Proton Bragg Peak FLASH Enables Organ Sparing and Ultra-High Dose-Rate Delivery: Proof of Principle in Recurrent Head and Neck Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pignon, J.; Bourhis, J.; Domenge, C.; Designe, L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: Three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta analysis of chemotherapy on head and neck cancer. Lancet 2000, 355, 949–955. [Google Scholar] [CrossRef]
- Petit, C.; Pignon, J.; Landais, C.; Trotti, A.; Gregoire, V.; Overgaard, J.; Tobias, J.; Zackrisson, B.; Parmar, M.; Lee, J.; et al. What is the most effective treatment for head and neck squamous cell carcinoma? An individual patient data network meta-analysis from the MACH-NC and MARCH collaborative groups. Eur. J. Cancer 2017, 72, S101–S102. [Google Scholar] [CrossRef]
- Lee, A.; Woods, R.; Mahfouz, A.; Kitpanit, S.; Cartano, O.; Mohamed, N.; Youssef, I.; Marqueen, K.; Sine, K.; Mah, D.; et al. Evaluation of proton therapy reirradiation for patients with recurrent head and neck squamous cell carcinoma. JAMA Netw. Open 2023, 6, e2250607. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Tan, P.F.; Zhang, Q.; Ang, K.K.; Weber, R.S.; Rosenthal, D.I.; Soulieres, D.; Kim, H.; Silverman, C.; Raben, A.; Galloway, T.J.; et al. Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the radiation therapy oncology group 0129 trial: Long-term report of efficacy and toxicity. J. Clin. Oncol. 2014, 32, 3858–3867. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Leeman, J.E.; Riaz, N.; McBride, S.; Tsai, C.J.; Lee, N.Y. Proton therapy for head and neck cancer. Curr. Treat. Options Oncol. 2018, 19, 28. [Google Scholar] [CrossRef] [PubMed]
- Romesser, P.B.; Cahlon, O.; Scher, E.; Zhou, Y.; Berry, S.L.; Rybkin, A.; Sine, K.M.; Tang, S.; Sherman, E.J.; Wong, R.; et al. Proton beam radiation therapy results in significantly reduced toxicity compared with intensity-modulated radiation therapy for head and neck tumors that require ipsilateral radiation. Radiother. Oncol. 2016, 118, 286–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumann, B.C.; Mitra, N.; Harton, J.; Xiao, Y.; Wojcieszynski, A.P.; Gabriel, P.E.; Zhong, H.; Geng, H.; Doucette, A.; Wei, J.; et al. Comparative effectiveness of proton vs photon therapy as part of concurrent chemoradiotherapy for locally advanced cancer. JAMA Oncol. 2020, 6, 237–246. [Google Scholar] [CrossRef]
- Apinorasethkul, O.; Kirk, M.; Teo, K.; Swisher-McClure, S.; Lukens, J.N.; Lin, A. Pencil beam scanning proton therapy vs rotational arc radiation therapy: A treatment planning comparison for postoperative oropharyngeal cancer. Med. Dosim. 2017, 42, 7–11. [Google Scholar] [CrossRef]
- Blanchard, P.; Garden, A.S.; Gunn, G.B.; Rosenthal, D.I.; Morrison, W.H.; Hernandez, M.; Crutison, J.; Lee, J.J.; Ye, R.; Fuller, C.D.; et al. Intensity-modulated proton beam therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for patients with oropharynx cancer—A case matched analysis. Radiother. Oncol. 2016, 120, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Kang, M.; Huang, S.; Mayer, R.; Thomas, A.; Solberg, T.D.; McDonough, J.E.; Simone, C.B. Beam-specific planning target volumes incorporating 4D CT for pencil beam scanning proton therapy of thoracic tumors. J. Appl. Clin. Med. Phys. 2015, 16, 5678. [Google Scholar] [CrossRef] [Green Version]
- Youssef, I.; Yoon, J.; Mohamed, N.; Zakeri, K.; Press, R.H.; Chen, L.; Gelblum, D.Y.; McBride, S.M.; Tsai, C.J.; Riaz, N.; et al. Toxicity profiles and survival outcomes among patients with nonmetastatic oropharyngeal carcinoma treated with intensity-modulated proton therapy vs. intensity-modulated radiation therapy. JAMA Netw. Open 2022, 5, e2241538. [Google Scholar] [CrossRef]
- Zakeri, K.; Wang, H.; Kang, J.J.; Lee, A.; Romesser, P.; Mohamed, N.; Gelblum, D.; Sherman, E.; Dunn, L.; Boyle, J.; et al. Outcomes and prognostic factors of major salivary gland tumors treated with proton beam radiation therapy. Head Neck 2021, 43, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.C.; Riaz, N.; Caudell, J.J.; Dunlap, N.E.; Isrow, D.; Zakem, S.J.; Dault, J.; Awan, M.J.; Vargo, J.A.; Heron, D.E.; et al. Refining patient selection for reirradiation of head and neck squamous carcinoma in the IMRT era: A multi-institution cohort study by the MIRI Collaborative. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Abayomi, O. Neck irradiation, carotid injury and its consequences. Oral. Oncol. 2004, 40, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.D.; Buckley, A.R.; Graeb, D.; Walman, B.; Salvian, A.; Hay, J.H. Carotid artery stenosis in asymptomatic patients who have received unilateral head-and-neck irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 1197–1205. [Google Scholar] [CrossRef]
- Pan, D.; Rong, X.; Chen, D.; Jiang, J.; Ng, W.T.; Mai, H.; Li, Y.; Li, H.; Cai, J.; Cheng, J.; et al. Mortality of early treatment for radiation-induced brain necrosis in head and neck cancer survivors: A multicentre, retrospective, registry-based cohort study. eClinicalMedicine 2022, 52, 101618. [Google Scholar] [CrossRef]
- Huang, J.; Kong, F.-F.; Oei, R.W.; Zhai, R.-P.; Hu, C.-S.; Ying, H.-M. Dosimetric predictors of temporal lobe injury after intensity-modulated radiotherapy for T4 nasopharyngeal carcinoma: A competing risk study. Radiat. Oncol. 2019, 14, 31. [Google Scholar] [CrossRef]
- Wen, D.-W.; Lin, L.; Mao, Y.-P.; Chen, C.-Y.; Chen, F.-P.; Wu, C.-F.; Huang, X.-D.; Li, Z.-X.; Xu, S.-S.; Kou, J.; et al. Normal tissue complication probability (NTCP) models for predicting temporal lobe injury after intensity-modulated radiotherapy in nasopharyngeal carcinoma: A large registry-based retrospective study from China. Radiother. Oncol. 2021, 157, 99–105. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, W.; Adams, J.; Sanford, N.; Lam, M.; Lu, Y.; Goldberg, S.; Paganetti, H.; Lu, H.; Chan, A. Temporal lobe necrosis after proton for nasopharyngeal carcinoma: Predictive factors and clinical RBE estimation. Int. J. Radiat. Oncol. 2017, 99, E386. [Google Scholar] [CrossRef] [Green Version]
- Simone, C.B.; Ly, D.; Dan, T.D.; Ondos, J.; Ning, H.; Belard, A.; O’Connell, J.; Miller, R.W.; Simone, N.L. Comparison of intensity-modulated radiotherapy, adaptive radiotherapy, proton radiotherapy, and adaptive proton radiotherapy for treatment of locally advanced head and neck cancer. Radiother. Oncol. 2011, 101, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Simone, C.B.; Plastaras, J.P.; Jabbour, S.K.; Lee, A.; Lee, N.Y.; Choi, J.I.; Frank, S.J.; Chang, J.Y.; Bradley, J. Proton reirradiation: Expert recommendations for reducing toxicities and offering new chances of cure in patients with challenging recurrence malignancies. Semin. Radiat. Oncol. 2020, 30, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Kitpanit, S.; Lee, A.; Pitter, K.L.; Fan, D.; Chow, J.C.; Neal, B.; Han, Z.; Fox, P.; Sine, K.; Mah, D.; et al. Temporal lobe necrosis in head and neck cancer patients after proton therapy to the skull base. Int. J. Part. Ther. 2020, 6, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.-F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014, 6, 245. [Google Scholar] [CrossRef] [PubMed]
- Montay-Gruel, P.; Petersson, K.; Jaccard, M.; Boivin, G.; Germond, J.-F.; Petit, B.; Doenlen, R.; Favaudon, V.; Bochud, F.; Bailat, C.; et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother. Oncol. 2017, 124, 365–369. [Google Scholar] [CrossRef]
- Vozenin, M.-C.; De Fornel, P.; Petersson, K.; Favaudon, V.; Jaccard, M.; Germond, J.-F.; Petit, B.; Burki, M.; Ferrand, G.; Patin, D.; et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin. Cancer Res. 2019, 25, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.M.; Verginadis, I.I.; Goia, D.; Haertter, A.; Shoniyozov, K.; Zou, W.; Maity, A.; Busch, T.M.; Metz, J.M.; Cengel, K.A.; et al. Comparison of flash proton entrance and the spread-out bragg peak dose regions in the sparing of mouse intestinal crypts and in a pancreatic tumor model. Cancers 2021, 13, 4244. [Google Scholar] [CrossRef]
- Dokic, I.; Meister, S.; Bojcevski, J.; Tessonnier, T.; Walsh, D.; Knoll, M.; Mein, S.; Tang, Z.; Vogelbacher, L.; Rittmueller, C.; et al. Neuroprotective effects of ultra-high dose rate FLASH Bragg peak proton irradiation. Int. J. Radiat. Oncol. 2022, 113, 614–623. [Google Scholar] [CrossRef]
- Rong, Y.; Paliwal, B.; Howard, S.; Welsh, J. Treatment planning for pulsed reduced dose-rate radiotherapy in helical tomotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 934–942. [Google Scholar] [CrossRef]
- Pratx, G.; Kapp, D.S. A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Phys. Med. Biol. 2019, 64, 185005. [Google Scholar] [CrossRef] [Green Version]
- Fouillade, C.; Curras-Alonso, S.; Giuranno, L.; Quelennec, E.; Heinrich, S.; Bonnet-Boissinot, S.; Beddok, A.; Leboucher, S.; Karakurt, H.U.; Bohec, M.; et al. FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence. Clin. Cancer Res. 2020, 26, 1497–1506. [Google Scholar] [CrossRef]
- Labarbe, R.; Hotoiu, L.; Barbier, J.; Favaudon, V. A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. Radiother. Oncol. 2020, 153, 303–310. [Google Scholar] [CrossRef]
- Petersson, K.; Adrian, G.; Butterworth, K.; McMahon, S.J. A quantitative analysis of the role of oxygen tension in FLASH radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Fernet, M.; Ponette, V.; Deniaud-Alexandre, E.; Ménissier de-murcia, J.; De murcia, G.; Giocanti, N.; Megnin-chanet, F.; Favaudon, V. Poly(ADP-ribose) polymerase, a major determinant of early cell response to ionizing radiation. Int. J. Radiat. Biol. 2000, 76, 1621–1629. [Google Scholar] [CrossRef]
- Schmid, T.E.; Dollinger, G.; Hable, V.; Greubel, C.; Zlobinskaya, O.; Michalski, D.; Molls, M.; Röper, B. Relative biological effectiveness of pulsed and continuous 20 MeV protons for micronucleus induction in 3D human reconstructed skin tissue. Radiother. Oncol. 2010, 95, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, J.; Sozzi, W.J.; Jorge, P.G.; Gaide, O.; Bailat, C.; Duclos, F.; Patin, D.; Ozsahin, M.; Bochud, F.; Germond, J.-F.; et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. 2019, 139, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Patriarca, A.; Fouillade, C.; Auger, M.; Martin, F.; Pouzoulet, F.; Nauraye, C.; Heinrich, S.; Favaudon, V.; Meyroneinc, S.; Dendale, R.; et al. Experimental set-up for FLASH proton irradiation of small animals using a clinical system. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Maxim, P.; Tantawi, S.; Loo, B. PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiother. Oncol. 2019, 139, 28–33. [Google Scholar] [CrossRef]
- Lin, B.; Gao, F.; Yang, Y.; Wu, D.; Zhang, Y.; Feng, G.; Dai, T.; Du, X. FLASH radiotherapy: History and future. Front. Oncol. 2021, 11, 1890. [Google Scholar] [CrossRef]
- Mascia, A.E.; Daugherty, E.C.; Zhang, Y.; Lee, E.; Xiao, Z.; Sertorio, M.; Woo, J.; Backus, L.R.; McDonald, J.M.; McCann, C.; et al. Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: The FAST-01 nonrandomized trial. JAMA Oncol. 2023, 9, 62–69. [Google Scholar] [CrossRef]
- Daugherty, E.C.; Mascia, A.; Zhang, Y.; Lee, E.; Xiao, Z.; Sertorio, M.; Woo, J.; McCann, C.; Russell, K.; Levine, L.; et al. FLASH radiotherapy for the treatment of symptomatic bone metastases (FAST-01): Protocol for the first prospective feasibility study. JMIR Res. Protoc. 2023, 12, e41812. [Google Scholar] [CrossRef]
- Van De Water, S.; Safai, S.; Schippers, J.M.; Weber, D.C.; Lomax, A.J. Towards FLASH proton therapy: The impact of treatment planning and machine characteristics on achievable dose rates. Acta Oncol. 2019, 58, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Lin, H.; Choi, J.I.; Simone, C.B.; Kang, M. A novel proton pencil beam scanning flash rt delivery method enables optimal oar sparing and ultra-high dose rate delivery: A comprehensive dosimetry study for lung tumors. Cancers 2021, 13, 5790. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Shi, C.; Huang, S.; Shen, J.; Kang, M.; Chen, Q.; Zhai, H.; McDonough, J.; Tochner, Z.; Deville, C.; et al. Applications of various range shifters for proton pencil beam scanning radiotherapy. Radiat. Oncol. 2021, 16, 146. [Google Scholar] [CrossRef]
- Folkerts, M.M.; Abel, E.; Busold, S.; Perez, J.R.; Krishnamurthi, V.; Ling, C.C. A framework for defining FLASH dose rate for pencil beam scanning. Med. Phys. 2020, 47, 6396–6404. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.; McCauley, S.; Vairamani, K.; Speth, J.; Girdhani, S.; Abel, E.; Sharma, R.A.; Perentesis, J.P.; Wells, S.I.; Mascia, A.; et al. Flash proton pencil beam scanning irradiation minimizes radiation-induced leg contracture and skin toxicity in mice. Cancers 2021, 13, 1012. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Pang, D. Commissioning and beam characterization of the first gantry-mounted accelerator pencil beam scanning proton system. Med. Phys. 2020, 47, 3496–3510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huth, I.; Weber, D.C.; Lomax, A.J. A statistical comparison of motion mitigation performances and robustness of various pencil beam scanned proton systems for liver tumour treatments. Radiother. Oncol. 2018, 128, 182–188. [Google Scholar] [CrossRef]
- Kang, M.; Wei, S.; Choi, J.I.; Simone, C.B.; Lin, H. Quantitative assessment of 3D dose rate for proton pencil beam scanning FLASH radiotherapy and its application for lung hypofractionation treatment planning. Cancers 2021, 13, 3549. [Google Scholar] [CrossRef]
- Belosi, M.; Van de Water, S.; Albertini, F.; Weber, D.; Lomax, A. PO-0894: Reduced spot number for PBS proton therapy shortens delivery time without dosimetric plan compromise. Radiother. Oncol. 2018, 127, S474–S475. [Google Scholar] [CrossRef]
- Wieser, H.-P.; Cisternas, E.; Wahl, N.; Ulrich, S.; Stadler, A.; Mescher, H.; Müller, L.-R.; Klinge, T.; Gabryś, H.; Burigo, L.; et al. Development of the open-source dose calculation and optimization toolkit matRad. Med. Phys. 2017, 44, 2556–2568. [Google Scholar] [CrossRef]
- Kang, M.; Wei, S.; Choi, J.I.; Lin, H.; Simone, C.B. A universal range shifter and range compensator can enable proton pencil beam scanning single-energy Bragg peak FLASH-RT treatment using current commercially available proton systems. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Lin, H.; Choi, J.I.; Shi, C.; Simone, C.B.; Kang, M. Advanced pencil beam scanning Bragg peak FLASH-RT delivery technique can enhance lung cancer planning treatment outcomes compared to conventional multiple-energy proton PBS techniques. Radiother. Oncol. 2022, 175, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.; Jones, B.; Yokoi, T.; Hill, M.; Vojnovic, B. Revisiting the ultra-high dose rate effect: Implications for charged particle radiotherapy using protons and light ions. Br. J. Radiol. 2012, 85, e933–e939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Marlen, P.; Dahele, M.; Folkerts, M.; Abel, E.; Slotman, B.J.; Verbakel, W.F. Bringing FLASH to the clinic: Treatment planning considerations for ultrahigh dose-rate proton beams. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 621–629. [Google Scholar] [CrossRef]
- Adrian, G.; Konradsson, E.; Lempart, M.; Bäck, S.; Ceberg, C.; Petersson, K. The FLASH effect depends on oxygen concentration. Br. J. Radiol. 2020, 93, 20190702. [Google Scholar] [CrossRef]
- Zou, W.; Diffenderfer, E.S.; Cengel, K.A.; Kim, M.M.; Avery, S.; Konzer, J.; Cai, Y.; Boisseu, P.; Ota, K.; Yin, L.; et al. Current delivery limitations of proton PBS for FLASH. Radiother. Oncol. 2021, 155, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Janot, F.; de Raucourt, D.; Benhamou, E.; Ferron, C.; Dolivet, G.; Bensadoun, R.-J.; Hamoir, M.; Géry, B.; Julieron, M.; Castaing, M.; et al. Randomized trial of postoperative reirradiation combined with chemotherapy after salvage surgery compared with salvage surgery alone in head and neck carcinoma. J. Clin. Oncol. 2008, 26, 5518–5523. [Google Scholar] [CrossRef]
- Verma, V.; Rwigema, J.-C.M.; Malyapa, R.S.; Regine, W.F.; Simone, C.B. Systematic assessment of clinical outcomes and toxicities of proton radiotherapy for reirradiation. Radiother. Oncol. 2017, 125, 21–30. [Google Scholar] [CrossRef]
- Garbacz, M.; Cordoni, F.G.; Durante, M.; Gajewski, J.; Kisielewicz, K.; Krah, N.; Kopeć, R.; Olko, P.; Patera, V.; Rinaldi, I.; et al. Study of relationship between dose, LET and the risk of brain necrosis after proton therapy for skull base tumors. Radiother. Oncol. 2021, 163, 143–149. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, Q.; Wei, J.; Wang, B.; Wang, H.; Meng, L.; Xin, Y.; Jiang, X. Medical prevention and treatment of radiation-induced carotid injury. Biomed. Pharmacother. 2020, 131, 110664. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, B.; Zhao, Q.; Zhang, Y.; Wei, J.; Meng, L.; Xin, Y.; Jiang, X. Research progress on mechanism and imaging of temporal lobe injury induced by radiotherapy for head and neck cancer. Eur. Radiol. 2022, 32, 319–330. [Google Scholar] [CrossRef]
- Dutz, A.; Lühr, A.; Troost, E.G.; Agolli, L.; Bütof, R.; Valentini, C.; Baumann, M.; Vermeren, X.; Geismar, D.; Timmermann, B.; et al. Identification of patient benefit from proton beam therapy in brain tumour patients based on dosimetric and NTCP analyses. Radiother. Oncol. 2021, 160, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, J.; Montay-Gruel, P.; Jorge, P.G.; Bailat, C.; Petit, B.; Ollivier, J.; Jeanneret-Sozzi, W.; Ozsahin, M.; Bochud, F.; Moeckli, R.; et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother. Oncol. 2019, 139, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Zhang, X.; Knopf, A.; Li, H.; Mori, S.; Dong, L.; Lu, H.-M.; Liu, W.; Badiyan, S.N.; Both, S.; et al. Consensus guidelines for implementing pencil-beam scanning proton therapy for thoracic malignancies on behalf of the PTCOG thoracic and lymphoma subcommittee. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Charyyev, S.; Wahl, N.; Liu, W.; Kang, M.; Zhou, J.; Yang, X.; Baltazar, F.; Palkowitsch, M.; Higgins, K.; et al. An integrated physical optimization framework for proton stereotactic body radiation therapy FLASH treatment planning allows dose, dose rate, and linear energy transfer optimization using patient-specific ridge filters. Int. J. Radiat. Oncol. 2023, 116, 949–959. [Google Scholar] [CrossRef]
- Montay-Gruel, P.; Bouchet, A.; Jaccard, M.; Patin, D.; Serduc, R.; Aim, W.; Petersson, K.; Petit, B.; Bailat, C.; Bourhis, J.; et al. X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother. Oncol. 2018, 129, 582–588. [Google Scholar] [CrossRef]
- Spitz, D.R.; Buettner, G.R.; Petronek, M.S.; St-Aubin, J.J.; Flynn, R.T.; Waldron, T.J.; Limoli, C.L. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiother. Oncol. 2019, 139, 23–27. [Google Scholar] [CrossRef]
- Chow, R.; Kang, M.; Wei, S.; Choi, J.; Press, R.H.; Hasan, S.; Chhabra, A.M.; Cengel, K.A.; Lin, H.; Simone, C.B. FLASH radiation therapy: Review of the literature and considerations for future research and proton therapy FLASH trials. Appl. Rad. Oncol. 2021, 10, 15–21. [Google Scholar] [CrossRef]
Dose Metrics | CONV-IMPT 6 Gy/Fraction (%) | 6 GyE/Fraction | 10 GyE/Fraction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TPF (%) | CONV-IMPT vs. TPF p-Value | BPF (%) | CONV-IMPT vs. BPF p-Value | TPF vs. BPF p-Value | TPF (%) | CONV-IMPT vs. TPF p-Value | BPF (%) | CONV-IMPT vs. BPF p-Value | TPF vs. BPF p-Value | ||
CTV Dmax | 109.5 ± 2.5 | 121.2 ± 4.7 | <0.001 | 114.7 ± 3.8 | 0.009 | 0.011 | 118.5 ± 4.7 | 0.002 | 115.0 ± 6.0 | 0.013 | 0.124 |
Oral Cavity Dmax | 90.9 ± 35.5 | 81.2 ± 50 | 0.227 | 76.8 ± 25.2 | 0.167 | 0.396 | 81.6 ± 49.2 | 0.226 | 78.6 ± 22.5 | 0.171 | 0.423 |
Oral Cavity Dmean | 21.1 ± 14.5 | 27.5 ± 25.4 | 0.118 | 25.8 ± 22.6 | 0.145 | 0.266 | 28.3 ± 25.4 | 0.093 | 25.8 ± 22.5 | 0.144 | 0.206 |
Mandible Dmax | 81.2 ± 35.4 | 101 ± 21 | 0.020 | 81.7 ± 33.5 | 0.471 | 0.011 | 104.6 ± 20 | 0.022 | 87.6 ± 27.0 | 0.243 | 0.039 |
Mandible D5cc | 53.1 ± 38.4 | 68.4 ± 26.3 | 0.059 | 54.2 ± 41.3 | 0.382 | 0.078 | 72.8 ± 26 | 0.056 | 53.2 ± 36.3 | 0.492 | 0.024 |
Spinal Cord Dmax | 34.6 ± 22.5 | 65.4 ± 17.7 | 0.019 | 37.3 ± 24.5 | 0.122 | 0.025 | 65.8 ± 16.9 | 0.028 | 35.4 ± 22.4 | 0.296 | 0.032 |
Brainstem Dmax | 22.8 ± 35.3 | 34.2 ± 38.8 | 0.080 | 28.7 ± 39.9 | 0.086 | 0.254 | 35 ± 40 | 0.080 | 31.8 ± 46.8 | 0.160 | 0.341 |
Chiasm Dmax | 18.3 ± 33.6 | 22.8 ± 36.8 | 0.360 | 20.8 ± 34.7 | 0.198 | 0.422 | 23.4 ± 38.2 | 0.352 | 20.4 ± 33.3 | 0.277 | 0.382 |
Optic Nerves RT Dmax | 22.6 ± 39.2 | 25.9 ± 40.6 | 0.278 | 22.5 ± 36.8 | 0.479 | 0.173 | 27.9 ± 43.3 | 0.261 | 17.5 ± 32.2 | 0.087 | 0.163 |
Optic Nerves LT Dmax | 21.6 ± 40.1 | 33.9 ± 52.7 | 0.151 | 27.5 ± 43.9 | 0.187 | 0.120 | 35.9 ± 55.6 | 0.159 | 28.6 ± 44.6 | 0.214 | 0.110 |
Cochlea L Dmax | 19.5 ± 36.8 | 27.9 ± 45.1 | 0.122 | 22.6 ± 40.5 | 0.096 | 0.149 | 28.5 ± 45 | 0.147 | 20.2 ± 35.8 | 0.335 | 0.123 |
Cochlea L Dmean | 15.4 ± 30.4 | 22.8 ± 36.4 | 0.147 | 17.2 ± 30.7 | 0.194 | 0.132 | 24.2 ± 37.7 | 0.168 | 14.2 ± 26.5 | 0.282 | 0.125 |
Cochlea R Dmax | 10.3 ± 23.9 | 12.6 ± 19.6 | 0.387 | 9.6 ± 17.9 | 0.408 | 0.332 | 12.4 ± 19.1 | 0.403 | 9.0 ± 17.6 | 0.328 | 0.318 |
Cochlea R Dmean | 6.3 ± 14.5 | 12.2 ± 18.9 | 0.194 | 7.4 ± 13.9 | 0.172 | 0.241 | 11.8 ± 18.3 | 0.205 | 7.0 ± 13.6 | 0.252 | 0.235 |
Parotid L Dmax | 44.7 ± 46.1 | 63.7 ± 33.6 | 0.143 | 44.2 ± 40.6 | 0.464 | 0.134 | 62.3 ± 34.4 | 0.141 | 44.8 ± 41.9 | 0.492 | 0.148 |
Parotid L Dmean | 6.3 ± 6.9 | 20.5 ± 14.2 | 0.051 | 11.1 ± 14.8 | 0.180 | 0.174 | 18.6 ± 11.9 | 0.046 | 7.4 ± 8.1 | 0.260 | 0.065 |
Parotid R Dmax | 54.4 ± 52.8 | 55.3 ± 49.9 | 0.050 | 45.9 ± 52.5 | 0.324 | 0.051 | 56 ± 46.8 | 0.102 | 47.1 ± 49 | 0.271 | 0.058 |
Parotid R Dmean | 9.3 ± 9.9 | 15.1 ± 16.2 | 0.031 | 14.9 ± 19.8 | 0.107 | 0.486 | 14.8 ± 15.9 | 0.034 | 8.9 ± 10.5 | 0.167 | 0.070 |
Lens LT Dmax | 11.8 ± 20.3 | 19.1 ± 29.9 | 0.174 | 19.2 ± 31.8 | 0.089 | 0.490 | 25.4 ± 42 | 0.170 | 17.3 ± 31.4 | 0.108 | 0.291 |
Lens RT Dmax | 8.8 ± 17.6 | 5.6 ± 13.6 | 0.196 | 10.5 ± 14.2 | 0.175 | 0.064 | 5.3 ± 13.1 | 0.196 | 7.3 ± 13.3 | 0.264 | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pennock, M.; Wei, S.; Cheng, C.; Lin, H.; Hasan, S.; Chhabra, A.M.; Choi, J.I.; Bakst, R.L.; Kabarriti, R.; Simone II, C.B.; et al. Proton Bragg Peak FLASH Enables Organ Sparing and Ultra-High Dose-Rate Delivery: Proof of Principle in Recurrent Head and Neck Cancer. Cancers 2023, 15, 3828. https://doi.org/10.3390/cancers15153828
Pennock M, Wei S, Cheng C, Lin H, Hasan S, Chhabra AM, Choi JI, Bakst RL, Kabarriti R, Simone II CB, et al. Proton Bragg Peak FLASH Enables Organ Sparing and Ultra-High Dose-Rate Delivery: Proof of Principle in Recurrent Head and Neck Cancer. Cancers. 2023; 15(15):3828. https://doi.org/10.3390/cancers15153828
Chicago/Turabian StylePennock, Michael, Shouyi Wei, Chingyun Cheng, Haibo Lin, Shaakir Hasan, Arpit M. Chhabra, J. Isabelle Choi, Richard L. Bakst, Rafi Kabarriti, Charles B. Simone II, and et al. 2023. "Proton Bragg Peak FLASH Enables Organ Sparing and Ultra-High Dose-Rate Delivery: Proof of Principle in Recurrent Head and Neck Cancer" Cancers 15, no. 15: 3828. https://doi.org/10.3390/cancers15153828
APA StylePennock, M., Wei, S., Cheng, C., Lin, H., Hasan, S., Chhabra, A. M., Choi, J. I., Bakst, R. L., Kabarriti, R., Simone II, C. B., Lee, N. Y., Kang, M., & Press, R. H. (2023). Proton Bragg Peak FLASH Enables Organ Sparing and Ultra-High Dose-Rate Delivery: Proof of Principle in Recurrent Head and Neck Cancer. Cancers, 15(15), 3828. https://doi.org/10.3390/cancers15153828