide Treatment of Colon Cancer and Related Liver Tumors | Diagnosis of colon cancer, prognosis of spreading to other organs | Colon | Observational | NCT03432806 |
Exosomes from blood sample | Identification of New Diagnostic Protein Markers for Colorectal Cancer | Number, size and protein composition of blood exosomes; diagnosis of colorectal cancer | Colorectal | Observational | NCT04394572 |
Exosomes from serum samples of patients before, during and after chemoradiation therapy | Exosomes in Rectal Cancer | Exosomal biomarkers assessment; exosomal expression; functional evaluation of exosomes in malignant colonic organoids and mouse models of colorectal cancer | Rectal | Observational | NCT03874559 |
Exosome RNA from peripheral blood samples before chemoradiotherapy | Study on Predictive Biomarkers of Neoadjuvant Chemoradiotherapy for Rectal Cancer | Biomarkers for response and toxicity to neoadjuvant therapy; treatment optimization | Rectal | Observational | NCT04227886 |
Protein content and tumor DNA in extracellular vesicles from blood of patients before during and after chemoradiation therapy | A Prospective Feasibility Study Evaluating Extracellular Vesicles Obtained by Liquid Biopsy for Neoadjuvant Treatment Response Assessment in Rectal Cancer | Biomarkers of the response of rectum cancer to neoadjuvant treatment | Rectal | Observational | NCT04852653 |
Exosomes from stored blood samples of patients diagnosed with colorectal cancer between 2008 and 2012 | Contents of Circulating Extracellular Vesicles: Biomarkers in Colorectal Cancer Patients (ExoColon) | Prognosis value of size, number and content (protein, lipid, RNA…) of circulating exosomes | Colorectal | Observational | NCT04523389 |
Exosomes from serum samples of patients following psychological intervention | Impact of Group Psychological Interventions on Extracellular Vesicles in People Who Had Cancer (MindGAP-P) | Impact of psychological intervention on the blood concentration of extracellular vesicles and patient outcome | Breast, colorectal cancer | Observational | NCT04298398 |
Levels of the cytokines IL-6, IL-8, IL-10 and IL-12 in microparticles and serum | The Relationship Between Relaxation or Wheat Germ Juice to the Immune Indices and Quality of Life (QoL) in Colorectal Cancer Patients on Adjuvant Chemotherapy | Impact of physical and psychological well-being on proinflammatory cytokine levels in patients with colorectal cancer | Colorectal cancer stage II or III treated with adjuvant chemotherapy (capecitabine or FU-5 treatment, conjoined with oxaliplatin or capecitabine alone following curative surgery) | Observational | NCT01991080 |
Blood microparticles | Microparticles in Peritoneal Carcinomatosis of Colorectal Origin | Characterization of microparticulate signature from the blood of patients with peritoneal carcinomatosis of colorectal origin; comparison with colorectal cancer without peritoneal carcinomatosis | Colorectal cancer patient with or without peritoneal carcinosis | Clinical trial, early diagnosis of peritoneal carcinomatosis of colorectal cancer | NCT03969784 |
Changes of PD-L1 expression on exosomes in peripheral blood after treatment of patients with toripalimab | Phase II Study of Toripalimab Plus Stereotactic Body Radiotherapy in Colorectal Cancer Patients with Oligometastasis | Response to immunotherapy (immune checkpoint inhibition) | Metastatic colorectal cancer | Clinical trial, phase 2 | NCT03927898 |
Exosomes from serum samples of patients before, during and after radiotherapy | Early Biomarkers of Tumor Response in High Dose Hypofractionated Radiotherapy Word Package 3: Immune Response | Biomarker of immune response | Liver metastasis from colorectal cancer, hepatocarcinoma | Clinical trial | NCT02439008 |
Exosomes from serum samples of patients during treatment | Tyrosine Kinase Inhibitor (TKI) + Anti-PD-1 Antibody in TKI-responded Microsatellite Stability/Proficient Mismatch Repair (MSS/pMMR) Metastatic Colorectal Adenocarcinoma | Safety of tyrosine kinase inhibitor in combination with anti-PD-1 antibody in TKI-responded MSS metastatic colorectal adenocarcinoma | Metastatic colorectal cancer | Clinical trial, phase 2 | NCT04483219 |
Measurement of tissue factor-bearing microparticles (tumor origin) | Enoxaparin Thromboprophylaxis in Cancer Patients with Elevated Tissue Factor Bearing Microparticles (MicroTEC) | Evaluation of the efficiency of enoxaparin in preventing blood clots in the veins in participants who have cancer and also have high levels of tissue factor bearing microparticles in their blood | Metastatic colorectal, pancreas, nonsmall cell lung, ovary, gastric | Clinical trial, observation, prevention | NCT00908960 |
Blood microparticles | Cancer Associated Thrombosis and Isoquercetin (CATIQ) | Efficiency of isoquercetin to prevent venous thromboembolic events in cancer patients | Colorectal (stage IV), pancreas, nonsmall cell lung cancer | Clinical trial, phase II/III, prevention | NCT02195232 |
Curcumin conjugated with plant exosomes | Study investigating the ability of plant exosomes to deliver curcumin to normal and colon cancer tissue | Impact on immune modulation, cellular metabolism, and phospholipid profile; normal and malignant colon cells from who are undergoing surgery for newly diagnosed colon cancer | Colon | Clinical trial, phase 1 | NCT01294072 |
Cell-derived exosomes loaded with a synthetic lipid-tagged STAT6 antisense oligonucleotide | A Study of exoASO-STAT6 (CDK-004) in Patients with Advanced Hepatocellular Carcinoma (HCC) and Patients with Liver Metastases from Primary Gastric Cancer and Colorectal Cancer (CRC) | Reprogramming of immune suppressive M2 macrophage to proinflammatory M1 phenotype with potential for meaningful antitumor activity | Liver metastases from gastric and colorectal cancer, hepatocarcinoma | Clinical trial, phase 1 | NCT05375604 |
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 8, 1535750. [Google Scholar] [CrossRef]
- Witwer, K.W.; Goberdhan, D.C.; O’Driscoll, L.; Théry, C.; Welsh, J.A.; Blenkiron, C.; Buzás, E.I.; Vizio, D.D.; Erdbrügger, U.; Falcón-Pérez, J.M.; et al. Updating MISEV: Evolving the Minimal Requirements for Studies of Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12182. [Google Scholar] [CrossRef] [PubMed]
- Coumans, F.A.W.; Brisson, A.R.; Buzas, E.I.; Dignat-George, F.; Drees, E.E.E.; El-Andaloussi, S.; Emanueli, C.; Gasecka, A.; Hendrix, A.; Hill, A.F.; et al. Methodological Guidelines to Study Extracellular Vesicles. Circ. Res. 2017, 120, 1632–1648. [Google Scholar] [CrossRef] [PubMed]
- Cocucci, E.; Meldolesi, J. Ectosomes and Exosomes: Shedding the Confusion between Extracellular Vesicles. Trends Cell Biol. 2015, 25, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Samuel, M.; Kumar, S.; Mathivanan, S. Ticket to a Bubble Ride: Cargo Sorting into Exosomes and Extracellular Vesicles. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2019, 1867, 140203. [Google Scholar] [CrossRef]
- Juan, T.; Fürthauer, M. Biogenesis and Function of ESCRT-Dependent Extracellular Vesicles. Semin. Cell Dev. Biol. 2018, 74, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Fussenegger, M. Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering. Adv. Sci. 2021, 8, 2003505. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Zhang, Q.; Jiang, L. Current Knowledge on Exosome Biogenesis, Cargo-Sorting Mechanism and Therapeutic Implications. Membranes 2022, 12, 498. [Google Scholar] [CrossRef] [PubMed]
- Battistelli, M.; Falcieri, E. Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. Biology 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Freitas, D.; Kim, H.S.; Fabijanic, K.; Li, Z.; Chen, H.; Mark, M.T.; Molina, H.; Martin, A.B.; Bojmar, L.; et al. Identification of Distinct Nanoparticles and Subsets of Extracellular Vesicles by Asymmetric Flow Field-Flow Fractionation. Nat. Cell Biol. 2018, 20, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, D.K.; Fenix, A.M.; Franklin, J.L.; Higginbotham, J.N.; Zhang, Q.; Zimmerman, L.J.; Liebler, D.C.; Ping, J.; Liu, Q.; Evans, R.; et al. Reassessment of Exosome Composition. Cell 2019, 177, 428–445.e18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Higginbotham, J.N.; Jeppesen, D.K.; Yang, Y.-P.; Li, W.; McKinley, E.T.; Graves-Deal, R.; Ping, J.; Britain, C.M.; Dorsett, K.A.; et al. Transfer of Functional Cargo in Exomeres. Cell Rep. 2019, 27, 940–954.e6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jeppesen, D.K.; Higginbotham, J.N.; Graves-Deal, R.; Trinh, V.Q.; Ramirez, M.A.; Sohn, Y.; Neininger, A.C.; Taneja, N.; McKinley, E.T.; et al. Supermeres Are Functional Extracellular Nanoparticles Replete with Disease Biomarkers and Therapeutic Targets. Nat Cell Biol. 2021, 23, 1240–1254. [Google Scholar] [CrossRef] [PubMed]
- Gerotziafas, G.T.; Taher, A.; Abdel-Razeq, H.; AboElnazar, E.; Spyropoulos, A.C.; Shemmari, S.E.; Larsen, A.K.; Elalamy, I.; Gligorov, J.; Lotz, J.P.; et al. A Predictive Score for Thrombosis Associated with Breast, Colorectal, Lung, or Ovarian Cancer: The Prospective COMPASS–Cancer-Associated Thrombosis Study. Oncologist 2017, 22, 1222–1231. [Google Scholar] [CrossRef]
- Mitrugno, A.; Yunga, S.T.; Sylman, J.L.; Zilberman-Rudenko, J.; Shirai, T.; Hebert, J.F.; Kayton, R.; Zhang, Y.; Nan, X.; Shatzel, J.J.; et al. The Role of Coagulation and Platelets in Colon Cancer-Associated Thrombosis. Am. J. Physiol. Cell Physiol. 2019, 316, C264–C273. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European Cancer Burden in 2020: Incidence and Mortality Estimates for 40 Countries and 25 Major Cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global Burden of Colorectal Cancer in 2020 and 2040: Incidence and Mortality Estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Shaukat, A.; Levin, T.R. Current and Future Colorectal Cancer Screening Strategies. Nat. Rev. Gastroenterol. 2022, 19, 521–531. [Google Scholar] [CrossRef]
- Fearon, E.R.; Vogelstein, B. A Genetic Model for Colorectal Tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Kotelevets, L.; Chastre, E.; Desmaële, D.; Couvreur, P. Nanotechnologies for the Treatment of Colon Cancer: From Old Drugs to New Hope. Int. J. Pharmaceut. 2016, 514, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Ullman, T.A.; Itzkowitz, S.H. Intestinal Inflammation and Cancer. Gastroenterology 2011, 140, 1807–1816.e1. [Google Scholar] [CrossRef] [PubMed]
- Guinney, J.; Dienstmann, R.; Wang, X.; Reyniès, A.D.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The Consensus Molecular Subtypes of Colorectal Cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Mammes, A.; Pasquier, J.; Mammes, O.; Conti, M.; Douard, R.; Loric, S. Extracellular Vesicles: General Features and Usefulness in Diagnosis and Therapeutic Management of Colorectal Cancer. World J. Gastrointest. Oncol. 2021, 13, 1561–1598. [Google Scholar] [CrossRef] [PubMed]
- Glass, S.E.; Coffey, R.J. Recent Advances in the Study of Extracellular Vesicles in Colorectal Cancer. Gastroenterology 2022, 163, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Scavo, M.P.; Rizzi, F.; Depalo, N.; Fanizza, E.; Ingrosso, C.; Curri, M.L.; Giannelli, G. A Possible Role of FZD10 Delivering Exosomes Derived from Colon Cancers Cell Lines in Inducing Activation of Epithelial–Mesenchymal Transition in Normal Colon Epithelial Cell Line. Int. J. Mol. Sci. 2020, 21, 6705. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Yang, J.; Shang, G.; Zhang, Z.; Niu, S.; Liu, Y.; Liu, H.; Jing, J.; Fang, Y. Exosomal MiR-224-5p from Colorectal Cancer Cells Promotes Malignant Transformation of Human Normal Colon Epithelial Cells by Promoting Cell Proliferation through Downregulation of CMTM4. Oxid. Med. Cell Longev. 2022, 2022, 5983629. [Google Scholar] [CrossRef]
- Mulvey, H.E.; Chang, A.; Adler, J.; Tatto, M.D.; Perez, K.; Quesenberry, P.J.; Chatterjee, D. Extracellular Vesicle-Mediated Phenotype Switching in Malignant and Non-Malignant Colon Cells. Bmc. Cancer 2015, 15, 571. [Google Scholar] [CrossRef]
- Andrijes, R.; Hejmadi, R.K.; Pugh, M.; Rajesh, S.; Novitskaya, V.; Ibrahim, M.; Overduin, M.; Tselepis, C.; Middleton, G.W.; Győrffy, B.; et al. Tetraspanin 6 Is a Regulator of Carcinogenesis in Colorectal Cancer. Proc. Natl. Acad. Sci. USA 2021, 118, e2011411118. [Google Scholar] [CrossRef]
- Demory-Beckler, M.; Higginbotham, J.N.; Franklin, J.L.; Ham, A.-J.; Halvey, P.J.; Imasuen, I.E.; Whitwell, C.; Li, M.; Liebler, D.C.; Coffey, R.J. Proteomic Analysis of Exosomes from Mutant KRAS Colon Cancer Cells Identifies Intercellular Transfer of Mutant KRAS*. Mol. Cell. Proteom. 2013, 12, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Cha, D.J.; Franklin, J.L.; Dou, Y.; Liu, Q.; Higginbotham, J.N.; Demory-Beckler, M.; Weaver, A.M.; Vickers, K.; Prasad, N.; Levy, S.; et al. KRAS-Dependent Sorting of MiRNA to Exosomes. eLife 2015, 4, e07197. [Google Scholar] [CrossRef]
- Bhome, R.; Emaduddin, M.; James, V.; House, L.M.; Thirdborough, S.M.; Mellone, M.; Tulkens, J.; Primrose, J.N.; Thomas, G.J.; Wever, O.D.; et al. Epithelial to Mesenchymal Transition Influences Fibroblast Phenotype in Colorectal Cancer by Altering MiR-200 Levels in Extracellular Vesicles. J. Extracell. Vesicles 2022, 11, e12226. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Greening, D.W.; Chen, M.; Xu, R.; Ji, H.; Simpson, R.J. Exosomes Derived from Human Primary and Metastatic Colorectal Cancer Cells Contribute to Functional Heterogeneity of Activated Fibroblasts by Reprogramming Their Proteome. Proteomics 2019, 19, 1800148. [Google Scholar] [CrossRef] [PubMed]
- Dokhanchi, M.; Pakravan, K.; Zareian, S.; Hussen, B.M.; Farid, M.; Razmara, E.; Mossahebi-Mohammadi, M.; Cho, W.C.; Babashah, S. Colorectal Cancer Cell-Derived Extracellular Vesicles Transfer MiR-221-3p to Promote Endothelial Cell Angiogenesis via Targeting Suppressor of Cytokine Signaling 3. Life Sci. 2021, 285, 119937. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Ye, A.; Ye, W.; Liao, X.; Qin, G.; Xu, Y.; Yin, Y.; Luo, H.; Yi, M.; Xian, L.; et al. Cancer-Secreted Exosomal MiR-21-5p Induces Angiogenesis and Vascular Permeability by Targeting KRIT1. Cell Death Dis. 2021, 12, 576. [Google Scholar] [CrossRef]
- Nijhuis, A.; Thompson, H.; Adam, J.; Parker, A.; Gammon, L.; Lewis, A.; Bundy, J.G.; Soga, T.; Jalaly, A.; Propper, D.; et al. Remodelling of MicroRNAs in Colorectal Cancer by Hypoxia Alters Metabolism Profiles and 5-Fluorouracil Resistance. Hum. Mol. Genet. 2017, 26, ddx059. [Google Scholar] [CrossRef]
- Shang, A.; Wang, X.; Gu, C.; Liu, W.; Sun, J.; Zeng, B.; Chen, C.; Ji, P.; Wu, J.; Quan, W.; et al. Exosomal MiR-183-5p Promotes Angiogenesis in Colorectal Cancer by Regulation of FOXO1. Aging 2020, 12, 8352–8371. [Google Scholar] [CrossRef]
- Jiang, K.; Chen, H.; Fang, Y.; Chen, L.; Zhong, C.; Bu, T.; Dai, S.; Pan, X.; Fu, D.; Qian, Y.; et al. Exosomal ANGPTL1 Attenuates Colorectal Cancer Liver Metastasis by Regulating Kupffer Cell Secretion Pattern and Impeding MMP9 Induced Vascular Leakiness. J. Exp. Clin. Canc. Res. 2021, 40, 21. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Mao, R.; Zhang, Y.; Wen, J.; Liu, Q.; Liu, Y.; Zhang, T. DNAJB8 in Small Extracellular Vesicles Promotes Oxaliplatin Resistance through TP53/MDR1 Pathway in Colon Cancer. Cell Death Dis. 2022, 13, 151. [Google Scholar] [CrossRef]
- Gobbo, J.; Marcion, G.; Cordonnier, M.; Dias, A.M.M.; Pernet, N.; Hammann, A.; Richaud, S.; Mjahed, H.; Isambert, N.; Clausse, V.; et al. Restoring Anticancer Immune Response by Targeting Tumor-Derived Exosomes with a HSP70 Peptide Aptamer. J. Natl. Cancer Inst. 2016, 108, djv330. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.-Y.; Zhang, P.; He, T.-C.; Han, J.-H.; Zhang, R.; Lin, J.; Fan, J.; Lu, L.; Zhu, W.-W.; et al. Cancer-Derived Exosomal HSPC111 Promotes Colorectal Cancer Liver Metastasis by Reprogramming Lipid Metabolism in Cancer-Associated Fibroblasts. Cell Death Dis. 2022, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Ye, X.; Vishwakarma, V.; Preet, R.; Dixon, D.A. CRC-Derived Exosomes Containing the RNA Binding Protein HuR Promote Lung Cell Proliferation by Stabilizing c-Myc MRNA. Cancer Biol. Ther. 2022, 23, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xie, S.; Liang, B.; Tang, Q.; Liu, H.; Wang, D.; Huang, G. Exosomal IDH1 Increases the Resistance of Colorectal Cancer Cells to 5-Fluorouracil. J. Cancer 2021, 12, 4862–4872. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhou, Y.; Fang, Y.; Li, Z.; Gu, X.; Xiang, J. Colorectal Cancer Exosomes Induce Lymphatic Network Remodeling in Lymph Nodes. Int. J. Cancer 2019, 145, 1648–1659. [Google Scholar] [CrossRef]
- Ji, Q.; Zhou, L.; Sui, H.; Yang, L.; Wu, X.; Song, Q.; Jia, R.; Li, R.; Sun, J.; Wang, Z.; et al. Primary Tumors Release ITGBL1-Rich Extracellular Vesicles to Promote Distal Metastatic Tumor Growth through Fibroblast-Niche Formation. Nat. Commun. 2020, 11, 1211. [Google Scholar] [CrossRef]
- Huang, M.; Liu, M.; Huang, D.; Ma, Y.; Ye, G.; Wen, Q.; Li, Y.; Deng, L.; Qi, Q.; Liu, T.; et al. Tumor Perivascular Cell-Derived Extracellular Vesicles Promote Angiogenesis via the Gas6/Axl Pathway. Cancer Lett. 2022, 524, 131–143. [Google Scholar] [CrossRef]
- Li, F.; Zhan, L.; Dong, Q.; Wang, Q.; Wang, Y.; Li, X.; Zhang, Y.; Zhang, J. Tumor-Derived Exosome-Educated Hepatic Stellate Cells Regulate Lactate Metabolism of Hypoxic Colorectal Tumor Cells via the IL-6/STAT3 Pathway to Confer Drug Resistance. Oncotarget. Ther. 2020, 13, 7851–7864. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, R.-X.; Chan, K.-W.; Hu, J.; Zhang, J.; Wei, L.; Tan, H.; Yang, X.; Liu, H. Exosomal Transfer of P-STAT3 Promotes Acquired 5-FU Resistance in Colorectal Cancer Cells. J. Exp. Clin. Cancer Res. 2019, 38, 320. [Google Scholar] [CrossRef]
- Hu, Y.B.; Yan, C.; Mu, L.; Mi, Y.L.; Zhao, H.; Hu, H.; Li, X.-L.; Tao, D.-D.; Wu, Y.-Q.; Gong, J.-P.; et al. Exosomal Wnt-Induced Dedifferentiation of Colorectal Cancer Cells Contributes to Chemotherapy Resistance. Oncogene 2019, 38, 1951–1965. [Google Scholar] [CrossRef]
- Hu, H.-Y.; Yu, C.-H.; Zhang, H.-H.; Zhang, S.-Z.; Yu, W.-Y.; Yang, Y.; Chen, Q. Exosomal MiR-1229 Derived from Colorectal Cancer Cells Promotes Angiogenesis by Targeting HIPK2. Int. J. Biol. Macromol. 2019, 132, 470–477. [Google Scholar] [CrossRef]
- Yamada, N.; Tsujimura, N.; Kumazaki, M.; Shinohara, H.; Taniguchi, K.; Nakagawa, Y.; Naoe, T.; Akao, Y. Colorectal Cancer Cell-Derived Microvesicles Containing MicroRNA-1246 Promote Angiogenesis by Activating Smad 1/5/8 Signaling Elicited by PML down-Regulation in Endothelial Cells. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2014, 1839, 1256–1272. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Chen, M.; Qi, M.; Ye, G.; Pan, J.; Shi, C.; Yang, Y.; Zhao, L.; Mo, X.; Zhang, Y.; et al. Perivascular Cell-derived Extracellular Vesicles Stimulate Colorectal Cancer Revascularization after Withdrawal of Antiangiogenic Drugs. J. Extracell. Vesicles 2021, 10, e12096. [Google Scholar] [CrossRef] [PubMed]
- Robbins, P.D.; Morelli, A.E. Regulation of Immune Responses by Extracellular Vesicles. Nat. Rev. Immunol. 2014, 14, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yan, Y.; Peng, J.; Thakur, A.; Bai, N.; Yang, K.; Xu, Z. Decoding Roles of Exosomal LncRNAs in Tumor-Immune Regulation and Therapeutic Potential. Cancers 2023, 15, 286. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, C.; Wangmo, D.; Subramanian, S. Tumor-Secreted Extracellular Vesicles Regulate T-Cell Costimulation and Can Be Manipulated To Induce Tumor-Specific T-Cell Responses. Gastroenterology 2021, 161, 560–574.e11. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, Y.; Ou, W.; Wang, Y.; Dong, D.; Peng, X.; Luo, Y. Exosomal LncRNA SNHG10 Derived from Colorectal Cancer Cells Suppresses Natural Killer Cell Cytotoxicity by Upregulating INHBC. Cancer Cell Int. 2021, 21, 528. [Google Scholar] [CrossRef]
- Renovato-Martins, M.; Gomes, A.C.; Amorim, C.S.; Moraes, J.A. The Role of Macrophage-Derived Extracellular Vesicles in Gastrointestinal Cancers. In Gastrointestinal Cancers; JA, M.D., Ed.; Exon Publications: Brisbane, Australia, 2022; pp. 57–72. ISBN 9780645332063. [Google Scholar]
- Yin, Y.; Liu, B.; Cao, Y.; Yao, S.; Liu, Y.; Jin, G.; Qin, Y.; Chen, Y.; Cui, K.; Zhou, L.; et al. Colorectal Cancer-Derived Small Extracellular Vesicles Promote Tumor Immune Evasion by Upregulating PD-L1 Expression in Tumor-Associated Macrophages. Adv. Sci. 2022, 9, 2102620. [Google Scholar] [CrossRef]
- Ma, Y.-S.; Wu, T.-M.; Ling, C.-C.; Yu, F.; Zhang, J.; Cao, P.-S.; Gu, L.-P.; Wang, H.-M.; Xu, H.; Li, L.; et al. M2 Macrophage-Derived Exosomal MicroRNA-155-5p Promotes the Immune Escape of Colon Cancer by Downregulating ZC3H12B. Mol. Ther. Oncolytics. 2021, 20, 484–498. [Google Scholar] [CrossRef]
- Lan, J.; Li, S.; Feng, X.; Lu, L.; Fuqing, H.; Da, S.; Hou, Z.; Wei, W.; Luo, X.; Jing, W.; et al. M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer. Cancer Res. 2019, 79, 146–158. [Google Scholar] [CrossRef]
- Guo, J.; Wang, X.; Guo, Q.; Zhu, S.; Li, P.; Zhang, S.; Min, L. M2 Macrophage Derived Extracellular Vesicle-Mediated Transfer of MiR-186-5p Promotes Colon Cancer Progression by Targeting DLC1. Int. J. Biol. Sci. 2022, 18, 1663–1676. [Google Scholar] [CrossRef]
- Cianciaruso, C.; Beltraminelli, T.; Duval, F.; Nassiri, S.; Hamelin, R.; Mozes, A.; Gallart-Ayala, H.; Torres, G.C.; Torchia, B.; Ries, C.H.; et al. Molecular Profiling and Functional Analysis of Macrophage-Derived Tumor Extracellular Vesicles. Cell Rep. 2019, 27, 3062–3080.e11. [Google Scholar] [CrossRef] [PubMed]
- Ning, T.; Li, J.; He, Y.; Zhang, H.; Wang, X.; Deng, T.; Liu, R.; Li, H.; Bai, M.; Fan, Q.; et al. Exosomal MiR-208b Related with Oxaliplatin Resistance Promotes Treg Expansion in Colorectal Cancer. Mol. Ther. 2021, 29, 2723–2736. [Google Scholar] [CrossRef]
- Hwang, W.-L.; Lan, H.-Y.; Cheng, W.-C.; Huang, S.-C.; Yang, M.-H. Tumor Stem-like Cell-Derived Exosomal RNAs Prime Neutrophils for Facilitating Tumorigenesis of Colon Cancer. J. Hematol. Oncol. 2019, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Plantureux, L.; Mège, D.; Crescence, L.; Carminita, E.; Robert, S.; Cointe, S.; Brouilly, N.; Ezzedine, W.; Dignat-George, F.; Dubois, C.; et al. The Interaction of Platelets with Colorectal Cancer Cells Inhibits Tumor Growth but Promotes Metastasis. Cancer Res. 2020, 80, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, A.; Wever, O.D. Systemically Circulating Bacterial Extracellular Vesicles: Origin, Fate, and Function. Trends Microbiol. 2022, 30, 213–216. [Google Scholar] [CrossRef]
- Kang, C.; Ban, M.; Choi, E.-J.; Moon, H.-G.; Jeon, J.-S.; Kim, D.-K.; Park, S.-K.; Jeon, S.G.; Roh, T.-Y.; Myung, S.-J.; et al. Extracellular Vesicles Derived from Gut Microbiota, Especially Akkermansia Muciniphila, Protect the Progression of Dextran Sulfate Sodium-Induced Colitis. PLoS ONE 2013, 8, e76520. [Google Scholar] [CrossRef]
- Ashrafian, F.; Behrouzi, A.; Shahriary, A.; Badi, S.A.; Davari, M.; Khatami, S.; Jamnani, F.R.; Fateh, A.; Vaziri, F.; Siadat, S.D. Comparative Study of Effect of Akkermansia Muciniphila and Its Extracellular Vesicles on Toll-like Receptors and Tight Junction. Gastroenterol. Hepatol. Bed Bench 2019, 12, 163–168. [Google Scholar]
- Shen, Y.; Torchia, M.L.G.; Lawson, G.W.; Karp, C.L.; Ashwell, J.D.; Mazmanian, S.K. Outer Membrane Vesicles of a Human Commensal Mediate Immune Regulation and Disease Protection. Cell Host Microbe 2012, 12, 509–520. [Google Scholar] [CrossRef]
- Liang, L.; Yang, C.; Liu, L.; Mai, G.; Li, H.; Wu, L.; Jin, M.; Chen, Y. Commensal Bacteria-Derived Extracellular Vesicles Suppress Ulcerative Colitis through Regulating the Macrophages Polarization and Remodeling the Gut Microbiota. Microb. Cell Fact. 2022, 21, 88. [Google Scholar] [CrossRef]
- Bulut, E.A.; Kocabas, B.B.; Yazar, V.; Aykut, G.; Guler, U.; Salih, B.; Yilmaz, N.S.; Ayanoglu, I.C.; Polat, M.M.; Akcali, K.C.; et al. Human Gut Commensal Membrane Vesicles Modulate Inflammation by Generating M2-like Macrophages and Myeloid-Derived Suppressor Cells. J. Immunol. 2020, 205, 2707–2718. [Google Scholar] [CrossRef]
- Lin, L.-T.; Shi, Y.-C.; Choong, C.-Y.; Tai, C.-J. The Fruits of Paris Polyphylla Inhibit Colorectal Cancer Cell Migration Induced by Fusobacterium Nucleatum-Derived Extracellular Vesicles. Molecules 2021, 26, 4081. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Chen, J.; Chen, F.; Zeng, Q.; Liu, W.-L.; Zhang, G. Exosomes Derived from Fusobacterium Nucleatum-Infected Colorectal Cancer Cells Facilitate Tumour Metastasis by Selectively Carrying MiR-1246/92b-3p/27a-3p and CXCL16. Gut 2021, 70, 1507–1519. [Google Scholar] [CrossRef]
- Gul, L.; Modos, D.; Fonseca, S.; Madgwick, M.; Thomas, J.P.; Sudhakar, P.; Booth, C.; Stentz, R.; Carding, S.R.; Korcsmaros, T. Extracellular Vesicles Produced by the Human Commensal Gut Bacterium Bacteroides Thetaiotaomicron Affect Host Immune Pathways in a Cell-type Specific Manner That Are Altered in Inflammatory Bowel Disease. J. Extracell. Vesicles 2022, 11, e12189. [Google Scholar] [CrossRef]
- Teng, Y.; Ren, Y.; Hu, X.; Mu, J.; Samykutty, A.; Zhuang, X.; Deng, Z.; Kumar, A.; Zhang, L.; Merchant, M.L.; et al. MVP-Mediated Exosomal Sorting of MiR-193a Promotes Colon Cancer Progression. Nat. Commun. 2017, 8, 14448. [Google Scholar] [CrossRef]
- Mizoguchi, A.; Takayama, A.; Arai, T.; Kawauchi, J.; Sudo, H. MicroRNA-8073: Tumor Suppressor and Potential Therapeutic Treatment. PLoS ONE 2018, 13, e0209750. [Google Scholar] [CrossRef]
- Chen, C.; Yu, H.; Han, F.; Lai, X.; Ye, K.; Lei, S.; Mai, M.; Lai, M.; Zhang, H. Tumor-Suppressive CircRHOBTB3 Is Excreted out of Cells via Exosome to Sustain Colorectal Cancer Cell Fitness. Mol. Cancer 2022, 21, 46. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Y.; Luo, X.; Jin, D.; Zhou, W.; Ju, Z.; Wang, D.; Meng, Q.; Wang, H.; Fu, X.; et al. Circular RNA CircRHOBTB3 Represses Metastasis by Regulating the HuR-Mediated MRNA Stability of PTBP1 in Colorectal Cancer. Theranostics 2021, 11, 7507–7526. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shen, L.; Li, F.; Yang, J.; Wan, X.; Ouyang, M. MicroRNA-16-5p-containing Exosomes Derived from Bone Marrow-derived Mesenchymal Stem Cells Inhibit Proliferation, Migration, and Invasion, While Promoting Apoptosis of Colorectal Cancer Cells by Downregulating ITGA2. J. Cell. Physiol. 2019, 234, 21380–21394. [Google Scholar] [CrossRef]
- Fu, F.; Jiang, W.; Zhou, L.; Chen, Z. Circulating Exosomal MiR-17-5p and MiR-92a-3p Predict Pathologic Stage and Grade of Colorectal Cancer. Transl. Oncol. 2018, 11, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Yin, Y.; Jin, H.; Liu, H.; Tian, W. Exosomal MicroRNA-19b Targets FBXW7 to Promote Colorectal Cancer Stem Cell Stemness and Induce Resistance to Radiotherapy. Kaohsiung J. Med. Sci. 2022, 38, 108–119. [Google Scholar] [CrossRef]
- Bhome, R.; Goh, R.W.; Bullock, M.D.; Pillar, N.; Thirdborough, S.M.; Mellone, M.; Mirnezami, R.; Galea, D.; Veselkov, K.; Gu, Q.; et al. Exosomal MicroRNAs Derived from Colorectal Cancer-Associated Fibroblasts: Role in Driving Cancer Progression. Aging 2017, 9, 2666–2694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.-H.; Tian, D.; Yang, Z.-C.; Li, J.-L. Exosomal MiR-21 Promotes Proliferation, Invasion and Therapy Resistance of Colon Adenocarcinoma Cells through Its Target PDCD4. Sci. Rep. 2020, 10, 8271. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Chen, T.; Zheng, X.; Yang, S.; Xu, K.; Chen, X.; Xu, F.; Wang, L.; Shen, Y.; Wang, T.; et al. Colorectal Cancer-Derived Small Extracellular Vesicles Establish an Inflammatory Premetastatic Niche in Liver Metastasis. Carcinogenesis 2018, 39, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- Uratani, R.; Toiyama, Y.; Kitajima, T.; Kawamura, M.; Hiro, J.; Kobayashi, M.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Mori, T.; et al. Diagnostic Potential of Cell-Free and Exosomal MicroRNAs in the Identification of Patients with High-Risk Colorectal Adenomas. PLoS ONE 2016, 11, e0160722. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, C. Exosomes MiR-22-3p Derived from Mesenchymal Stem Cells Suppress Colorectal Cancer Cell Proliferation and Invasion by Regulating RAP2B and PI3K/AKT Pathway. J. Oncol. 2021, 2021, 3874478. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, Y.; Pan, Y.; Lan, X.; Song, F.; Sun, J.; Zhou, K.; Liu, X.; Ren, X.; Wang, F.; et al. Cancer-Derived Exosomal MiR-25-3p Promotes Pre-Metastatic Niche Formation by Inducing Vascular Permeability and Angiogenesis. Nat. Commun. 2018, 9, 5395. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Si, M.; Yang, J.; Sun, S.; Wu, H.; Cui, S.; Qu, X.; Yu, X. Exosome-Encapsulated MiRNAs Contribute to CXCL12/CXCR4-Induced Liver Metastasis of Colorectal Cancer by Enhancing M2 Polarization of Macrophages. Cancer Lett. 2020, 474, 36–52. [Google Scholar] [CrossRef]
- Dou, R.; Liu, K.; Yang, C.; Zheng, J.; Shi, D.; Lin, X.; Wei, C.; Zhang, C.; Fang, Y.; Huang, S.; et al. EMT-cancer Cells-derived Exosomal MiR-27b-3p Promotes Circulating Tumour Cells-mediated Metastasis by Modulating Vascular Permeability in Colorectal Cancer. Clin. Transl. Med. 2021, 11, e595. [Google Scholar] [CrossRef]
- Hosseini, M.; Baghaei, K.; Amani, D.; Ebtekar, M. Tumor-Derived Exosomes Encapsulating MiR-34a Promote Apoptosis and Inhibit Migration and Tumor Progression of Colorectal Cancer Cells under in Vitro Condition. Daru. J. Pharm. Sci. 2021, 29, 267–278. [Google Scholar] [CrossRef]
- Hosseini, M.; Baghaei, K.; Hajivalili, M.; Zali, M.R.; Ebtekar, M.; Amani, D. The Anti-Tumor Effects of CT-26 Derived Exosomes Enriched by MicroRNA-34a on Murine Model of Colorectal Cancer. Life Sci. 2022, 290, 120234. [Google Scholar] [CrossRef]
- Yamada, N.O.; Heishima, K.; Akao, Y.; Senda, T. Extracellular Vesicles Containing MicroRNA-92a-3p Facilitate Partial Endothelial-Mesenchymal Transition and Angiogenesis in Endothelial Cells. Int. J. Mol. Sci. 2019, 20, 4406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.L.; Wang, W.; Lan, X.L.; Zeng, Z.C.; Liang, Y.S.; Yan, Y.R.; Song, F.Y.; Wang, F.F.; Zhu, X.H.; Liao, W.J.; et al. CAFs Secreted Exosomes Promote Metastasis and Chemotherapy Resistance by Enhancing Cell Stemness and Epithelial-Mesenchymal Transition in Colorectal Cancer. Mol. Cancer 2019, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, J.; Zhang, Q.; Liu, B.; Cheng, Y.; Zhang, Y.; Sun, Y.; Ge, H.; Liu, Y. Exosome-Mediated Transfer of MiR-93-5p from Cancer-Associated Fibroblasts Confer Radioresistance in Colorectal Cancer Cells by Downregulating FOXA1 and Upregulating TGFB3. J. Exp. Clin. Canc. Res. 2020, 39, 65. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, B.; Khalaj-Kondori, M.; Asadollahi, E.; Dizaj, L.P.; Sadeghizadeh, M. MSC-Derived Exosomes Suppress Colorectal Cancer Cell Proliferation and Metastasis via MiR-100/MTOR/MiR-143 Pathway. Int. J. Pharmaceut. 2022, 627, 122214. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Sun, P.; Leng, K.; Xu, Y.; Mei, L.; Han, P.; Zhang, B.; Yao, K.; Li, C.; et al. Colorectal Cancer-Derived Exosomal MiR-106b-3p Promotes Metastasis by down-Regulating DLC-1 Expression. Clin. Sci. 2020, 134, 419–434. [Google Scholar] [CrossRef]
- Yang, C.; Dou, R.; Wei, C.; Liu, K.; Shi, D.; Zhang, C.; Liu, Q.; Wang, S.; Xiong, B. Tumor-Derived Exosomal MicroRNA-106b-5p Activates EMT-Cancer Cell and M2-Subtype TAM Interaction to Facilitate CRC Metastasis. Mol. Ther. 2021, 29, 2088–2107. [Google Scholar] [CrossRef]
- Dai, X.; Xie, Y.; Dong, M. Cancer-Associated Fibroblasts Derived Extracellular Vesicles Promote Angiogenesis of Colorectal Adenocarcinoma Cells through MiR-135b-5p/FOXO1 Axis. Cancer Biol. Ther. 2022, 23, 76–88. [Google Scholar] [CrossRef]
- Yin, H.; Yu, S.; Xie, Y.; Dai, X.; Dong, M.; Sheng, C.; Hu, J. Cancer-Associated Fibroblasts-Derived Exosomes Upregulate MicroRNA-135b-5p to Promote Colorectal Cancer Cell Growth and Angiogenesis by Inhibiting Thioredoxin-Interacting Protein. Cell Signal 2021, 84, 110029. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Song, Y.; Si, M.; Sun, Y.; Liu, X.; Cui, S.; Qu, X.; Yu, X. Exosomal MiR-146a-5p and MiR-155-5p Promote CXCL12/CXCR7-Induced Metastasis of Colorectal Cancer by Crosstalk with Cancer-Associated Fibroblasts. Cell Death Dis. 2022, 13, 380. [Google Scholar] [CrossRef]
- Cheng, W.; Liao, T.; Lin, C.; Yuan, L.E.; Lan, H.; Lin, H.; Teng, H.; Chang, H.; Lin, C.; Yang, C.; et al. RAB27B-activated Secretion of Stem-like Tumor Exosomes Delivers the Biomarker MicroRNA-146a-5p, Which Promotes Tumorigenesis and Associates with an Immunosuppressive Tumor Microenvironment in Colorectal Cancer. Int. J. Cancer 2019, 145, 2209–2224. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.-S.; Zhang, X.-Y.; Tong, H.-X.; Yang, H.; Liu, W.-F.; Fan, J.; Zhou, J.; Hu, J. Low Expression of Exosomal MiR-150 Predicts Poor Prognosis in Colorectal Cancer Patients after Surgical Resections. Carcinogenesis 2022, 43, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Asadirad, A.; Baghaei, K.; Hashemi, S.M.; Dehnavi, S.; Ghanbarian, H.; Mortaz, E.; Anissian, A.; Aghdaei, H.A.; Amani, D. Dendritic Cell Immunotherapy with MiR-155 Enriched Tumor-Derived Exosome Suppressed Cancer Growth and Induced Antitumor Immune Responses in Murine Model of Colorectal Cancer Induced by CT26 Cell Line. Int. Immunopharmacol. 2022, 104, 108493. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Mi, Y.; Zheng, B.; Wei, P.; Gu, Y.; Zhang, Z.; Xu, Y.; Cai, S.; Li, X.; Li, D. Highly-metastatic Colorectal Cancer Cell Released MiR-181a-5p-rich Extracellular Vesicles Promote Liver Metastasis by Activating Hepatic Stellate Cells and Remodelling the Tumour Microenvironment. J. Extracell. Vesicles 2022, 11, e12186. [Google Scholar] [CrossRef]
- Takano, Y.; Masuda, T.; Iinuma, H.; Yamaguchi, R.; Sato, K.; Tobo, T.; Hirata, H.; Kuroda, Y.; Nambara, S.; Hayashi, N.; et al. Circulating Exosomal MicroRNA-203 Is Associated with Metastasis Possibly via Inducing Tumor-Associated Macrophages in Colorectal Cancer. Oncotarget 2017, 8, 78598–78613. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Yin, Y.; Jin, G.; Li, D.; Li, M.; Hu, Y.; Feng, Y.; Liu, Y.; Bian, Z.; Wang, X.; et al. Exosome-mediated Delivery of MiR-204-5p Inhibits Tumor Growth and Chemoresistance. Cancer Med. 2020, 9, 5989–5998. [Google Scholar] [CrossRef]
- Bigagli, E.; Luceri, C.; Guasti, D.; Cinci, L. Exosomes Secreted from Human Colon Cancer Cells Influence the Adhesion of Neighboring Metastatic Cells: Role of MicroRNA-210. Cancer Biol. Ther. 2016, 17, 1062–1069. [Google Scholar] [CrossRef]
- Yu, B.; Du, Q.; Li, H.; Liu, H.-Y.; Ye, X.; Zhu, B.; Zhai, Q.; Li, X.-X. Diagnostic Potential of Serum Exosomal Colorectal Neoplasia Differentially Expressed Long Non-Coding RNA (CRNDE-p) and MicroRNA-217 Expression in Colorectal Carcinoma. Oncotarget 2017, 8, 83745–83753. [Google Scholar] [CrossRef]
- Tian, F.; Wang, P.; Lin, D.; Dai, J.; Liu, Q.; Guan, Y.; Zhan, Y.; Yang, Y.; Wang, W.; Wang, J.; et al. Exosome-delivered MiR-221/222 Exacerbates Tumor Liver Metastasis by Targeting SPINT1 in Colorectal Cancer. Cancer Sci. 2021, 112, 3744–3755. [Google Scholar] [CrossRef]
- Zheng, Y.; Zeng, J.; Lin, D.; Xia, H.; Wang, X.; Chen, L.; Chen, H.; Huang, L.; Zeng, C. Extracellular Vesicles Derived from Cancer-Associated Fibroblast Carries MiR-224-5p Targeting SLC4A4 to Promote the Proliferation, Invasion and Migration of Colorectal Cancer Cells. Carcinogenesis 2021, 42, 1143–1153. [Google Scholar] [CrossRef]
- Yang, C.-K.; Hsu, H.-C.; Liu, Y.-H.; Tsai, W.-S.; Ma, C.-P.; Chen, Y.-T.; Tan, B.C.-M.; Lai, Y.-Y.; Chang, I.Y.-F.; Yang, C.; et al. EV-MiRome-Wide Profiling Uncovers MiR-320c for Detecting Metastatic Colorectal Cancer and Monitoring the Therapeutic Response. Cell Oncol. 2022, 45, 621–638. [Google Scholar] [CrossRef]
- Sun, X.; Lin, F.; Sun, W.; Zhu, W.; Fang, D.; Luo, L.; Li, S.; Zhang, W.; Jiang, L. Exosome-Transmitted MiRNA-335-5p Promotes Colorectal Cancer Invasion and Metastasis by Facilitating EMT via Targeting RASA1. Mol. Ther. Nucleic. Acids. 2021, 24, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Han, B.; Gao, S.; Wang, X.; Wang, Z.; Wang, F.; Zhang, J.; Xu, D.; Sun, B. Exosome-Encapsulated MicroRNAs as Circulating Biomarkers for Colorectal Cancer. Oncotargets 2017, 8, 60149–60158. [Google Scholar] [CrossRef]
- Yan, S.; Ren, X.; Yang, J.; Wang, J.; Zhang, Q.; Xu, D. Exosomal MiR-548c-5p Regulates Colorectal Cancer Cell Growth and Invasion Through HIF1A/CDC42 Axis. Oncotarget. Ther. 2020, 13, 9875–9885. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, Y.; Zhang, Q.; Liu, B.; Cheng, Y.; Zhang, Y.; Sun, Y.; Liu, J. Exosomal MiR-590-3p Derived from Cancer-Associated Fibroblasts Confers Radioresistance in Colorectal Cancer. Mol. Ther. Nucleic. Acids. 2021, 24, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Mi, Y.; Guan, B.; Zheng, B.; Wei, P.; Gu, Y.; Zhang, Z.; Cai, S.; Xu, Y.; Li, X.; et al. Tumor-Derived Exosomal MiR-934 Induces Macrophage M2 Polarization to Promote Liver Metastasis of Colorectal Cancer. J. Hematol. Oncol. 2020, 13, 156. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, J.; Yin, H.; Long, L.; Zheng, Z.; Wang, Q.; Chen, F.; Yu, X.; Zhou, Y. Exosomal MiR-1255b-5p Targets Human Telomerase Reverse Transcriptase in Colorectal Cancer Cells to Suppress Epithelial-to-mesenchymal Transition. Mol. Oncol. 2020, 14, 2589–2608. [Google Scholar] [CrossRef]
- Yan, S.; Liu, G.; Jin, C.; Wang, Z.; Duan, Q.; Xu, J.; Xu, D. MicroRNA-6869-5p Acts as a Tumor Suppressor via Targeting TLR4/NF-κB Signaling Pathway in Colorectal Cancer. J. Cell. Physiol. 2018, 233, 6660–6668. [Google Scholar] [CrossRef]
- Hui, B.; Lu, C.; Wang, J.; Xu, Y.; Yang, Y.; Ji, H.; Li, X.; Xu, L.; Wang, J.; Tang, W.; et al. Engineered Exosomes for Co-delivery of PGM5-AS1 and Oxaliplatin to Reverse Drug Resistance in Colon Cancer. J. Cell. Physiol. 2022, 237, 911–933. [Google Scholar] [CrossRef]
- Deng, X.; Ruan, H.; Zhang, X.; Xu, X.; Zhu, Y.; Peng, H.; Zhang, X.; Kong, F.; Guan, M. Long Noncoding RNA CCAL Transferred from Fibroblasts by Exosomes Promotes Chemoresistance of Colorectal Cancer Cells. Int. J. Cancer 2020, 146, 1700–1716. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Gao, S.; Jing, F.; Yang, Y.; Du, L.; Zheng, G.; Li, P.; Li, C.; Wang, C. Exosomal Long Noncoding RNA CRNDE-h as a Novel Serum-Based Biomarker for Diagnosis and Prognosis of Colorectal Cancer. Oncotargets 2016, 7, 85551–85563. [Google Scholar] [CrossRef]
- Ren, J.; Ding, L.; Zhang, D.; Shi, G.; Xu, Q.; Shen, S.; Wang, Y.; Wang, T.; Hou, Y. Carcinoma-Associated Fibroblasts Promote the Stemness and Chemoresistance of Colorectal Cancer by Transferring Exosomal LncRNA H19. Theranostics 2018, 8, 3932–3948. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, Y.; Zhang, Q.; Liu, B.; Cheng, Y.; Zhang, Y.; Sun, Y.; Liu, J.; Gen, H. Exosomal Long Non-Coding RNA HOTTIP Increases Resistance of Colorectal Cancer Cells to Mitomycin via Impairing MiR-214-Mediated Degradation of KPNA3. Front. Cell Dev. Biol. 2021, 8, 582723. [Google Scholar] [CrossRef] [PubMed]
- Xian, D.; Niu, L.; Zeng, J.; Wang, L. LncRNA KCNQ1OT1 Secreted by Tumor Cell-Derived Exosomes Mediates Immune Escape in Colorectal Cancer by Regulating PD-L1 Ubiquitination via MiR-30a-5p/USP22. Front. Cell Dev. Biol. 2021, 09, 653808. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, J.; Tang, Y.; Yang, M. Exosomal LncRNA LINC00659 Transferred from Cancer-Associated Fibroblasts Promotes Colorectal Cancer Cell Progression via MiR-342-3p/ANXA2 Axis. J. Transl. Med. 2021, 19, 8. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, Y.; Liu, B.; Pan, S.; Liu, Q.; Shan, Y.; Li, S.; Qi, Y.; Huang, Y.; Jia, L. Exosomal MALAT1 Sponges MiR-26a/26b to Promote the Invasion and Metastasis of Colorectal Cancer via FUT4 Enhanced Fucosylation and PI3K/Akt Pathway. J. Exp. Clin. Canc. Res. 2020, 39, 54. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, H.; Wang, F.; Xiong, L.; Zhou, C.; Hu, T.; He, X.; Wu, X.; Xie, D.; Wu, X.; et al. LncRNA RPPH1 Promotes Colorectal Cancer Metastasis by Interacting with TUBB3 and by Promoting Exosomes-Mediated Macrophage M2 Polarization. Cell Death Dis. 2019, 10, 829. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, H.; Huang, K.; Li, S. Cancer-Associated Fibroblasts-Derived Extracellular Vesicles Carrying LncRNA SNHG3 Facilitate Colorectal Cancer Cell Proliferation via the MiR-34b-5p/HuR/HOXC6 Axis. Cell Death Discov. 2022, 8, 346. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, R.; Du, J.; Yuan, H.; Li, Y.; Wei, X.; Du, X.; Jiang, S.; Han, Y. Predictive Role of UCA1-Containing Exosomes in Cetuximab-Resistant Colorectal Cancer. Cancer Cell Int. 2018, 18, 164. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, X.; Wei, X.; Zhang, W.; Du, X.; Huang, P.; Chen, H.; Bai, L.; Zhang, H.; Han, Y. LncRNA UCA1 Mediates Cetuximab Resistance in Colorectal Cancer via the MiR-495 and HGF/c-MET Pathways. J. Cancer 2022, 13, 253–267. [Google Scholar] [CrossRef]
- Bian, Z.; Jin, L.; Zhang, J.; Yin, Y.; Quan, C.; Hu, Y.; Feng, Y.; Liu, H.; Fei, B.; Mao, Y.; et al. LncRNA—UCA1 Enhances Cell Proliferation and 5-Fluorouracil Resistance in Colorectal Cancer by Inhibiting MiR-204-5p. Sci. Rep. 2016, 6, 23892. [Google Scholar] [CrossRef]
- Luan, Y.; Li, X.; Luan, Y.; Zhao, R.; Li, Y.; Liu, L.; Hao, Y.; Vladimir, B.O.; Jia, L. Circulating LncRNA UCA1 Promotes Malignancy of Colorectal Cancer via the MiR-143/MYO6 Axis. Mol. Ther. Nucleic. Acids. 2020, 19, 790–803. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhang, D.; Wang, T.; Ji, J.; Jin, C.; Peng, C.; Tan, Y.; Zhou, J.; Wang, L.; Feng, Y.; et al. CAF-Derived Exosomal WEE2-AS1 Facilitates Colorectal Cancer Progression via Promoting Degradation of MOB1A to Inhibit the Hippo Pathway. Cell Death Dis. 2022, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Cheng, X.; Ye, Z.; Li, Y.; Peng, W.; Wu, Y.; Xing, C. Exosome-Mediated Transfer of Circ_0000338 Enhances 5-Fluorouracil Resistance in Colorectal Cancer through Regulating MicroRNA 217 (MiR-217) and MiR-485-3p. Mol. Cell Biol. 2021, 41, e00517–e00520. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, S.; Fu, Q. Exosomes from CD133+ Cells Carrying Circ-ABCC1 Mediate Cell Stemness and Metastasis in Colorectal Cancer. J. Cell. Biochem. 2020, 121, 3286–3297. [Google Scholar] [CrossRef]
- Xu, Y.; Qiu, A.; Peng, F.; Tan, X.; Wang, J.; Gong, X. Exosomal Transfer of Circular RNA FBXW7 Ameliorates the Chemoresistance to Oxaliplatin in Colorectal Cancer by Sponging MiR-18b-5p. Neoplasma 2021, 68, 108–118. [Google Scholar] [CrossRef]
- Li, L.; Jiang, Z.; Zou, X.; Hao, T. Exosomal Circ_IFT80 Enhances Tumorigenesis and Suppresses Radiosensitivity in Colorectal Cancer by Regulating MiR-296-5p/MSI1 Axis. Cancer Manag. Res. 2021, 13, 1929–1941. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Zhang, K.; Tan, S.; Gao, F.; Zhang, Y.; Xu, W.; Wang, H.; Gu, D.; Zhu, L.; Li, S.; et al. Exosomal CircLPAR1 Functions in Colorectal Cancer Diagnosis and Tumorigenesis through Suppressing BRD4 via METTL3–EIF3h Interaction. Mol. Cancer. 2022, 21, 49. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, F.; Luo, B.; Qu, Z. CAFs-Derived Small Extracellular Vesicles CircN4BP2L2 Promotes Proliferation and Metastasis of Colorectal Cancer via MiR-664b-3p/HMGB3 Pathway. Cancer Biol. Ther. 2022, 23, 404–416. [Google Scholar] [CrossRef]
- Qu, Z.; Yang, K.-D.; Luo, B.-H.; Zhang, F. CAFs-Secreted Exosomal CricN4BP2L2 Promoted Colorectal Cancer Stemness and Chemoresistance by Interacting with EIF4A3. Exp. Cell Res. 2022, 418, 113266. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Wang, M.; Yuan, Y.; Zhou, F.; Zhao, H.; Qiu, T.; Liang, L. Exosomal CircPABPC1 Promotes Colorectal Cancer Liver Metastases by Regulating HMGA2 in the Nucleus and BMP4/ADAM19 in the Cytoplasm. Cell Death Discov. 2022, 8, 335. [Google Scholar] [CrossRef]
- Shang, A.; Gu, C.; Wang, W.; Wang, X.; Sun, J.; Zeng, B.; Chen, C.; Chang, W.; Ping, Y.; Ji, P.; et al. Exosomal CircPACRGL Promotes Progression of Colorectal Cancer via the MiR-142-3p/MiR-506-3p- TGF-Β1 Axis. Mol. Cancer 2020, 19, 117. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Yang, H.; Bai, M.; Ning, T.; Deng, T.; Liu, R.; Fan, Q.; Zhu, K.; Li, J.; et al. Exosome-delivered CircRNA Promotes Glycolysis to Induce Chemoresistance through the MiR-122-PKM2 Axis in Colorectal Cancer. Mol. Oncol. 2020, 14, 539–555. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Liu, Z.; Wang, Y.; Wen, X.; Amador, E.H.; Yuan, L.; Ran, X.; Xiong, L.; Ran, Y.; Chen, W.; et al. Colorectal Liver Metastasis: Molecular Mechanism and Interventional Therapy. Signal Transduct. Target Ther. 2022, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Riihimäki, M.; Hemminki, A.; Sundquist, J.; Hemminki, K. Patterns of Metastasis in Colon and Rectal Cancer. Sci. Rep. 2016, 6, 29765. [Google Scholar] [CrossRef]
- Naxerova, K.; Reiter, J.G.; Brachtel, E.; Lennerz, J.K.; Wetering, M.V.D.; Rowan, A.; Cai, T.; Clevers, H.; Swanton, C.; Nowak, M.A.; et al. Origins of Lymphatic and Distant Metastases in Human Colorectal Cancer. Science 2017, 357, 55–60. [Google Scholar] [CrossRef]
- Hoshino, A.; Costa-Silva, B.; Shen, T.-L.; Rodrigues, G.; Hashimoto, A.; Mark, M.T.; Molina, H.; Kohsaka, S.; Giannatale, A.D.; Ceder, S.; et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Y.; Xu, L.; Zhan, S.; Xiao, Y.; Gao, Y.; Wu, B.; Ge, W. Protein Content and Functional Characteristics of Serum-purified Exosomes from Patients with Colorectal Cancer Revealed by Quantitative Proteomics. Int. J. Cancer 2017, 140, 900–913. [Google Scholar] [CrossRef]
- Ji, H.; Greening, D.W.; Barnes, T.W.; Lim, J.W.; Tauro, B.J.; Rai, A.; Xu, R.; Adda, C.; Mathivanan, S.; Zhao, W.; et al. Proteome Profiling of Exosomes Derived from Human Primary and Metastatic Colorectal Cancer Cells Reveal Differential Expression of Key Metastatic Factors and Signal Transduction Components. Proteomics 2013, 13, 1672–1686. [Google Scholar] [CrossRef]
- Li, R.; Zhou, J.; Wu, X.; Li, H.; Pu, Y.; Liu, N.; Han, Z.; Zhou, L.; Wang, Y.; Zhu, H.; et al. Jianpi Jiedu Recipe Inhibits Colorectal Cancer Liver Metastasis via Regulating ITGBL1-Rich Extracellular Vesicles Mediated Activation of Cancer-Associated Fibroblasts. Phytomedicine 2022, 100, 154082. [Google Scholar] [CrossRef]
- Kotelevets, L.; Scott, M.G.H.; Chastre, E. Targeted Therapy of Colorectal Cancer Subtypes. Adv. Exp. Med. Biol. 2019, 1110, 55–73. [Google Scholar] [CrossRef]
- Kotelevets, L.; Trifault, B.; Chastre, E.; Scott, M.G.H. Posttranslational Regulation and Conformational Plasticity of PTEN. Csh. Perspect. Med. 2020, 10, a036095. [Google Scholar] [CrossRef] [PubMed]
- di-Renzo, M.F.; Olivero, M.; Giacomini, A.; Porte, H.; Chastre, E.; Mirossay, L.; Nordlinger, B.; Bretti, S.; Bottardi, S.; Giordano, S. Overexpression and Amplification of the Met/HGF Receptor Gene during the Progression of Colorectal Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1995, 1, 147–154. [Google Scholar]
- Dhondt, B.; Deun, J.V.; Vermaerke, S.; Marco, A.D.; Lumen, N.; Wever, O.D.; Hendrix, A. Urinary Extracellular Vesicle Biomarkers in Urological Cancers: From Discovery towards Clinical Implementation. Int. J. Biochem. Cell Biol. 2018, 99, 236–256. [Google Scholar] [CrossRef]
- Hofmann, L.; Kors, T.A.; Ezić, J.; Niesler, B.; Röth, R.; Ludwig, S.; Laban, S.; Schuler, P.J.; Hoffmann, T.K.; Brunner, C.; et al. Comparison of Plasma- and Saliva-Derived Exosomal MiRNA Profiles Reveals Diagnostic Potential in Head and Neck Cancer. Front. Cell Dev. Biol. 2022, 10, 971596. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Lin, Y.; Luo, Y.; Xiong, X.; Wang, L.; Durante, K.; Li, J.; Zhou, F.; Guo, Y.; Chen, S.; et al. A Signature of Saliva-Derived Exosomal Small RNAs as Predicting Biomarker for Esophageal Carcinoma: A Multicenter Prospective Study. Mol. Cancer 2022, 21, 21. [Google Scholar] [CrossRef]
- Baldasici, O.; Pileczki, V.; Cruceriu, D.; Gavrilas, L.I.; Tudoran, O.; Balacescu, L.; Vlase, L.; Balacescu, O. Breast Cancer-Delivered Exosomal MiRNA as Liquid Biopsy Biomarkers for Metastasis Prediction: A Focus on Translational Research with Clinical Applicability. Int. J. Mol. Sci. 2022, 23, 9371. [Google Scholar] [CrossRef]
- Kato, T.; Vykoukal, J.V.; Fahrmann, J.F.; Hanash, S. Extracellular Vesicles in Lung Cancer: Prospects for Diagnostic and Therapeutic Applications. Cancers 2021, 13, 4604. [Google Scholar] [CrossRef]
- Labgaa, I.; Villanueva, A.; Dormond, O.; Demartines, N.; Melloul, E. The Role of Liquid Biopsy in Hepatocellular Carcinoma Prognostication. Cancers 2021, 13, 659. [Google Scholar] [CrossRef]
- Huang, T.; Song, C.; Zheng, L.; Xia, L.; Li, Y.; Zhou, Y. The Roles of Extracellular Vesicles in Gastric Cancer Development, Microenvironment, Anti-Cancer Drug Resistance, and Therapy. Mol. Cancer 2019, 18, 62. [Google Scholar] [CrossRef]
- Bunduc, S.; Gede, N.; Váncsa, S.; Lillik, V.; Kiss, S.; Juhász, M.F.; Erőss, B.; Szakács, Z.; Gheorghe, C.; Mikó, A.; et al. Exosomes as Prognostic Biomarkers in Pancreatic Ductal Adenocarcinoma—A Systematic Review and Meta-Analysis. Transl. Res. 2022, 244, 126–136. [Google Scholar] [CrossRef]
- Ronvaux, L.; Riva, M.; Coosemans, A.; Herzog, M.; Rommelaere, G.; Donis, N.; D’Hondt, L.; Douxfils, J. Liquid Biopsy in Glioblastoma. Cancers 2022, 14, 3394. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.; Wu, S.; Ma, Z.; Chen, X.; Liu, J.; Yang, J. Advances in Exosome Biomarkers for Cervical Cancer. Cancer Med. 2022, 11, 4966–4978. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Li, X.; Wang, X. Extracellular Vesicle-Based Liquid Biopsy Holds Great Promise for the Management of Ovarian Cancer. Biochimica. Et Biophysica. Acta. Bba. Rev. Cancer 2020, 1874, 188395. [Google Scholar] [CrossRef]
- Bestard-Escalas, J.; Reigada, R.; Reyes, J.; Torre, P.D.; Liebisch, G.; Barceló-Coblijn, G. Fatty Acid Unsaturation Degree of Plasma Exosomes in Colorectal Cancer Patients: A Promising Biomarker. Int. J. Mol. Sci. 2021, 22, 5060. [Google Scholar] [CrossRef] [PubMed]
- Elmallah, M.I.Y.; Ortega-Deballon, P.; Hermite, L.; Pais-De-Barros, J.; Gobbo, J.; Garrido, C. Lipidomic Profiling of Exosomes from Colorectal Cancer Cells and Patients Reveals Potential Biomarkers. Mol. Oncol. 2022, 16, 2710–2718. [Google Scholar] [CrossRef]
- Hoshino, A.; Kim, H.S.; Bojmar, L.; Gyan, K.E.; Cioffi, M.; Hernandez, J.; Zambirinis, C.P.; Rodrigues, G.; Molina, H.; Heissel, S.; et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 2020, 182, 1044–1061.e18. [Google Scholar] [CrossRef]
- Chang, L.-C.; Hsu, Y.-C.; Chiu, H.-M.; Ueda, K.; Wu, M.-S.; Kao, C.-H.; Shen, T.-L. Exploration of the Proteomic Landscape of Small Extracellular Vesicles in Serum as Biomarkers for Early Detection of Colorectal Neoplasia. Front. Oncol. 2021, 11, 732743. [Google Scholar] [CrossRef]
- Sun, Z.; Ji, S.; Wu, J.; Tian, J.; Quan, W.; Shang, A.; Ji, P.; Xiao, W.; Liu, D.; Wang, X.; et al. Proteomics-Based Identification of Candidate Exosomal Glycoprotein Biomarkers and Their Value for Diagnosing Colorectal Cancer. Front. Oncol. 2021, 11, 725211. [Google Scholar] [CrossRef]
- Shiromizu, T.; Kume, H.; Ishida, M.; Adachi, J.; Kano, M.; Matsubara, H.; Tomonaga, T. Quantitation of Putative Colorectal Cancer Biomarker Candidates in Serum Extracellular Vesicles by Targeted Proteomics. Sci. Rep. 2017, 7, 12782. [Google Scholar] [CrossRef]
- Zhong, M.-E.; Chen, Y.; Xiao, Y.; Xu, L.; Zhang, G.; Lu, J.; Qiu, H.; Ge, W.; Wu, B. Serum Extracellular Vesicles Contain SPARC and LRG1 as Biomarkers of Colon Cancer and Differ by Tumour Primary Location. Ebiomedicine 2019, 50, 211–223. [Google Scholar] [CrossRef]
- Porte, H.; Chastre, E.; Prevot, S.; Nordlinger, B.; Empereur, S.; Basset, P.; Chambon, P.; Gespach, C. Neoplastic Progression of Human Colorectal Cancer Is Associated with Overexpression of the Stromelysin-3 and BM-40/SPARC Genes. Int. J. Cancer 1995, 64, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Porte, H.; Triboulet, J.P.; Kotelevets, L.; Carrat, F.; Prévot, S.; Nordlinger, B.; DiGioia, Y.; Wurtz, A.; Comoglio, P.; Gespach, C.; et al. Overexpression of Stromelysin-3, BM-40/SPARC, and MET Genes in Human Esophageal Carcinoma: Implications for Prognosis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1998, 4, 1375–1382. [Google Scholar]
- Ganig, N.; Baenke, F.; Thepkaysone, M.-L.; Lin, K.; Rao, V.S.; Wong, F.C.; Polster, H.; Schneider, M.; Helm, D.; Pecqueux, M.; et al. Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-Invasive Detection of Colorectal Cancer. Cancers 2021, 13, 1351. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Xu, K.; Zhou, B.; Chen, T.; Huang, Y.; Li, Q.; Wen, F.; Ge, W.; Wang, J.; Yu, S.; et al. A Circulating Extracellular Vesicles-Based Novel Screening Tool for Colorectal Cancer Revealed by Shotgun and Data-Independent Acquisition Mass Spectrometry. J. Extracell. Vesicles 2020, 9, 1750202. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Fu, J.; Hao, J.; Ji, Y.; Wang, H.; Wang, Z.; Wang, P.; Xiao, H. Proteomics Analysis of Tissue Small Extracellular Vesicles Reveals Protein Panels for the Reoccurrence Prediction of Colorectal Cancer. J. Proteom. 2021, 249, 104347. [Google Scholar] [CrossRef]
- Brocco, D.; Simeone, P.; Buca, D.; Marino, P.D.; Tursi, M.D.; Grassadonia, A.; Lellis, L.D.; Martino, M.T.; Veschi, S.; Iezzi, M.; et al. Blood Circulating CD133+ Extracellular Vesicles Predict Clinical Outcomes in Patients with Metastatic Colorectal Cancer. Cancers 2022, 14, 1357. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Baenke, F.; Lai, X.; Schneider, M.; Helm, D.; Polster, H.; Rao, V.S.; Ganig, N.; Wong, F.C.; Seifert, L.; et al. Comprehensive Proteomic Profiling of Serum Extracellular Vesicles in Patients with Colorectal Liver Metastases Identifies a Signature for Non-Invasive Risk Stratification and Early-Response Evaluation. Mol. Cancer 2022, 21, 91. [Google Scholar] [CrossRef]
- Rupert, D.L.M.; Claudio, V.; Lässer, C.; Bally, M. Methods for the Physical Characterization and Quantification of Extracellular Vesicles in Biological Samples. Biochimica. Et Biophysica. Acta. Bba. Gen. Subj. 2017, 1861, 3164–3179. [Google Scholar] [CrossRef]
- Santo, R.D.; Romanò, S.; Mazzini, A.; Jovanović, S.; Nocca, G.; Campi, G.; Papi, M.; Spirito, M.D.; Giacinto, F.D.; Ciasca, G. Recent Advances in the Label-Free Characterization of Exosomes for Cancer Liquid Biopsy: From Scattering and Spectroscopy to Nanoindentation and Nanodevices. Nanomaterials 2021, 11, 1476. [Google Scholar] [CrossRef]
- Thakur, A.; Parra, D.C.; Motallebnejad, P.; Brocchi, M.; Chen, H.J. Exosomes: Small Vesicles with Big Roles in Cancer, Vaccine Development, and Therapeutics. Bioact. Mater. 2022, 10, 281–294. [Google Scholar] [CrossRef]
- Thakur, A.; Qiu, G.; Xu, C.; Han, X.; Yang, T.; NG, S.P.; Chan, K.W.Y.; Wu, C.M.L.; Lee, Y. Label-Free Sensing of Exosomal MCT1 and CD147 for Tracking Metabolic Reprogramming and Malignant Progression in Glioma. Sci. Adv. 2020, 6, eaaz6119. [Google Scholar] [CrossRef] [PubMed]
- Kotelevets, L.; Chastre, E. A New Story of the Three Magi: Scaffolding Proteins and LncRNA Suppressors of Cancer. Cancers 2021, 13, 4264. [Google Scholar] [CrossRef]
- Dou, Y.; Cha, D.J.; Franklin, J.L.; Higginbotham, J.N.; Jeppesen, D.K.; Weaver, A.M.; Prasad, N.; Levy, S.; Coffey, R.J.; Patton, J.G.; et al. Circular RNAs Are Down-Regulated in KRAS Mutant Colon Cancer Cells and Can Be Transferred to Exosomes. Sci. Rep. 2016, 6, 37982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchetti, D.; Zurlo, I.V.; Colella, F.; Ricciardi-Tenore, C.; Salvatore, M.D.; Tortora, G.; Maria, R.D.; Giuliante, F.; Cassano, A.; Basso, M.; et al. Mutational Status of Plasma Exosomal KRAS Predicts Outcome in Patients with Metastatic Colorectal Cancer. Sci. Rep. 2021, 11, 22686. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Kuo, W.-W.; Shih, H.-N.; Cheng, S.-F.; Yang, C.-K.; Chen, M.-C.; Tu, C.-C.; Viswanadha, V.P.; Liao, P.-H.; Huang, C.-Y. FOXC1 Regulation of MiR-31-5p Confers Oxaliplatin Resistance by Targeting LATS2 in Colorectal Cancer. Cancers 2019, 11, 1576. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, M. Novel Exosomal MiR-46146 Transfer Oxaliplatin Chemoresistance in Colorectal Cancer. Clin. Transl. Oncol. 2020, 22, 1105–1116. [Google Scholar] [CrossRef]
- Sun, F.; Liang, W.; Qian, J. The Identification of CRNDE, H19, UCA1 and HOTAIR as the Key LncRNAs Involved in Oxaliplatin or Irinotecan Resistance in the Chemotherapy of Colorectal Cancer Based on Integrative Bioinformatics Analysis. Mol. Med. Rep. 2019, 20, 3583–3596. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Qu, J.; Che, X.; Fan, Y.; Hou, K.; Guo, T.; Deng, G.; Song, N.; Li, C.; et al. Exosomes Promote Cetuximab Resistance via the PTEN/Akt Pathway in Colon Cancer Cells. Braz. J. Med. Biol. Res. 2017, 51, e6472. [Google Scholar] [CrossRef] [PubMed]
- Kotelevets, L.; Chastre, E.; Caron, J.; Mougin, J.; Bastian, G.; Pineau, A.; Walker, F.; Lehy, T.; Desmaële, D.; Couvreur, P. A Squalene-Based Nanomedicine for Oral Treatment of Colon Cancer. Cancer Res. 2017, 77, 2964–2975. [Google Scholar] [CrossRef] [PubMed]
- Colao, I.L.; Corteling, R.; Bracewell, D.; Wall, I. Manufacturing Exosomes: A Promising Therapeutic Platform. Trends Mol. Med. 2018, 24, 242–256. [Google Scholar] [CrossRef]
- Ahn, S.-H.; Ryu, S.-W.; Choi, H.; You, S.; Park, J.; Choi, C. Manufacturing Therapeutic Exosomes: From Bench to Industry. Mol. Cells 2022, 45, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Rathore, S.; Munshi, A.; Ramesh, R. Organically Derived Exosomes as Carriers of Anticancer Drugs and Imaging Agents for Cancer Treatment. Semin. Cancer Biol. 2022, 86, 80–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Su, C. Design Strategies and Application Progress of Therapeutic Exosomes. Theranostics 2019, 9, 1015–1028. [Google Scholar] [CrossRef]
- Panigrahi, A.R.; Srinivas, L.; Panda, J. Exosomes: Insights and Therapeutic Applications in Cancer. Transl. Oncol. 2022, 21, 101439. [Google Scholar] [CrossRef] [PubMed]
- Nan, W.; Zhang, C.; Wang, H.; Chen, H.; Ji, S. Direct Modification of Extracellular Vesicles and Its Applications for Cancer Therapy: A Mini-Review. Front. Chem. 2022, 10, 910341. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, A.; Terai, S.; Horiguchi, I.; Homma, Y.; Saito, A.; Nakamura, N.; Sato, Y.; Ochiya, T.; Kino-oka, M.; Medicine, W.G. Basic Points to Consider Regarding the Preparation of Extracellular Vesicles and Their Clinical Applications in Japan. Regen. Ther. 2022, 21, 19–24. [Google Scholar] [CrossRef]
- Zhenhuan, X.; Yun, L.; Qun, L.; Qinyuan, L.; Yong, L.; Yan, L.; Songzhi, W. EVs Delivery of MiR-1915-3p Improves the Chemotherapeutic Efficacy of Oxaliplatin in Colorectal Cancer. Cancer Chemother. Pharm. 2021, 88, 1021–1031. [Google Scholar] [CrossRef]
- Bagheri, E.; Abnous, K.; Farzad, S.A.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Targeted Doxorubicin-Loaded Mesenchymal Stem Cells-Derived Exosomes as a Versatile Platform for Fighting against Colorectal Cancer. Life Sci. 2020, 261, 118369. [Google Scholar] [CrossRef]
- Hosseini, N.F.; Amini, R.; Ramezani, M.; Saidijam, M.; Hashemi, S.M.; Najafi, R. AS1411 Aptamer-Functionalized Exosomes in the Targeted Delivery of Doxorubicin in Fighting Colorectal Cancer. Biomed. Pharm. 2022, 155, 113690. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Gong, C.; Wang, Z.; Xia, Q.; Gu, F.; Hu, C.; Zhang, L.; Guo, H.; Gao, S. A33 Antibody-Functionalized Exosomes for Targeted Delivery of Doxorubicin against Colorectal Cancer. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1973–1985. [Google Scholar] [CrossRef]
- Go, G.; Park, H.J.; Lee, J.H.; Yun, C.W.; Lee, S.H. Inhibitory Effect of Oxaliplatin-Loaded Engineered Milk Extracellular Vesicles on Tumor Progression. Anticancer. Res. 2022, 42, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Jing, B.; Gai, Y.; Qian, R.; Liu, Z.; Zhu, Z.; Gao, Y.; Lan, X.; An, R. Hydrophobic Insertion-Based Engineering of Tumor Cell-Derived Exosomes for SPECT/NIRF Imaging of Colon Cancer. J. Nanobiotechnol. 2021, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Huis in ‘t Veld, R.V.; Lara, P.; Jager, M.J.; Koning, R.I.; Ossendorp, F.; Cruz, L.J. M1-Derived Extracellular Vesicles Enhance Photodynamic Therapy and Promote Immunological Memory in Preclinical Models of Colon Cancer. J. Nanobiotechnol. 2022, 20, 252. [Google Scholar] [CrossRef]
- Liang, G.; Zhu, Y.; Ali, D.J.; Tian, T.; Xu, H.; Si, K.; Sun, B.; Chen, B.; Xiao, Z. Engineered Exosomes for Targeted Co-Delivery of MiR-21 Inhibitor and Chemotherapeutics to Reverse Drug Resistance in Colon Cancer. J. Nanobiotechnol. 2020, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-H.; Faruque, H.A.; Kee, H.; Kim, E.; Park, S. Exosome-Based Hybrid Nanostructures for Enhanced Tumor Targeting and Hyperthermia Therapy. Colloids Surf. B Biointerfaces 2021, 205, 111915. [Google Scholar] [CrossRef]
- Ruijie, Q.; Boping, J.; Dawei, J.; Yongkang, G.; Ziyang, Z.; Xiaojuan, H.; Yu, G.; Xiaoli, L.; Rui, A. Multi-Antitumor Therapy and Synchronous Imaging Monitoring Based on Exosome. Eur. J. Nucl. Med. Mol. I 2022, 49, 2668–2681. [Google Scholar] [CrossRef]
- Weng, W.; Goel, A. Curcumin and Colorectal Cancer: An Update and Current Perspective on This Natural Medicine. Semin. Cancer Biol. 2022, 80, 73–86. [Google Scholar] [CrossRef]
- Kamerkar, S.; Leng, C.; Burenkova, O.; Jang, S.C.; McCoy, C.; Zhang, K.; Dooley, K.; Kasera, S.; Zi, T.; Sisó, S.; et al. Exosome-Mediated Genetic Reprogramming of Tumor-Associated Macrophages by ExoASO-STAT6 Leads to Potent Monotherapy Antitumor Activity. Sci. Adv. 2022, 8, eabj7002. [Google Scholar] [CrossRef]
- Gade, A.; Sharma, A.; Srivastava, N.; Flora, S.J.S. Surface Plasmon Resonance: A Promising Approach for Label-Free Early Cancer Diagnosis. Clin. Chim. Acta 2022, 527, 79–88. [Google Scholar] [CrossRef]
- Haldavnekar, R.; Venkatakrishnan, K.; Tan, B. Cancer Stem Cell Derived Extracellular Vesicles with Self-Functionalized 3D Nanosensor for Real-Time Cancer Diagnosis: Eliminating the Roadblocks in Liquid Biopsy. ACS Nano 2022, 16, 12226–12243. [Google Scholar] [CrossRef]
- Lin, C.; Liang, S.; Li, Y.; Peng, Y.; Huang, Z.; Li, Z.; Yang, Y.; Luo, X. Localized Plasmonic Sensor for Direct Identifying Lung and Colon Cancer from the Blood. Biosens. Bioelectron. 2021, 211, 114372. [Google Scholar] [CrossRef]
- Zhuang, J.; Xia, L.; Zou, Z.; Yin, J.; Lin, N.; Mu, Y. Recent Advances in Integrated Microfluidics for Liquid Biopsies and Future Directions. Biosens. Bioelectron. 2022, 217, 114715. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.J.; Javed, Z.; Herrera-Bravo, J.; Sadia, H.; Anum, F.; Raza, S.; Tahir, A.; Shahwani, M.N.; Sharifi-Rad, J.; Calina, D.; et al. Biosensing Chips for Cancer Diagnosis and Treatment: A New Wave towards Clinical Innovation. Cancer Cell Int. 2022, 22, 354. [Google Scholar] [CrossRef] [PubMed]
- Gharib, G.; Bütün, İ.; Muganlı, Z.; Kozalak, G.; Namlı, İ.; Sarraf, S.S.; Ahmadi, V.E.; Toyran, E.; van Wijnen, A.J.; Koşar, A. Biomedical Applications of Microfluidic Devices: A Review. Biosensors 2022, 12, 1023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotelevets, L.; Chastre, E. Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers 2023, 15, 1107. https://doi.org/10.3390/cancers15041107
Kotelevets L, Chastre E. Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers. 2023; 15(4):1107. https://doi.org/10.3390/cancers15041107
Chicago/Turabian StyleKotelevets, Larissa, and Eric Chastre. 2023. "Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications" Cancers 15, no. 4: 1107. https://doi.org/10.3390/cancers15041107
APA StyleKotelevets, L., & Chastre, E. (2023). Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers, 15(4), 1107. https://doi.org/10.3390/cancers15041107