Gout and Colorectal Cancer Likelihood: Insights from a Nested Case-Control Study of the Korean Population Utilizing the Korean National Health Insurance Service-National Sample Cohort
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Exposure (Gout)
2.2. Outcome (Colorectal Cancer)
2.3. Covariates
2.4. Statistical Analysis
3. Results
3.1. Relationship between Gout and Colorectal Cancer
3.2. Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.H.; Sung, N.Y.; Lee, J.; Bae, S.C. Factors associated with gout in South Koreans: Analysis using the National Health Insurance Corporation and the National Health Screening Exam databases. Clin. Rheumatol. 2013, 32, 829–837. [Google Scholar] [CrossRef]
- Richette, P.; Bardin, T. Gout. Lancet 2010, 375, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.F.; Luo, S.F.; See, L.C.; Chou, I.J.; Fang, Y.F.; Yu, K.H. Increased risk of cancer among gout patients: A nationwide population study. Jt. Bone Spine 2012, 79, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Khil, H.; Kim, S.M.; Hong, S.; Gil, H.M.; Cheon, E.; Lee, D.H.; Kim, Y.A.; Keum, N. Time trends of colorectal cancer incidence and associated lifestyle factors in South Korea. Sci. Rep. 2021, 11, 2413. [Google Scholar] [CrossRef] [PubMed]
- Fidler, M.M.; Soerjomataram, I.; Bray, F. A global view on cancer incidence and national levels of the human development index. Int. J. Cancer 2016, 139, 2436–2446. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Shin, A.; Kim, J. Association of the inflammatory balance of diet and lifestyle with colorectal cancer among Korean adults: A case-control study. Epidemiol. Health 2022, 44, e2022084. [Google Scholar] [CrossRef]
- Park, Y.; Lee, J.; Oh, J.H.; Shin, A.; Kim, J. Dietary patterns and colorectal cancer risk in a Korean population: A case-control study. Medicine (Baltimore) 2016, 95, e3759. [Google Scholar] [CrossRef]
- Wang, W.; Xu, D.; Wang, B.; Yan, S.; Wang, X.; Yin, Y.; Wang, X.; Sun, B.; Sun, X. Increased Risk of Cancer in relation to Gout: A Review of Three Prospective Cohort Studies with 50,358 Subjects. Mediat. Inflamm. 2015, 2015, 680853. [Google Scholar] [CrossRef]
- Boffetta, P.; Nordenvall, C.; Nyrén, O.; Ye, W. A prospective study of gout and cancer. Eur. J. Cancer Prev. 2009, 18, 127–132. [Google Scholar] [CrossRef]
- Chen, C.J.; Yen, J.H.; Chang, S.J. Gout patients have an increased risk of developing most cancers, especially urological cancers. Scand. J. Rheumatol. 2014, 43, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Myung, J.; Lee, H.A.; Hong, S.; Lee, C.K.; Yoo, B.; Oh, J.S.; Kim, Y.G. Risk of Cancer in Middle-aged Patients With Gout: A Nationwide Population-based Study in Korea. J. Rheumatol. 2021, 48, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.J.; Lee, Y.J.; Lee, E.; Park, B.; Kwon, J.W.; Heo, J.; Moon, K.W. Cancer risk in Korean patients with gout. Korean J. Intern. Med. 2022, 37, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Allegrini, S.; Garcia-Gil, M.; Pesi, R.; Camici, M.; Tozzi, M.G. The Good, the Bad and the New about Uric Acid in Cancer. Cancers 2022, 14, 4959. [Google Scholar] [CrossRef] [PubMed]
- Rasch, S.; Algul, H. A clinical perspective on the role of chronic inflammation in gastrointestinal cancer. Clin. Exp. Gastroenterol. 2014, 7, 261–272. [Google Scholar] [CrossRef]
- Chuang, J.-P.; Lee, J.-C.; Leu, T.-H.; Hidajah, A.C.; Chang, Y.-H.; Li, C.-Y. Association of gout and colorectal cancer in Taiwan: A nationwide population-based cohort study. BMJ Open 2019, 9, e028892. [Google Scholar] [CrossRef] [PubMed]
- Slobodnick, A.; Krasnokutsky, S.; Lehmann, R.A.; Keenan, R.T.; Quach, J.; Francois, F.; Pillinger, M.H. Colorectal Cancer Among Gout Patients Undergoing Colonoscopy. J. Clin. Rheumatol. 2019, 25, 335–340. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.S.; Park, S.-H.; Shin, S.A.; Kim, K. Cohort profile: The national health insurance service–national sample cohort (NHIS-NSC), South Korea. Int. J. Epidemiol. 2017, 46, e15. [Google Scholar] [CrossRef]
- Kyoung, D.-S.; Kim, H.-S. Understanding and utilizing claim data from the Korean National Health Insurance Service (NHIS) and Health Insurance Review & Assessment (HIRA) database for research. J. Lipid Atheroscler. 2022, 11, 103. [Google Scholar]
- Miettinen, O.S. Individual matching with multiple controls in the case of all-or-none responses. Biometrics 1969, 25, 339–355. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kwak, S.G.; Lee, H.; Kim, S.-K.; Choe, J.-Y.; Park, S.-H. Prevalence and incidence of gout in Korea: Data from the national health claims database 2007–2015. Rheumatol. Int. 2017, 37, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J.; Byun, S.H.; Kim, J.H.; Kim, J.H.; Kim, S.H.; Kim, N.Y.; Park, H.R.; Choi, H.G. Longitudinal follow-up study of the association between statin use and chronic periodontitis using national health screening cohort of Korean population. Sci. Rep. 2022, 12, 5504. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.E.; Li, F.; Pencina, M.J. Overlap Weighting: A Propensity Score Method That Mimics Attributes of a Randomized Clinical Trial. JAMA 2020, 323, 2417–2418. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Morgan, K.L.; Zaslavsky, A.M. Balancing Covariates via Propensity Score Weighting. J. Am. Stat. Assoc. 2018, 113, 390–400. [Google Scholar] [CrossRef]
- Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 2009, 28, 3083–3107. [Google Scholar] [CrossRef]
- Linden, A.H.; Honekopp, J. Heterogeneity of Research Results: A New Perspective From Which to Assess and Promote Progress in Psychological Science. Perspect. Psychol. Sci. 2021, 16, 358–376. [Google Scholar] [CrossRef]
- Jung, K.W.; Won, Y.J.; Kang, M.J.; Kong, H.J.; Im, J.S.; Seo, H.G. Prediction of Cancer Incidence and Mortality in Korea, 2022. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2022, 54, 345–351. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, P.R.; Mondhe, D.M. Potential anticancer role of colchicine-based derivatives: An overview. Anti-Cancer Drugs 2017, 28, 250–262. [Google Scholar] [CrossRef]
- Cho, J.H.; Joo, Y.H.; Shin, E.Y.; Park, E.J.; Kim, M.S. Anticancer effects of colchicine on hypopharyngeal cancer. Anticancer. Res. 2017, 37, 6269–6280. [Google Scholar]
- AbouAitah, K.; Hassan, H.A.; Swiderska-Sroda, A.; Gohar, L.; Shaker, O.G.; Wojnarowicz, J.; Opalinska, A.; Smalc-Koziorowska, J.; Gierlotka, S.; Lojkowski, W. Targeted Nano-Drug Delivery of Colchicine against Colon Cancer Cells by Means of Mesoporous Silica Nanoparticles. Cancers 2020, 12, 144. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.C.; Chang, S.J.; Hsieh, M.C. Colchicine Significantly Reduces Incident Cancer in Gout Male Patients: A 12-Year Cohort Study. Medicine 2015, 94, e1570. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, T.T.; Guo, S.; Zhong, Q.; Li, C.H.; Li, Y.; Dong, L.; Zheng, S.; Wang, G.; Yin, S.F. Discovery of Novel Allopurinol Derivatives with Anticancer Activity and Attenuated Xanthine Oxidase Inhibition. Molecules 2016, 21, 771. [Google Scholar] [CrossRef]
- Shih, H.J.; Kao, M.C.; Tsai, P.S.; Fan, Y.C.; Huang, C.J. Long-term allopurinol use decreases the risk of prostate cancer in patients with gout: A population-based study. Prostate Cancer Prostatic Dis. 2017, 20, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Puntoni, M.; Branchi, D.; Argusti, A.; Zanardi, S.; Crosta, C.; Meroni, E.; Munizzi, F.; Michetti, P.; Coccia, G.; De Roberto, G.; et al. A randomized, placebo-controlled, preoperative trial of allopurinol in subjects with colorectal adenoma. Cancer Prev. Res. 2013, 6, 74–81. [Google Scholar] [CrossRef]
- Hsu, F.G.; Lai, J.N.; Huang, C.Y.; Lin, M.C.; Hsieh, Y.W. Exploring the Relationship Between Colorectal Cancer and Allopurinol: A Taiwanese Population-Based Propensity-Matched Case-Control Study. J. Clin. Pharmacol. 2021, 61, 1131–1137. [Google Scholar] [CrossRef]
- Song, J.W.; Chung, K.C. Observational studies: Cohort and case-control studies. Plast. Reconstr. Surg. 2010, 126, 2234–2242. [Google Scholar] [CrossRef]
- Kendall, B.E.; Fox, G.A.; Fujiwara, M.; Nogeire, T.M. Demographic heterogeneity, cohort selection, and population growth. Ecology 2011, 92, 1985–1993. [Google Scholar] [CrossRef]
Characteristics | Before PS Overlap Weighting Adjustment | After PS Overlap Weighting Adjustment | |||||
---|---|---|---|---|---|---|---|
CRC | Control | Standardized Difference | CRC | Control | Standardized Difference | ||
Age (y), n (%) | 0.00 | 0.00 | |||||
0–4 | 1 (0.01) | 4 (0.01) | 1 (0.01) | 1 (0.01) | |||
5–9 | N/A | N/A | N/A | N/A | |||
10–14 | 3 (0.03) | 12 (0.03) | 2 (0.03) | 2 (0.03) | |||
20–24 | 1 (0.01) | 4 (0.01) | 1 (0.01) | 1 (0.01) | |||
25–29 | 8 (0.08) | 32 (0.08) | 6 (0.08) | 6 (0.08) | |||
30–34 | 26 (0.26) | 104 (0.26) | 21 (0.26) | 21 (0.26) | |||
35–39 | 94 (0.95) | 376 (0.95) | 75 (0.94) | 75 (0.94) | |||
40–44 | 180 (1.81) | 720 (1.81) | 144 (1.81) | 144 (1.81) | |||
45–49 | 359 (3.62) | 1436 (3.62) | 286 (3.61) | 286 (3.61) | |||
50–54 | 578 (5.83) | 2312 (5.83) | 462 (5.82) | 462 (5.82) | |||
55–59 | 968 (9.76) | 3872 (9.76) | 773 (9.75) | 773 (9.75) | |||
60–64 | 1242 (12.52) | 4968 (12.52) | 992 (12.51) | 992 (12.51) | |||
65–69 | 1393 (14.04) | 5572 (14.04) | 1112 (14.03) | 1112 (14.03) | |||
70–74 | 1488 (15.00) | 5952 (15.00) | 1188 (15.00) | 1188 (15.00) | |||
75–79 | 1471 (14.83) | 5884 (14.83) | 1176 (14.84) | 1176 (14.84) | |||
80–84 | 1060 (10.69) | 4240 (10.69) | 849 (10.71) | 849 (10.71) | |||
85+ | 672 (6.77) | 2688 (6.77) | 538 (6.79) | 538 (6.79) | |||
Sex, n (%) | 0.00 | 0.00 | |||||
Male | 5933 (59.81) | 23,732 (59.81) | 4739 (59.79) | 4739 (59.79) | |||
Female | 3987 (40.19) | 15,948 (40.19) | 3186 (40.21) | 3186 (40.21) | |||
Income, n (%) | 0.00 | 0.00 | |||||
1 (lowest) | 1990 (20.06) | 7960 (20.06) | 1589 (20.06) | 1589 (20.06) | |||
2 | 1253 (12.63) | 5012 (12.63) | 1000 (12.62) | 1000 (12.62) | |||
3 | 1562 (15.75) | 6248 (15.75) | 1247 (15.74) | 1247 (15.74) | |||
4 | 2059 (20.76) | 8236 (20.76) | 1646 (20.77) | 1646 (20.77) | |||
5 (highest) | 3056 (30.81) | 12,224 (30.81) | 2442 (30.82) | 2442 (30.82) | |||
Region of residence, n (%) | 0.00 | 0.00 | |||||
Urban | 4447 (44.83) | 17,788 (44.83) | 3553 (44.83) | 3553 (44.83) | |||
Rural | 5473 (55.17) | 21,892 (55.17) | 4373 (55.17) | 4373 (55.17) | |||
CCI score, mean (SD) | 0.80 (1.18) | 0.69 (1.18) | 0.09 | 0.77 (1.03) | 0.77 (0.57) | 0.00 | |
Gout, n (%) | 339 (3.42) | 1396 (3.52) | 0.01 | 270 (3.40) | 284 (3.58) | 0.01 |
Characteristics | N of CRC | N of Control | Odd Ratios for CRC (95% Confidence Interval) | ||||
---|---|---|---|---|---|---|---|
(Exposure/Total, %) | (Exposure/Total, %) | Crude | p-Value | Overlap-Weighted Model † | p-Value | ||
Total participants (n = 49,600) | |||||||
Gout | 339/9920 (3.4) | 1396/39,680 (3.5) | 0.97 (0.86–1.10) | 0.628 | 0.95 (0.86–1.04) | 0.282 | |
Control | 9581/9920 (96.6) | 38,284/39,680 (96.5) | 1 | 1 | |||
Age < 65 years (n = 24,265) | |||||||
Gout | 127/4853 (2.6) | 590/19,412 (3.0) | 0.86 (0.71–1.04) | 0.12 | 0.82 (0.70–0.95) | 0.009 * | |
Control | 4726/4853 (97.4) | 18,822/19,412 (97.0) | 1 | 1 | |||
Age ≥ 65 years (n = 25,335) | |||||||
Gout | 212/5067 (4.2) | 806/20,268 (4.0) | 1.06 (0.90–1.23) | 0.495 | 1.05 (0.93–1.19) | 0.457 | |
Control | 4855/5067 (95.8) | 19,462/20,268 (96.0) | 1 | 1 | |||
Male (n = 29,665) | |||||||
Gout | 296/5933 (5.0) | 1200/23,732 (5.1) | 0.99 (0.87–1.12) | 0.833 | 0.96 (0.87–1.07) | 0.496 | |
Control | 5637/5933 (95.0) | 22,532/23,732 (94.9) | 1 | 1 | |||
Female (n = 19,935) | |||||||
Gout | 43/3987 (1.1) | 196/15,948 (1.2) | 0.88 (0.63–1.22) | 0.435 | 0.85 (0.66–1.10) | 0.223 | |
Control | 3944/3987 (98.9) | 15,752/15,948 (98.8) | 1 | 1 | |||
Low income group (n = 24,025) | |||||||
Gout | 169/4805 (3.5) | 663/19,220 (3.4) | 1.02 (0.86–1.21) | 0.818 | 0.98 (0.86–1.13) | 0.818 | |
Control | 4636/4805 (96.5) | 18,557/19,220 (96.6) | 1 | 1 | |||
High income group (n = 25,575) | |||||||
Gout | 170/5115 (3.3) | 733/20,460 (3.6) | 0.93 (0.78–1.10) | 0.369 | 0.91 (0.80–1.05) | 0.192 | |
Control | 4945/5115 (96.7) | 19,727/20,460 (96.4) | 1 | 1 | |||
Urban resident (n = 22,235) | |||||||
Gout | 140/4447 (3.1) | 619/17,788 (3.5) | 0.90 (0.75–1.09) | 0.276 | 0.88 (0.76–1.02) | 0.097 | |
Control | 4307/4447 (96.9) | 17,169/17,788 (96.5) | 1 | 1 | |||
Rural resident (n = 27,365) | |||||||
Gout | 199/5473 (3.6) | 777/21,892 (3.5) | 1.03 (0.88–1.20) | 0.755 | 1.00 (0.88–1.14) | 0.975 | |
Control | 5274/5473 (96.4) | 21,115/21,892 (96.5) | 1 | 1 | |||
CCI scores = 0 (n = 30,566) | |||||||
Gout | 164/5448 (3.0) | 737/25,118 (2.9) | 1.03 (0.86–1.22) | 0.761 | 1.02 (0.90–1.17) | 0.728 | |
Control | 5284/5448 (97.0) | 24,381/25,118 (97.1) | 1 | 1 | |||
CCI scores = 1 (n = 10,518) | |||||||
Gout | 74/2600 (2.8) | 286/7918 (3.6) | 0.78 (0.60–1.01) | 0.063 | 0.81 (0.65–1.01) | 0.065 | |
Control | 2526/2600 (97.2) | 7632/7918 (96.4) | 1 | 1 | |||
CCI scores ≥ 2 (n = 8516) | |||||||
Gout | 101/1872 (5.4) | 373/6644 (5.6) | 0.96 (0.77–1.20) | 0.718 | 0.96 (0.79–1.15) | 0.639 | |
Control | 1771/1872 (94.6) | 6271/6644 (94.4) | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, M.J.; Han, K.M.; Kim, J.-H.; Kim, J.H.; Kim, M.-J.; Kim, N.Y.; Choi, H.G.; Kang, H.S. Gout and Colorectal Cancer Likelihood: Insights from a Nested Case-Control Study of the Korean Population Utilizing the Korean National Health Insurance Service-National Sample Cohort. Cancers 2023, 15, 5602. https://doi.org/10.3390/cancers15235602
Kwon MJ, Han KM, Kim J-H, Kim JH, Kim M-J, Kim NY, Choi HG, Kang HS. Gout and Colorectal Cancer Likelihood: Insights from a Nested Case-Control Study of the Korean Population Utilizing the Korean National Health Insurance Service-National Sample Cohort. Cancers. 2023; 15(23):5602. https://doi.org/10.3390/cancers15235602
Chicago/Turabian StyleKwon, Mi Jung, Kyeong Min Han, Joo-Hee Kim, Ji Hee Kim, Min-Jeong Kim, Nan Young Kim, Hyo Geun Choi, and Ho Suk Kang. 2023. "Gout and Colorectal Cancer Likelihood: Insights from a Nested Case-Control Study of the Korean Population Utilizing the Korean National Health Insurance Service-National Sample Cohort" Cancers 15, no. 23: 5602. https://doi.org/10.3390/cancers15235602
APA StyleKwon, M. J., Han, K. M., Kim, J. -H., Kim, J. H., Kim, M. -J., Kim, N. Y., Choi, H. G., & Kang, H. S. (2023). Gout and Colorectal Cancer Likelihood: Insights from a Nested Case-Control Study of the Korean Population Utilizing the Korean National Health Insurance Service-National Sample Cohort. Cancers, 15(23), 5602. https://doi.org/10.3390/cancers15235602