Monitoring and Surveillance of Patients with Gastroenteropancreatic Neuroendocrine Tumors Undergoing Radioligand Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Considerations and Practical Guidance for Patient Selection and Eligibility Determination for RLT
2.1. SSTR-Targeted Imaging
Study, Reference | Study Design | No. and Type of Patients | Type and Schedule of SSTR Imaging | Conclusion |
---|---|---|---|---|
Gabriel et al., 2009 [14] | Single-center, prospective | 46 patients with advanced NETs | 68Ga-DOTATOC PET with CT or MRI before RLT and after the last therapy cycle | Tumor SUV on baseline 68Ga-DOTATOC PET was not predictive of response to RLT |
Oksuz et al., 2014 [18] | Retrospective | 40 patients with advanced, progressive NETs and evidence of SSTR expression | 68Ga-DOTATOC PET/CT 1–3 days before and 3 months after RLT | Pre-RLT SUVmax was prognostic for response to RLT but SUVmax threshold values predicting response are not yet known |
Kratochwil et al., 2015 [17] | Single-center, retrospective | 30 patients with metastatic NETs | Baseline 68Ga-DOTATOC PET/CT of liver metastases | SUVmax cutoff of >16.4 from 68Ga-DOTATOC PET/CT predicted response to RLT |
Wetz et al., 2017 [20] | Single-center, retrospective | 20 patients with progressive, metastatic NETs (grade 1 or 2) and SSTR-positive lesions | 111In-pentetreotide SPECT/CT before RLT | Spatial heterogeneity of SSTR volume (asphericity) has potential in predicting response to RLT |
Werner et al., 2017 [19] | Multi-center, retrospective | 142 patients who received RLT (77% GEP-NETs) | 68Ga-DOTATATE PET/CT or 68Ga-DOTATOC PET/CT before RLT | Baseline image-based metrics of intratumoral SSTR heterogeneity correlated with PFS and/or OS; in contrast, baseline SUVmax and SUVmean were not predictive of PFS or OS |
Graf et al., 2020 [16] | Single-center, retrospective | 65 patients with progressive NETs (grade 1 or 2) referred for RLT | 68Ga-DOTATATE PET/CT or 68Ga-DOTATOC PET/CT before RLT | Heterogeneity of SSTR expression (determined by visual assessment of PET/CT imaging) was associated with shorter OS and TTP |
Ortega et al., 2021 [34] | Multi-center, prospective | 91 patients with progressive NETs and adequate expression of SSTR2 | Baseline and interim 68Ga-DOTATATE PET/CT before second cycle of RLT | Baseline quantitative imaging metrics of SSTR2 expression levels and heterogeneity were predictive of RLT response and PFS |
Metser et al., 2022 [35] | Multi-center, retrospective | 41 patients with progressive NETs and adequate SSTR2 expression | 68Ga-DOTATATE PET/CT at baseline | There was no association between baseline levels of SSTR2 expression in a lesion and subsequent lesion response to RLT |
Durmo et al., 2022 [36] | Single-center, retrospective | 46 patients with unresectable, metastatic NETs and adequate SSTR2 expression | 68Ga-DOTATOC PET/CT at baseline and after 2 RLT cycles (interim) | Baseline whole-body tumor volume was a negative predictor of RLT response and OS |
Zwirtz et al., 2022 [15] | Single-center, retrospective | 34 patients with progressive grade 1 or NETs treated with RLT | 68Ga-DOTATATE PET/CT or 68Ga-DOTATOC PET/CT before RLT, after the 1st and 2nd cycles, and within 3 months of RLT completion | A baseline metric incorporating Hounsfield Unit and SUVmean was found to predict lesion progression after 3 RLT cycles |
2.2. Risk of Adverse Events and Laboratory Monitoring
3. Considerations and Practical Guidance for Monitoring during and after RLT
3.1. Safety Monitoring: Laboratory and Clinical Assessments
Safety Considerations | Incidence (%) | Time Course | General RLT Monitoring Considerations | Individual Patient Considerations a |
---|---|---|---|---|
Acute Reactions | ||||
Neuroendocrine hormonal crisis (carcinoid crisis) | ERASMUS [10] <1 Systematic review [42] 1–10 | Most commonly occurs at cycle 1 during or within a day of the infusion [10,42] | Signs and symptoms of tumor-related hormonal release should be monitored (e.g., flushing, diarrhea, hypotension, and bronchoconstriction) [10] | In cases of severe neuroendocrine hormonal crisis (carcinoid crisis), hospital admission for closer monitoring/management may be required |
Adverse events during and after RLT | ||||
Grade ≥3 myelosuppression | NETTER-1 [11] | Transient in nature with resolution within 8 weeks for thrombocytopenia and neutropenia [7,11]; In NETTER-1, median time to platelet nadir was 5.1 weeks after the first dose and median time to platelet recovery was 2 months [10] | Baseline laboratory thresholds for RLT eligibility b:
It has been recommended that blood tests be performed 1, 3, 6, and 12 months after RLT completion and then at least yearly thereafter if results have been normal [7] | The cause of cytopenia should be considered when assessing RLT eligibility. For example, if reduced platelet counts are due to splenic sequestration, the patient could still be a viable RLT candidate; Patients with abnormal blood tests should be monitored more closely (hematology consult, increased testing frequency) [7] |
Thrombocytopenia | 2 | |||
Anemia | 0 | |||
Lymphopenia | 9 | |||
Leukopenia | 1 | |||
Neutropenia | 1 | |||
Renal toxicity Grade ≥ 3 nephrotoxicity Grade ≥ 3 serum creatinine increase | NETTER-1 [11,43] 5 1 | No therapy-related long-term renal failure in NETTER-1 [11,43] or ERASMUS [44]; at 5-year follow-up of NETTER-1, mean change from baseline for CrCL was similar between RLT and control groups [43] | Baseline laboratory thresholds for RLT eligibility: b eGFR < 50 mL/min/1.73 m2 not a contraindication [9] eGFR < 30 mL/min/1.73 m2 (use only in exceptional circumstances) [9]. Serum creatinine and CrCL should be monitored when patients are on RLT [10]; It has been recommended that serum creatinine/eGFR be assessed at 1, 3, 6, and 12 months after RLT completion and then at least yearly thereafter if results have been normal [7] | Risk factors for renal toxicity include hypertension, diabetes, and pre-existing RI [10,45]; Patients with mild or moderate RI should have more frequent renal assessments [10] |
Hepatotoxicity Hepatic tumor hemorrhage, edema, or necrosis | ERASMUS [44] <1 [10] | ERASMUS [44] No therapy-related long-term hepatic failure | Laboratory thresholds for RLT eligibility b:
It has been recommended that liver panels be assessed at 1, 3, 6, and 12 months after RLT completion and then at least yearly thereafter if results have been normal [7] | Anatomic imaging can help determine if elevated bilirubin is due to biliary obstruction rather than RLT-induced toxicity; Hepatotoxicity may be more common in patients with extensive hepatic metastases [46] or prior SIRT [47,48] |
Long-term safety considerations | ||||
MDS and leukemia | NETTER-1 [11,43] MDS: 1.8 Leukemia: 0 ERASMUS [44] MDS: 1.5 Leukemia: 0.7 Systematic review [49] RLT-related myeloid neoplasm: 2.61 | In NETTER-1, 2 cases of MDS occurred at 8 and 14 months after first RLT dose—no new cases of MDS or leukemia were reported during long-term follow-up [43]; in ERASMUS, acute leukemia and MDS occurred after median follow-up durations of 55 and 28 months, respectively [44] | No robust pre-emptive monitoring options | Risk factors for MDS/leukemia include prior chemotherapy and radiotherapy (including SIRT) [50]; Patients with persistent cytopenias merit closer monitoring (hematology consult; increased testing frequency) [7] |
3.2. Anatomic and Functional Imaging for Assessment of Response and Disease Progression
3.2.1. Anatomic Imaging
3.2.2. SSTR-Targeted Imaging
Study, Reference | Study Design | No. and Type of Patients | Type and Schedule of SSTR Imaging | Results |
---|---|---|---|---|
Interim SSTR Imaging (between the First and Last Cycles of RLT) | ||||
Haug et al., 2010 [59] | Single-center | 33 patients with well-differentiated metastatic NETs and eligible for RLT | Whole-body 68Ga-DOTATATE PET/CT scans at baseline and 3 months after the first RLT cycle | Changes in uptake on 68Ga-DOTATATE PET/CT predicted TTP and clinical improvement in symptoms |
Mahajan et al., 2019 [61] | Single-center, retrospective | 16 patients with metastatic NETs | Planar whole-body scan for gamma emission 3 h post RLT injection | Early post-RLT quality assurance scans were used to confirm successful administration of therapy and assess physiologic biodistribution of RLT |
Ortega et al., 2021 [34] | Multi-center, prospective | 91 patients with progressive NETs and adequate expression of SSTR2 | Baseline and interim 68Ga-DOTATATE PET/CT before second cycle of RLT | Interim quantitative metrics of SSTR2 expression and tumor heterogeneity did not correlate with PFS |
Norman et al., 2021 [54] | Single-center, retrospective | 113 patients with advanced, progressive GEP-NETs | Midpoint imaging before RLT cycles 2, 3, or 4 with 68Ga-DOTATATE PET/MRI, FDG PET/MRI, MRI, or CT | Midpoint imaging rarely changed subsequent clinical management |
Durmo et al., 2022 [36] | Single-center, retrospective | 46 patients with unresectable, metastatic NETs and adequate SSTR2 expression | 68Ga-DOTATOC PET/CT at baseline and after 2 RLT cycles (interim) | Change from baseline in semiquantitative and volumetric PET metrics had no association with RLT response or OS |
Heying et al., 2022 [64] | Single-center, retrospective | 105 patients with SSTR-expressing NETs | 68Ga-DOTATATE PET/CT PET/MRI after 2 cycles of RLT | Interim 68Ga-DOTATATE PET was more accurate than RECIST in assessing treatment response during RLT |
Zwirtz et al., 2022 [15] | Single-center, retrospective | 34 patients with progressive grade 1 or 2 NETs treated with RLT | 68Ga-DOTATATE PET/CT or 68Ga-DOTATOC PET/CT before RLT, after the 1st and 2nd cycles, and within 3 months of RLT completion | Patients showing ≥25% increase in the sum of SUVmax or ≥1 new lesion after 2 RLT cycles had worse OS |
SSTR imaging after RLT completion | ||||
Gabriel et al., 2009 [14] | Single-center, prospective | 46 patients with advanced NETs and evidence of SSTR expression | 68Ga-DOTATOC PET with CT or MRI before RLT and after the last therapy cycle | Whole-body 68Ga-DOTATOC PET at end of RLT was useful for early assessment of progressive disease |
Kong et al., 2014 [60] | Single-center, retrospective | 68 patients with NETs and uncontrolled symptomatic disease or progressive disease | 111In-octreotide SPECT or 68Ga-octreotate PET imaging 3–6, 6–12, and >12 months after the last RLT cycle | Patients with an SSTR imaging response (decrease in uptake relative to hepatic and splenic activity) had longer OS than those that did not |
Huizing et al., 2020 [60] | Single-center, retrospective | 44 patients with well-differentiated NETs and sufficient SSTR expression | CT/MRI, 68Ga-DOTATATE PET/CT, and serum CgA before, and 3 and 9 months after RLT | 68Ga-DOTATATE PET/CT detected new lesions compared with baseline earlier than anatomical imaging, but changes in quantitative 68Ga-DOTATATE uptake parameters after RLT were not associated with OS |
Opalinska et al., 2022 [62] | Single-center, retrospective | 12 patients with advanced NETs eligible for RLT | 68Ga-DOTATATE PET/CT at baseline and every 3–6 months after RLT completion | Change from baseline in post-RLT corrected SUVmax metrics correlated with clinical response |
4. The Role of Circulating Biomarkers and Quality of Life/Patient Symptom Assessments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, L.; Dai, S.; Chen, M.; Li, F.; Sun, J.; Luo, F. Epidemiologic trends of and factors associated with overall survival for patients with gastroenteropancreatic neuroendocrine tumors in the United States. JAMA Netw. Open 2021, 4, e2124750. [Google Scholar] [CrossRef]
- Dasari, A.; Shen, C.; Devabhaktuni, A.; Nighot, R.; Sorbye, H. Survival According to Primary Tumor Location, Stage, and Treatment Patterns in Locoregional Gastroenteropancreatic High-grade Neuroendocrine Carcinomas. Oncologist 2022, 27, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Waser, B. Concomitant expression of several peptide receptors in neuroendocrine tumours: Molecular basis for in vivo multireceptor tumour targeting. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Del Rivero, J.; Ramirez, R.A.; Soares, H.P.; Li, D. Treatment Sequencing Strategies in Advanced Neuroendocrine Tumors: A Review. Cancers 2022, 14, 5248. [Google Scholar] [CrossRef] [PubMed]
- Hope, T.A. Updates to the Appropriate-Use Criteria for Somatostatin Receptor PET. J. Nucl. Med. 2020, 61, 1764. [Google Scholar] [CrossRef]
- Hope, T.A.; Abbott, A.; Colucci, K.; Bushnell, D.L.; Gardner, L.; Graham, W.S.; Lindsay, S.; Metz, D.C.; Pryma, D.A.; Stabin, M.G.; et al. NANETS/SNMMI procedure standard for somatostatin receptor-based peptide receptor radionuclide therapy with (177)Lu-DOTATATE. J. Nucl. Med. 2019, 60, 937–943. [Google Scholar] [CrossRef]
- Galgano, S.J.; Iravani, A.; Bodei, L.; El-Haddad, G.; Hofman, M.S.; Kong, G. Imaging of neuroendocrine neoplasms: Monitoring treatment response-AJR Expert Panel narrative review. AJR Am. J. Roentgenol. 2022, 218, 767–780. [Google Scholar] [CrossRef]
- Hope, T.A.; Bodei, L.; Chan, J.A.; El-Haddad, G.; Fidelman, N.; Kunz, P.L.; Mailman, J.; Menda, Y.; Metz, D.C.; Mittra, E.S.; et al. NANETS/SNMMI consensus statement on patient selection and appropriate use of (177)Lu-DOTATATE peptide receptor radionuclide therapy. J. Nucl. Med. 2020, 61, 222–227. [Google Scholar] [CrossRef]
- LUTATHERA. (Lutetium Lu 177 Dotatate) Injection for Intravenous Use. Prescribing Information. Advanced Accelerator Applications USA, Inc. 2022. Available online: https://www.novartis.com/us-en/sites/novartis_us/files/lutathera.pdf (accessed on 6 October 2022).
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 trial of (177)Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Hope, T.A.; Calais, J.; Zhang, L.; Dieckmann, W.; Millo, C. (111)In-Pentetreotide Scintigraphy Versus (68)Ga-DOTATATE PET: Impact on Krenning Scores and Effect of Tumor Burden. J. Nucl. Med. 2019, 60, 1266–1269. [Google Scholar] [CrossRef] [PubMed]
- Iravani, A.; Parihar, A.S.; Akhurst, T.; Hicks, R.J. Molecular imaging phenotyping for selecting and monitoring radioligand therapy of neuroendocrine neoplasms. Cancer Imaging 2022, 22, 25. [Google Scholar] [CrossRef]
- Gabriel, M.; Oberauer, A.; Dobrozemsky, G.; Decristoforo, C.; Putzer, D.; Kendler, D.; Uprimny, C.; Kovacs, P.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J. Nucl. Med. 2009, 50, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Zwirtz, K.; Hardt, J.; Acker, G.; Baur, A.D.J.; Pavel, M.; Huang, K.; Brenner, W.; Prasad, V. Comparison of Choi, RECIST and Somatostatin Receptor PET/CT Based Criteria for the Evaluation of Response and Response Prediction to PRRT. Pharmaceutics 2022, 14, 1278. [Google Scholar] [CrossRef]
- Graf, J.; Pape, U.F.; Jann, H.; Denecke, T.; Arsenic, R.; Brenner, W.; Pavel, M.; Prasad, V. Prognostic Significance of Somatostatin Receptor Heterogeneity in Progressive Neuroendocrine Tumor Treated with Lu-177 DOTATOC or Lu-177 DOTATATE. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 881–894. [Google Scholar] [CrossRef]
- Kratochwil, C.; Stefanova, M.; Mavriopoulou, E.; Holland-Letz, T.; Dimitrakopoulou-Strauss, A.; Afshar-Oromieh, A.; Mier, W.; Haberkorn, U.; Giesel, F.L. SUV of [68Ga]DOTATOC-PET/CT Predicts Response Probability of PRRT in Neuroendocrine Tumors. Mol. Imaging Biol. 2015, 17, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Oksuz, M.O.; Winter, L.; Pfannenberg, C.; Reischl, G.; Mussig, K.; Bares, R.; Dittmann, H. Peptide receptor radionuclide therapy of neuroendocrine tumors with (90)Y-DOTATOC: Is treatment response predictable by pre-therapeutic uptake of (68)Ga-DOTATOC? Diagn. Interv. Imaging 2014, 95, 289–300. [Google Scholar] [CrossRef]
- Werner, R.A.; Lapa, C.; Ilhan, H.; Higuchi, T.; Buck, A.K.; Lehner, S.; Bartenstein, P.; Bengel, F.; Schatka, I.; Muegge, D.O.; et al. Survival prediction in patients undergoing radionuclide therapy based on intratumoral somatostatin-receptor heterogeneity. Oncotarget 2017, 8, 7039–7049. [Google Scholar] [CrossRef]
- Wetz, C.; Apostolova, I.; Steffen, I.G.; Hofheinz, F.; Furth, C.; Kupitz, D.; Ruf, J.; Venerito, M.; Klose, S.; Amthauer, H. Predictive Value of Asphericity in Pretherapeutic [(111)In]DTPA-Octreotide SPECT/CT for Response to Peptide Receptor Radionuclide Therapy with [(177)Lu]DOTATATE. Mol. Imaging Biol. 2017, 19, 437–445. [Google Scholar] [CrossRef]
- Deppen, S.A.; Blume, J.; Bobbey, A.J.; Shah, C.; Graham, M.M.; Lee, P.; Delbeke, D.; Walker, R.C. 68Ga-DOTATATE Compared with 111In-DTPA-Octreotide and Conventional Imaging for Pulmonary and Gastroenteropancreatic Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. J. Nucl. Med. 2016, 57, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.M.; Gu, X.; Ginader, T.; Breheny, P.; Sunderland, J.J. (68)Ga-DOTATOC Imaging of Neuroendocrine Tumors: A Systematic Review and Metaanalysis. J. Nucl. Med. 2017, 58, 1452–1458. [Google Scholar] [CrossRef] [PubMed]
- Johnbeck, C.B.; Knigge, U.; Loft, A.; Berthelsen, A.K.; Mortensen, J.; Oturai, P.; Langer, S.W.; Elema, D.R.; Kjaer, A. Head-to-Head Comparison of (64)Cu-DOTATATE and (68)Ga-DOTATOC PET/CT: A Prospective Study of 59 Patients with Neuroendocrine Tumors. J. Nucl. Med. 2017, 58, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Poeppel, T.D.; Binse, I.; Petersenn, S.; Lahner, H.; Schott, M.; Antoch, G.; Brandau, W.; Bockisch, A.; Boy, C. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J. Nucl. Med. 2011, 52, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Velikyan, I.; Sundin, A.; Sorensen, J.; Lubberink, M.; Sandstrom, M.; Garske-Roman, U.; Lundqvist, H.; Granberg, D.; Eriksson, B. Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: Net uptake rate for accurate quantification. J. Nucl. Med. 2014, 55, 204–210. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lau, W.F.; Hicks, R.J. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: Clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics 2015, 35, 500–516. [Google Scholar] [CrossRef]
- Ambrosini, V.; Zanoni, L.; Filice, A.; Lamberti, G.; Argalia, G.; Fortunati, E.; Campana, D.; Versari, A.; Fanti, S. Radiolabeled Somatostatin Analogues for Diagnosis and Treatment of Neuroendocrine Tumors. Cancers 2022, 14, 1055. [Google Scholar] [CrossRef]
- Al-Ibraheem, A.; Bundschuh, R.A.; Notni, J.; Buck, A.; Winter, A.; Wester, H.J.; Schwaiger, M.; Scheidhauer, K. Focal uptake of 68Ga-DOTATOC in the pancreas: Pathological or physiological correlate in patients with neuroendocrine tumours? Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 2005–2013. [Google Scholar] [CrossRef]
- Krausz, Y.; Rubinstein, R.; Appelbaum, L.; Mishani, E.; Orevi, M.; Fraenkel, M.; Tshori, S.; Glaser, B.; Bocher, M.; Salmon, A.; et al. Ga-68 DOTA-NOC uptake in the pancreas: Pathological and physiological patterns. Clin. Nucl. Med. 2012, 37, 57–62. [Google Scholar] [CrossRef]
- Kroiss, A.; Putzer, D.; Decristoforo, C.; Uprimny, C.; Warwitz, B.; Nilica, B.; Gabriel, M.; Kendler, D.; Waitz, D.; Widmann, G.; et al. 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: Differentiation of physiological uptake and pathological processes in PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 514–523. [Google Scholar] [CrossRef]
- Tabacchi, E.; Fortunati, E.; Argalia, G.; Zanoni, L.; Calabro, D.; Telo, S.; Campana, D.; Lamberti, G.; Ricci, C.; Casadei, R.; et al. [68Ga]Ga-DOTANOC Uptake at Pancreatic Head/Uncinate Process: Is It a Persistent Diagnostic Pitfall Over Time? Cancers 2022, 14, 3541. [Google Scholar] [CrossRef]
- Chan, D.L.; Hayes, A.R.; Karfis, I.; Conner, A.; Furtado O’Mahony, L.; Mileva, M.; Bernard, E.; Roach, P.; Marin, G.; Pavlakis, N.; et al. Dual [(68)Ga]DOTATATE and [(18)F]FDG PET/CT in patients with metastatic gastroenteropancreatic neuroendocrine neoplasms: A multicentre validation of the NETPET score. Br. J. Cancer 2023, 128, 549–555. [Google Scholar] [CrossRef]
- Chan, D.L.; Ulaner, G.A.; Pattison, D.; Wyld, D.; Ladwa, R.; Kirchner, J.; Li, B.T.; Lai, W.V.; Pavlakis, N.; Roach, P.J.; et al. Dual PET Imaging in Bronchial Neuroendocrine Neoplasms: The NETPET Score as a Prognostic Biomarker. J. Nucl. Med. 2021, 62, 1278–1284. [Google Scholar] [CrossRef]
- Ortega, C.; Wong, R.K.S.; Schaefferkoetter, J.; Veit-Haibach, P.; Myrehaug, S.; Juergens, R.; Laidley, D.; Anconina, R.; Liu, A.; Metser, U. Quantitative (68)Ga-DOTATATE PET/CT Parameters for the Prediction of Therapy Response in Patients with Progressive Metastatic Neuroendocrine Tumors Treated with (177)Lu-DOTATATE. J. Nucl. Med. 2021, 62, 1406–1414. [Google Scholar] [CrossRef]
- Metser, U.; Eshet, Y.; Ortega, C.; Veit-Haibach, P.; Liu, A.; Wong, R.K.S. The association between lesion tracer uptake on 68Ga-DOTATATE PET with morphological response to 177Lu-DOTATATE therapy in patients with progressive metastatic neuroendocrine tumors. Nucl. Med. Commun. 2022, 43, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Durmo, R.; Filice, A.; Fioroni, F.; Cervati, V.; Finocchiaro, D.; Coruzzi, C.; Besutti, G.; Fanello, S.; Frasoldati, A.; Versari, A. Predictive and Prognostic Role of Pre-Therapy and Interim 68Ga-DOTATOC PET/CT Parameters in Metastatic Advanced Neuroendocrine Tumor Patients Treated with PRRT. Cancers 2022, 14, 592. [Google Scholar] [CrossRef] [PubMed]
- Manohar, S.; Kompotiatis, P.; Halfdanarson, T.R.; Hobday, T.J.; Thorpe, M.; Johnson, G.B.; Kendi, A.T.; Leung, N. 177Lu-dotatate use in chronic kidney disease patients: A single center experience. J. Onco-Nephrol. 2021, 5, 162–171. [Google Scholar] [CrossRef]
- Gococo-Benore, D.A.; Parent, E.; Sharma, A.; Accurso, J.; Yang, M.; Kendi, A.T.; Sonbol, B.; Halfdanarson, T.R.; Starr, J.S. Hepatotoxicity from peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors (NETs) patients with very high tumor burden [Abstract C40]. In Proceedings of the NANETS 2021 Symposium Abstracts, Chicago, IL, USA, 4–6 November 2021. [Google Scholar]
- Gococo-Benore, D.A.; Kuhlman, J.; Parent, E.E.; Sharma, A.; Accurso, J.; Yang, M.; Kendi, A.T.; Johnson, G.; Sonbol, M.B.; Hobday, T.; et al. Evaluation of Hepatotoxicity from Peptide Receptor Radionuclide Therapy in Patients with Gastroenteropancreatic Neuroendocrine Tumors and a Very High Liver Tumor Burden. J. Nucl. Med. 2023, 64, 880–884. [Google Scholar] [CrossRef]
- Heckert, J.M.; Kipnis, S.T.; Kumar, S.; Botterbusch, S.; Alderson, A.; Bennett, B.; Creamer, C.; Eads, J.R.; Soulen, M.C.; Pryma, D.A.; et al. Abnormal Pretreatment Liver Function Tests Are Associated with Discontinuation of Peptide Receptor Radionuclide Therapy in a U.S.-Based Neuroendocrine Tumor Cohort. Oncologist 2020, 25, 572–578. [Google Scholar] [CrossRef]
- Li, M.; Chan, D.L.; Tapia Rico, G.; Cehic, G.; Lawrence, B.; Wyld, D.; Pattison, D.A.; Kong, G.; Hicks, R.; Michael, M.; et al. Australasian consensus statement on the identification, prevention and management of hormonal crises in patients with neuroendocrine neoplasms (NENs) undergoing peptide receptor radionuclide therapy (PRRT). Neuroendocrinology 2023, 113, 281–288. [Google Scholar] [CrossRef]
- Del Olmo-Garcia, M.I.; Muros, M.A.; Lopez-de-la-Torre, M.; Agudelo, M.; Bello, P.; Soriano, J.M.; Merino-Torres, J.F. Prevention and Management of Hormonal Crisis during Theragnosis with LU-DOTA-TATE in Neuroendocrine Tumors. A Systematic Review and Approach Proposal. J. Clin. Med. 2020, 9, 2203. [Google Scholar] [CrossRef]
- Strosberg, J.R.; Caplin, M.E.; Kunz, P.L.; Ruszniewski, P.B.; Bodei, L.; Hendifar, A.; Mittra, E.; Wolin, E.M.; Yao, J.C.; Pavel, M.E.; et al. (177)Lu-Dotatate plus long-acting octreotide versus high dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): Final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 1752–1763. [Google Scholar] [CrossRef]
- Brabander, T.; van der Zwan, W.A.; Teunissen, J.J.M.; Kam, B.L.R.; Feelders, R.A.; de Herder, W.W.; van Eijck, C.H.J.; Franssen, G.J.H.; Krenning, E.P.; Kwekkeboom, D.J. Long-term efficacy, survival, and safety of [(177)Lu-DOTA(0),Tyr(3)]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin. Cancer Res. 2017, 23, 4617–4624. [Google Scholar] [CrossRef] [PubMed]
- Bodei, L.; Cremonesi, M.; Ferrari, M.; Pacifici, M.; Grana, C.M.; Bartolomei, M.; Baio, S.M.; Sansovini, M.; Paganelli, G. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: The role of associated risk factors. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1847–1856. [Google Scholar] [CrossRef] [PubMed]
- Kendi, A.T.; Halfdanarson, T.R.; Packard, A.; Dundar, A.; Subramaniam, R.M. Therapy with (177)Lu-DOTATATE: Clinical implementation and impact on care of patients with neuroendocrine tumors. AJR Am. J. Roentgenol. 2019, 213, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.; Brown, D.B.; Feilchenfeldt, J.; Marshall, J.; Wasan, H.; Fakih, M.; Gibbs, P.; Knuth, A.; Sangro, B.; Soulen, M.C.; et al. Safety of selective internal radiation therapy (SIRT) with yttrium-90 microspheres combined with systemic anticancer agents: Expert consensus. J. Gastrointest. Oncol. 2017, 8, 1079–1099. [Google Scholar] [CrossRef] [PubMed]
- Riff, B.P.; Yang, Y.X.; Soulen, M.C.; Pryma, D.A.; Bennett, B.; Wild, D.; Nicolas, G.; Teitelbaum, U.R.; Metz, D.C. Peptide receptor radionuclide therapy-induced hepatotoxicity in patients with metastatic neuroendocrine tumors. Clin. Nucl. Med. 2015, 40, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Sonbol, M.B.; Halfdanarson, T.R.; Hilal, T. Assessment of Therapy-Related Myeloid Neoplasms in Patients With Neuroendocrine Tumors After Peptide Receptor Radionuclide Therapy: A Systematic Review. JAMA Oncol. 2020, 6, 1086–1092. [Google Scholar] [CrossRef]
- Bodei, L.; Kidd, M.; Paganelli, G.; Grana, C.M.; Drozdov, I.; Cremonesi, M.; Lepensky, C.; Kwekkeboom, D.J.; Baum, R.P.; Krenning, E.P.; et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: The value and limitations of clinical factors. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 5–19. [Google Scholar] [CrossRef]
- Ba-Ssalamah, A.; Uffmann, M.; Saini, S.; Bastati, N.; Herold, C.; Schima, W. Clinical value of MRI liver-specific contrast agents: A tailored examination for a confident non-invasive diagnosis of focal liver lesions. Eur. Radiol. 2009, 19, 342–357. [Google Scholar] [CrossRef]
- Giesel, F.L.; Kratochwil, C.; Mehndiratta, A.; Wulfert, S.; Moltz, J.H.; Zechmann, C.M.; Kauczor, H.U.; Haberkorn, U.; Ley, S. Comparison of neuroendocrine tumor detection and characterization using DOTATOC-PET in correlation with contrast enhanced CT and delayed contrast enhanced MRI. Eur. J. Radiol. 2012, 81, 2820–2825. [Google Scholar] [CrossRef]
- Shimada, K.; Isoda, H.; Hirokawa, Y.; Arizono, S.; Shibata, T.; Togashi, K. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases. Eur. Radiol. 2010, 20, 2690–2698. [Google Scholar] [CrossRef]
- Norman, A.P.; Wee, C.; Hobday, T.J.; Kendi, A.T.; Johnson, G.B.; Thorpe, M.P.; Lunn, B.W.; Bach, C.R.; Halfdanarson, T.R. Utility of midpoint imaging in patients receiving peptide receptor radionuclide therapy (PRRT) for advance progressive gastroenteropancreatic-neuroendocrine tumors (GEP-NETs) [Abstract C33]. In Proceedings of the NANETS 2021 Symposium Abstracts, Chicago, IL, USA, 4–6 November 2021. [Google Scholar]
- Brabander, T.; van der Zwan, W.A.; Teunissen, J.J.M.; Kam, B.L.R.; de Herder, W.W.; Feelders, R.A.; Krenning, E.P.; Kwekkeboom, D.J. Pitfalls in the response evaluation after peptide receptor radionuclide therapy with [(177)Lu-DOTA(0),Tyr(3)]octreotate. Endocr. Relat. Cancer 2017, 24, 243–251. [Google Scholar] [CrossRef]
- De Mestier, L.; Dromain, C.; d’Assignies, G.; Scoazec, J.Y.; Lassau, N.; Lebtahi, R.; Brixi, H.; Mitry, E.; Guimbaud, R.; Courbon, F.; et al. Evaluating digestive neuroendocrine tumor progression and therapeutic responses in the era of targeted therapies: State of the art. Endocr. Relat. Cancer 2014, 21, R105–R120. [Google Scholar] [CrossRef]
- Choi, H.; Charnsangavej, C.; Faria, S.C.; Macapinlac, H.A.; Burgess, M.A.; Patel, S.R.; Chen, L.L.; Podoloff, D.A.; Benjamin, R.S. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: Proposal of new computed tomography response criteria. J. Clin. Oncol. 2007, 25, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Huizing, D.M.V.; Aalbersberg, E.A.; Versleijen, M.W.J.; Tesselaar, M.E.T.; Walraven, I.; Lahaye, M.J.; de Wit–van der Veen, B.J.; Stokkel, M.P.M. Early response assessment and prediction of overall survival after peptide receptor radionuclide therapy. Cancer Imaging 2020, 20, 57. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.R.; Auernhammer, C.J.; Wangler, B.; Schmidt, G.P.; Uebleis, C.; Goke, B.; Cumming, P.; Bartenstein, P.; Tiling, R.; Hacker, M. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J. Nucl. Med. 2010, 51, 1349–1356. [Google Scholar] [CrossRef]
- Kong, G.; Thompson, M.; Collins, M.; Herschtal, A.; Hofman, M.S.; Johnston, V.; Eu, P.; Michael, M.; Hicks, R.J. Assessment of predictors of response and long-term survival of patients with neuroendocrine tumour treated with peptide receptor chemoradionuclide therapy (PRCRT). Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1831–1844. [Google Scholar] [CrossRef]
- Mahajan, S.; O’Donoghue, J.; Weber, W.; Bodei, L. Integrating Early Rapid Post-Peptide Receptor Radionuclide Therapy Quality Assurance Scan into the Outpatient Setting. J. Nucl. Med. Radiat. Ther. 2019, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Opalinska, M.; Morawiec-Slawek, K.; Kania-Kuc, A.; Al Maraih, I.; Sowa-Staszczak, A.; Hubalewska-Dydejczyk, A. Potential value of pre- and post-therapy [68Ga]Ga-DOTA-TATE PET/CT in the prognosis of response to PRRT in disseminated neuroendocrine tumors. Front. Endocrinol. (Lausanne) 2022, 13, 929391. [Google Scholar] [CrossRef] [PubMed]
- Aalbersberg, E.A.; de Vries-Huizing, D.M.V.; Tesselaar, M.E.T.; Stokkel, M.P.M.; Versleijen, M.W.J. Post-PRRT scans: Which scans to make and what to look for. Cancer Imaging 2022, 22, 29. [Google Scholar] [CrossRef]
- Heying, D.; Hong, S.; Valentina, F.; George, F.; Shagulfta, S.; Jagruti, S.; Judy, N.; Farshad, M.; Ben, F.; Guido, D.; et al. Evaluation of 68Ga-DOTATATE PET After Two Cycles of Peptide Receptor Radionuclide Therapy (PRRT) in Neuroendocrine Tumors (NET) [Abstract C25]. In Proceedings of the NANETS 2022 Symposium Abstracts, Washington, DC, USA, 27–29 October 2022. [Google Scholar]
- Cherk, M.H.; Kong, G.; Hicks, R.J.; Hofman, M.S. Changes in biodistribution on (68)Ga-DOTA-Octreotate PET/CT after long acting somatostatin analogue therapy in neuroendocrine tumour patients may result in pseudoprogression. Cancer Imaging 2018, 18, 3. [Google Scholar] [CrossRef]
- Binderup, T.; Knigge, U.; Johnbeck, C.B.; Loft, A.; Berthelsen, A.K.; Oturai, P.; Mortensen, J.; Federspiel, B.; Langer, S.W.; Kjaer, A. (18)F-FDG PET is Superior to WHO Grading as a Prognostic Tool in Neuroendocrine Neoplasms and Useful in Guiding PRRT: A Prospective 10-Year Follow-up Study. J. Nucl. Med. 2021, 62, 808–815. [Google Scholar] [CrossRef]
- Halfdanarson, T.R.; Strosberg, J.R.; Tang, L.; Bellizzi, A.M.; Bergsland, E.K.; O’Dorisio, T.M.; Halperin, D.M.; Fishbein, L.; Eads, J.; Hope, T.A.; et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Medical Management of Pancreatic Neuroendocrine Tumors. Pancreas 2020, 49, 863–881. [Google Scholar] [CrossRef] [PubMed]
- Oberg, K.; Modlin, I.M.; De Herder, W.; Pavel, M.; Klimstra, D.; Frilling, A.; Metz, D.C.; Heaney, A.; Kwekkeboom, D.; Strosberg, J.; et al. Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncol. 2015, 16, e435–e446. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.R.; Halfdanarson, T.R.; Bellizzi, A.M.; Chan, J.A.; Dillon, J.S.; Heaney, A.P.; Kunz, P.L.; O’Dorisio, T.M.; Salem, R.; Segelov, E.; et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Medical Management of Midgut Neuroendocrine Tumors. Pancreas 2017, 46, 707–714. [Google Scholar] [CrossRef]
- Modlin, I.M.; Drozdov, I.; Kidd, M. The identification of gut neuroendocrine tumor disease by multiple synchronous transcript analysis in blood. PLoS ONE 2013, 8, e63364. [Google Scholar] [CrossRef] [PubMed]
- Bodei, L.; Kidd, M.; Modlin, I.M.; Severi, S.; Drozdov, I.; Nicolini, S.; Kwekkeboom, D.J.; Krenning, E.P.; Baum, R.P.; Paganelli, G. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 839–851. [Google Scholar] [CrossRef]
- Bodei, L.; Kidd, M.S.; Singh, A.; van der Zwan, W.A.; Severi, S.; Drozdov, I.A.; Cwikla, J.; Baum, R.P.; Kwekkeboom, D.J.; Paganelli, G.; et al. PRRT genomic signature in blood for prediction of (177)Lu-octreotate efficacy. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1155–1169. [Google Scholar] [CrossRef]
- Bodei, L.; Kidd, M.S.; Singh, A.; van der Zwan, W.A.; Severi, S.; Drozdov, I.A.; Malczewska, A.; Baum, R.P.; Kwekkeboom, D.J.; Paganelli, G.; et al. PRRT neuroendocrine tumor response monitored using circulating transcript analysis: The NETest. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 895–906. [Google Scholar] [CrossRef]
- Marinova, M.; Mucke, M.; Fischer, F.; Essler, M.; Cuhls, H.; Radbruch, L.; Ghaei, S.; Conrad, R.; Ahmadzadehfar, H. Quality of life in patients with midgut NET following peptide receptor radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2252–2259. [Google Scholar] [CrossRef]
- Strosberg, J.; Wolin, E.; Chasen, B.; Kulke, M.; Bushnell, D.; Caplin, M.; Baum, R.P.; Kunz, P.; Hobday, T.; Hendifar, A.; et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with (177)Lu-Dotatate in the phase III NETTER-1 trial. J. Clin. Oncol. 2018, 36, 2578–2584. [Google Scholar] [CrossRef]
- Zandee, W.T.; Brabander, T.; Blazevic, A.; Kam, B.L.R.; Teunissen, J.J.M.; Feelders, R.A.; Hofland, J.; de Herder, W.W. Symptomatic and Radiological Response to 177Lu-DOTATATE for the Treatment of Functioning Pancreatic Neuroendocrine Tumors. J. Clin. Endocrinol. Metab. 2019, 104, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Hofland, J.; Herrera-Martinez, A.D.; Zandee, W.T.; de Herder, W.W. Management of carcinoid syndrome: A systematic review and meta-analysis. Endocr. Relat. Cancer 2019, 26, R145–R156. [Google Scholar] [CrossRef] [PubMed]
- Zandee, W.T.; Brabander, T.; Blazevic, A.; Minczeles, N.S.; Feelders, R.A.; de Herder, W.W.; Hofland, J. Peptide Receptor Radionuclide Therapy With 177Lu-DOTATATE for Symptomatic Control of Refractory Carcinoid Syndrome. J. Clin. Endocrinol. Metab. 2021, 106, e3665–e3672. [Google Scholar] [CrossRef] [PubMed]
- Yordanova, A.; Ahmadzadehfar, H. Combination therapies with PRRT. Pharmaceuticals 2021, 14, 1005. [Google Scholar] [CrossRef] [PubMed]
- Ballal, S.; Yadav, M.P.; Tripathi, M.; Sahoo, R.K.; Bal, C. Survival Outcomes in Metastatic Gastroenteropancreatic Neuroendocrine Tumor Patients receiving Concomitant (225)Ac-DOTATATE Targeted Alpha Therapy and Capecitabine: A Real-world Scenario Management Based Long-term Outcome Study. J. Nucl. Med. 2022, 64, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.; Leeuwenkamp, O.; Siddiqui, M.K. Peptide receptor radiotherapy re-treatment in patients with progressive neuroendocrine tumors: A systematic review and meta-analysis. Cancer Treat. Rev. 2021, 93, 102141. [Google Scholar] [CrossRef]
- Haug, A.R. PRRT of neuroendocrine tumors: Individualized dosimetry or fixed dose scheme? EJNMMI Res. 2020, 10, 35. [Google Scholar] [CrossRef]
- Reddy, R.P.; Ross Schmidtlein, C.; Giancipoli, R.G.; Mauguen, A.; LaFontaine, D.; Schoder, H.; Bodei, L. The Quest for an Accurate Functional Tumor Volume with (68)Ga-DOTATATE PET/CT. J. Nucl. Med. 2022, 63, 1027–1032. [Google Scholar] [CrossRef]
Topic | Considerations | Key MDT Members for Addressing the Considerations |
---|---|---|
Consistency and reproducibility of imaging |
| Radiologists, nuclear medicine specialists |
Choice of imaging technique |
| Radiologists, nuclear medicine specialists medical oncologists |
Timing of imaging assessments |
| Radiologists, nuclear medicine specialists, medical oncologists, surgical oncologists |
Criteria for response and disease progression based on imaging findings |
| Medical oncologists, radiologists, nuclear medicine specialists |
Circulating biomarkers |
| Medical oncologists, endocrinologists |
Quality of Life/symptoms |
| Medical oncologists, gastroenterologists, endocrinologists |
Clinical data for post-RLT monitoring/surveillance |
| All members of the MDT |
Topic | Select Ongoing Studies or Results | Current Status and Potential Impact on Patient Monitoring |
---|---|---|
Novel RLT-based combination therapies | NCT04234568 (RLT + triapine) NCT04086485 (RLT + olaparib) NCT04750954 (RLT + peposertib) NCT05249114 (RLT + cabozantinib) NCT03044977 (2 RLTs together: 131I-MIBG and 90Y-DOTATOC) | Novel RLT-based combination therapies are investigational and have not been approved; If approved in the future, frequency and type of assessments may need to be adjusted based on specific safety considerations for each combination therapy |
Targeted alpha-emitter therapy | NCT05153772 (212Pb-DOTAMTATE) Promising long-term results for 225Ac-DOTATATE [80] | Alpha-emitter therapies are investigational and have not been approved; If approved in the future, frequency and type of assessments may need to be adjusted based on specific safety considerations for each radioisotope |
RLT retreatment | NCT04954820 (ReLUTH study) NET RETREAT study (SWOG/CCTG; RLT retreatment vs everolimus) NCT05477576 (RYZ101 [225Ac] vs investigator choice of everolimus, sunitinib, octreotide, or lanreotide) Systematic review/meta-analysis showed encouraging efficacy and safety [81] | RLT retreatment is investigational and has not yet been approved; If approved in the future, restaging with SSTR PET after initial RLT can inform eligibility and serve as a baseline disease assessment for RLT retreatment |
Dosimetry-based RLT | NCT02754297 (dosimetry-based RLT) NCT04917484 (dosimetry- vs. standard-dose RLT) | Dosimetry-guided RLT is investigational and has not yet been approved |
High-grade disease | NCT03972488 (NETTER-2 phase 3 study; RLT vs high-dose octreotide in grade 2 and 3 advanced GEP-NETs) NCT04919226 (COMPOSE phase 3 study; RLT vs SOC in grade 2 and 3 advanced GEP-NETs) | In the United States, 177Lu-DOTATATE is approved for the treatment of SSTR-positive GEP-NETs; Patients with high-grade disease may require more frequent monitoring |
Multianalyte biomarkers | Circulating transcript assays have demonstrated promising results for monitoring response to RLT (NETest) and predicting response to RLT (PPQ) [73] | The NETest and PPQ assays are commercially available but have seen limited uptake; If validated and established in clinical practice, these biomarkers could improve patient selection, identify non-responders, and allow for early changes in treatment strategy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halfdanarson, T.R.; Mallak, N.; Paulson, S.; Chandrasekharan, C.; Natwa, M.; Kendi, A.T.; Kennecke, H.F. Monitoring and Surveillance of Patients with Gastroenteropancreatic Neuroendocrine Tumors Undergoing Radioligand Therapy. Cancers 2023, 15, 4836. https://doi.org/10.3390/cancers15194836
Halfdanarson TR, Mallak N, Paulson S, Chandrasekharan C, Natwa M, Kendi AT, Kennecke HF. Monitoring and Surveillance of Patients with Gastroenteropancreatic Neuroendocrine Tumors Undergoing Radioligand Therapy. Cancers. 2023; 15(19):4836. https://doi.org/10.3390/cancers15194836
Chicago/Turabian StyleHalfdanarson, Thorvardur R., Nadine Mallak, Scott Paulson, Chandrikha Chandrasekharan, Mona Natwa, Ayse Tuba Kendi, and Hagen F. Kennecke. 2023. "Monitoring and Surveillance of Patients with Gastroenteropancreatic Neuroendocrine Tumors Undergoing Radioligand Therapy" Cancers 15, no. 19: 4836. https://doi.org/10.3390/cancers15194836
APA StyleHalfdanarson, T. R., Mallak, N., Paulson, S., Chandrasekharan, C., Natwa, M., Kendi, A. T., & Kennecke, H. F. (2023). Monitoring and Surveillance of Patients with Gastroenteropancreatic Neuroendocrine Tumors Undergoing Radioligand Therapy. Cancers, 15(19), 4836. https://doi.org/10.3390/cancers15194836