Can Bee Venom Be Used as Anticancer Agent in Modern Medicine?
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. What Are the Components of Bee Venom?
1.2. How Does the Body React to Bee Venom?
2. Can Bee Venom Cure Cancer?
Anti-Inflammatory, Antioxidative and Antimicrobial Effects of Bee Venom
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardstone, M.C.; Scott, J.G. Is Apis mellifera more sensitive to insecticides than other insects? Pest. Manag. Sci. 2010, 66, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee Products in Dermatology and Skin Care. Molecules 2020, 25, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Liu, Y.; Ye, Y.; Wang, X.-R.; Lin, L.-T.; Xiao, L.-Y.; Zhou, P.; Shi, G.-X.; Liu, C.-Z. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon 2018, 148, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Brito, J.C.M.; da Cruz Nizer, W.S. Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID-19 (SARS-CoV-2). Phytother. Res. 2021, 35, 743–750. [Google Scholar] [CrossRef]
- Wehbe, R.; Frangieh, J.; Rima, M.; El Obeid, D.; Sabatier, J.-M.; Fajloun, Z. Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests. Molecules 2019, 24, 2997. [Google Scholar] [CrossRef] [Green Version]
- Martinello, M.; Mutinelli, F. Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Bellik, Y. Bee Venom: Its Potential Use in Alternative Medicine. Anti-Infect. Agents 2015, 13, 3–16. [Google Scholar] [CrossRef]
- Gajski, G.; Garaj-Vrhovac, V. Melittin: A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol. 2013, 36, 697–705. [Google Scholar] [CrossRef]
- Pawlak, M.; Klupczynska, A.; Kokot, Z.J.; Matysiak, J. Extending Metabolomic Studies of Apis mellifera Venom: LC-MS-Based Targeted Analysis of Organic Acids. Toxins 2020, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Wahed, A.A.; Khalifa, S.A.M.; Sheikh, B.Y.; Farag, M.A.; Saeed, A.; Larik, F.A.; Koca-Caliskan, U.; AlAjmi, M.F.; Hassan, M.; Wahabi, H.A.; et al. Bee Venom Composition: From Chemistry to Biological Activity. Stud. Nat. Prod. Chem. 2019, 60, 459–484. [Google Scholar] [CrossRef]
- Obeidat, M.; Al-Khraisat, I.F.; Jaradat, D.M.M.; Ghanim, B.Y.; Abdallah, Q.M.; Arqoub, D.A.; Sabbah, D.; Al-Sanabra, O.M.; Arafat, T.; Qinna, N.A. Melittin peptide quantification in seasonally collected crude bee venom and its anticancer effects on myelogenous K562 human leukaemia cell line. BMC Complement. Med. Ther. 2023, 23, 132. [Google Scholar] [CrossRef] [PubMed]
- Rady, I.; Siddiqui, I.A.; Rady, M.; Mukht, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017, 402, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badawi, J.K. Bee Venom Components as Therapeutic Tools against Prostate Cancer. Toxins 2021, 13, 337. [Google Scholar] [CrossRef] [PubMed]
- Samel, M.; Vija, H.; Kurvet, I.; Künnis-Beres, K.; Trummal, K.; Subbi, J.; Kahru, A.; Siigur, J. Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana Venom with Platelets, Bacterial and Cancer Cells. Toxins 2013, 5, 203–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Simal-Gandara, J. Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients 2020, 12, 3360. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Bee Venom: Composition, Health, Medicine: A Review. 2017. Available online: www.bee-hexagon.net (accessed on 5 June 2023).
- Cherniack, E.P.; Govorushko, S. To bee or not to bee: The potential efficacy and safety of bee venom acupuncture in humans. Toxicon 2018, 154, 74–78. [Google Scholar] [CrossRef]
- De Toledo, L.F.M.; Moore, D.C.B.C.; da Caixeta, D.M.L.; Salú, M.D.S.; Farias, C.V.B.; de Azevedo, Z.M.A. Multiple bee stings, multiple organs involved: A case report. Rev. Soc. Bras. Med. Trop. 2018, 51, 560–562. [Google Scholar] [CrossRef] [Green Version]
- Ediger, D.; Terzioglu, K.; Ozturk, R.T. Venom allergy, risk factors for systemic reactions and the knowledge levels among Turkish beekeepers. Asia Pac. Allergy 2018, 8, e15. [Google Scholar] [CrossRef]
- Hymenoptera Allergy Committee of the SEAIC; Alfaya Arias, T.; Soriano Gómis, V.; Soto Mera, T.; Vega Castro, A.; Vega Gutiérrez, J.; Dominguez Noche, C.; Gutierrez Fernandez, D.; Marques Amat, L.; Martinez Arcediano, A.; et al. Key issuesin hymenoptera venom allergy: An update. J. Investig. Allergol. Clin. Immunol. 2017, 27, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, K.T.; Flood, A.A. Hymenoptera Stings. Clin. Tech. Small Anim. Pract. 2006, 21, 194–204. [Google Scholar] [CrossRef]
- Fan, H.W.; Kalil, J. Massive bee envenomation. In Critical Care Toxicology: Diagnosis and Management of the Critically Poisoned Patient; Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R., White, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 2627–2636. [Google Scholar]
- Nisahan, B.; Selvaratnam, G.; Kumanan, T. Myocardial injury following multiple bee stings. Trop. Doct. 2014, 44, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Revuelta, P.; Madrigal-Burgaleta, R. Death due to Live Bee Acupuncture Apitherapy. J. Investig. Allergol. Clin. Immunol. 2018, 28, 45–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pucca, M.B.; Cerni, F.A.; Oliveira, I.S.; Jenkins, T.P.; Argemí, L.; Sørensen, C.V.; Ahmadi, S.; Barbosa, J.E.; Laustsen, A.H. Bee Updated: Current Knowledge on Bee Venom and Bee Envenom Da-Hyun ng Therapy. Front. Immunol. 2019, 10, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havas, L.J. Effect of bee venom on colchicine-induced tumours. Nature 1950, 166, 567–568. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.A.; Li, F.P.; Mehta, C.R. Cancer mortality among beekeepers. J. Occup. Med. 1979, 21, 811–813. [Google Scholar]
- Tetikoğlu, S.; Çelik-Uzuner, S. Bee Venom Induces the Interaction between Phosphorylated Histone Variant, H2AX, and the Intracellular Site of beta-Actin in Liver and Breast Cancer Cells. Chem. Biodivers. 2023, 25, e202300401. [Google Scholar] [CrossRef]
- Sevin, S.; Deveci Ozkan, A.; Tutun, H.; Kivrak, I.; Turna, O.; Guney Eskiler, G. Determination of the Effects of Bee Venom on Triple Negative Breast Cancer Cells in Vitro. Chem. Biodivers. 2023, 20, e202201263. [Google Scholar] [CrossRef]
- Hwang, Y.N.; Kwon, I.S.; Na, H.H.; Park, J.S.; Kim, K.C. Dual Cytotoxic Responses Induced by Treatment of A549 Human Lung Cancer Cells with Sweet Bee Venom in a Dose-Dependent Manner. J. Pharmacopunct. 2022, 25, 390–395. [Google Scholar] [CrossRef]
- Yu, J.E.; Kim, Y.; Hong, D.E.; Lee, D.W.; Chang, J.Y.; Yoo, S.S.; Kim, M.J.; Son, D.J.; Yun, J.; Han, S.B.; et al. Bee Venom Triggers Autophagy-Induced Apoptosis in Human Lung Cancer Cells via the mTOR Signaling Pathway. J. Oncol. 2022, 2022, 8916464. [Google Scholar] [CrossRef]
- Sevin, S.; Kivrak, İ.; Tutun, H.; Uyar, R.; Ayaz, F. Apis mellifera anatoliaca Venom Exerted Anti-Inflammatory Activity on LPS-Stimulated Mammalian Macrophages by Reducing the Production of the Inflammatory Cytokines. Appl. Biochem. Biotechnol. 2023, 195, 3194–3205. [Google Scholar] [CrossRef]
- Ertilav, K.; Nazıroğlu, M. Honey bee venom melittin increases the oxidant activity of cisplatin and kills human glioblastoma cells by stimulating the TRPM2 channel. Toxicon 2023, 222, 106993. [Google Scholar] [CrossRef]
- Erkoc, P.; von Reumont, B.M.; Lüddecke, T.; Henke, M.; Ulshöfer, T.; Vilcinskas, A.; Fürst, R.; Schiffmann, S. The Pharmacological Potential of Novel Melittin Variants from the Honeybee and Solitary Bees against Inflammation and Cancer. Toxins 2022, 14, 818. [Google Scholar] [CrossRef]
- Li, X.; Zhu, S.; Li, Z.; Meng, Y.Q.; Huang, S.J.; Yu, Q.Y.; Li, B. Melittin induces ferroptosis and ER stress-CHOP mediated apoptosis in A549 cells. Free Radic. Res. 2022, 56, 398–410. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, W.; Zhang, Z.; Zhou, Z.; Duan, J.; Dong, Z.; Liu, H.; Yan, C. Bee venom protects against pancreatic cancer via inducing cell cycle arrest and apoptosis with suppression of cell migration. J. Gastrointest. Oncol. 2022, 13, 847–858. [Google Scholar] [CrossRef]
- Duarte, D.; Falcão, S.I.; El Mehdi, I.; Vilas-Boas, M.; Vale, N. Honeybee Venom Synergistically Enhances the Cytotoxic Effect of CNS Drugs in HT-29 Colon and MCF-7 Breast Cancer Cell Lines. Pharmaceutics 2022, 14, 511. [Google Scholar] [CrossRef]
- Małek, A.; Kocot, J.; Mitrowska, K.; Posyniak, A.; Jacek Kurzepa, J. Bee Venom Effect on Glioblastoma Cells Viability and Gelatinase Secretion. Front. Neurosci. 2022, 16, 792970. [Google Scholar] [CrossRef]
- Yaacoub, C.; Wehbe, R.; Salma, Y.; El-Obeid, D.; El Bersaoui, R.; Coutard, B.; Fajloun, Z. Apis mellifera syriaca Venom: Evaluation of Its Anticoagulant Effect, Proteolytic Activity, and Cytotoxicity along with Its Two Main Compounds-MEL and PLA2-On HeLa Cancer Cells. Molecules 2022, 27, 1653. [Google Scholar] [CrossRef]
- Lischer, K.; Sitorus, S.R.A.; Guslianto, B.W.; Avila, F.; Khayrani, A.C.; Sahlan, M. Anti- Breast Cancer Activity on MCF-7 Cells of Melittin from Indonesia’s Apis cerana: An In Vitro Study. Asian Pac. J. Cancer Prev. 2021, 22, 3913–3919. [Google Scholar] [CrossRef]
- Gasanoff, E.; Liu, Y.; Li, F.; Hanlon, P.; Garab, G. Bee Venom Melittin Disintegrates the Respiration of Mitochondria in Healthy Cells and Lymphoblasts, and Induces the Formation of Non-Bilayer Structures in Model Inner Mitochondrial Membranes. Int. J. Mol. Sci. 2021, 22, 11122. [Google Scholar] [CrossRef]
- Mansour, G.H.; El-Magd, M.A.; Mahfouz, D.H.; Abdelhamid, I.A.; Mohamed, M.F.; Ibrahim, N.S.; Hady AAbdel Wahab, A.; Elzayat, E.M. Bee venom and its active component Melittin synergistically potentiate the anticancer effect of Sorafenib against HepG2 cells. Bioorganic Chem. 2021, 116, 105329. [Google Scholar] [CrossRef]
- Huang, J.Y.; Peng, S.F.; Chueh, F.S.; Chen, P.Y.; Huang, Y.P.; Huang, W.W.; Chung, J.G. Melittin suppresses epithelial-mesenchymal transition and metastasis in human gastric cancer AGS cells via regulating Wnt/BMP associated pathway. Biosci. Biotechnol. Biochem. 2021, 85, 2250–2262. [Google Scholar] [CrossRef] [PubMed]
- Lebel, A.A.; Kisembo, M.V.; Soucy, M.N.; Hébert, M.P.A.; Morin, P.J.; Boudreau, L.H. Molecular characterization of the anticancer properties associated with bee venom and its components in glioblastoma multiforme. Chem. Biol. Interact. 2021, 347, 109622. [Google Scholar] [CrossRef] [PubMed]
- Yaacoub, C.; Rifi, M.; El-Obeid, D.; Mawlawi, H.; Sabatier, J.M.; Coutard, B.; Fajloun, Z. The Cytotoxic Effect of Apis mellifera Venom with a Synergistic Potential of Its Two Main Components-Melittin and PLA2-On Colon Cancer HCT116 Cell Lines. Molecules 2021, 26, 2264. [Google Scholar] [CrossRef]
- Borojeni, S.K.; Zolfagharian, H.; Babaie, M.; Javadi, I. Cytotoxic Effect of Bee (A. mellifera) Venom on Cancer Cell Lines. J. Pharmacopunct. 2020, 23, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Kreinest, T.; Volkmer, I.; Staege, M.S. Melittin Increases Cisplatin Sensitivity and Kills KM-H2 and L-428 Hodgkin Lymphoma Cells. Int. J. Mol. Sci. 2020, 22, 343. [Google Scholar] [CrossRef]
- Grawish, M.E.; Mourad, M.I.; Esmaeil, D.A.; Ahmed, R.A.; Ateia, I.M.; Hany, E.; Elkhier, M.T.A. Emerging therapeutic modality enhancing the efficiency of chemotherapeutic agents against head and neck squamous cell carcinoma cell lines. Cancer Treat. Res. Commun. 2020, 25, 100242. [Google Scholar] [CrossRef]
- Sangboonruang, S.; Kitidee, K.; Chantawannakul, P.; Tragoolpua, K.; Tragoolpua, Y. Melittin from Apis florea Venom as a Promising Therapeutic Agent for Skin Cancer Treatment. Antibiotics 2020, 9, 517. [Google Scholar] [CrossRef]
- Salama, M.A.; Younis, M.A.; Talaat, R.M. Cytokine and inflammatory mediators are associated with cytotoxic, anti-inflammatory and apoptotic activity of honeybee venom. J. Complement. Integr. Med. 2020, 18, 75–86. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, H.W.; Park, H.W.; Lee, H.W.; Chun, K.H. Bee venom inhibits the proliferation and migration of cervical-cancer cells in an HPV E6/E7-dependent manner. BMB Rep. 2020, 53, 419–424. [Google Scholar] [CrossRef]
- Ceremuga, M.; Stela, M.; Janik, E.; Gorniak, L.; Synowiec, E.; Sliwinski, T.; Sitarek, P.; Saluk-Bijak, J.; Bijak, M. Melittin—A Natural Peptide from Bee Venom which Induces Apoptosis in Human Leukaemia Cells. Biomolecules 2020, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.J.; Park, Y.Y.; Park, K.K.; Choi, Y.H.; Kim, C.H.; Chang, Y.C. Bee Venom Suppresses EGF-Induced Epithelial-Mesenchymal Transition and Tumor Invasion in Lung Cancer Cells. Am. J. Chin. Med. 2019, 47, 1869–1883. [Google Scholar] [CrossRef] [PubMed]
- Soliman, C.; Eastwood, S.; Truong, V.K.; Ramsland, P.A.; Elbourne, A. The membrane effects of melittin on gastric and colorectal cancer. PLoS ONE 2019, 14, e0224028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, P.; Kumar, N.; Hammerschmid, D.; Privat-Maldonado, A.; Dewilde, S.; Bogaerts, A. Synergistic Effects of Melittin and Plasma Treatment: A Promising Approach for Cancer Therapy. Cancers 2019, 11, 1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, H.N.; Baek, S.B.; Jung, H.J. Bee Venom and Its Peptide Component Melittin Suppress Growth and Migration of Melanoma Cells via Inhibition of PI3K/AKT/mTOR and MAPK Pathways. Molecules 2019, 24, 929. [Google Scholar] [CrossRef] [Green Version]
- Shiassi Arani, F.; Karimzadeh, L.; Ghafoori, S.M.; Nabiuni, M. Antimutagenic and Synergistic Cytotoxic Effect of Cisplatin and Honey Bee Venom on 4T1 Invasive Mammary Carcinoma Cell Line. Adv. Pharmacol. Sci. 2019, 2019, 7581318. [Google Scholar] [CrossRef] [Green Version]
- Jung, G.B.; Huh, J.E.; Lee, H.J.; Kim, D.; Lee, G.J.; Park, H.K.; Lee, J.D. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomed. Opt. Express 2018, 9, 5703–5718. [Google Scholar] [CrossRef]
- Zarrinnahad, H.; Mahmoodzadeh, A.; Hamidi, M.P.; Mahdavi, M.; Moradi, A.; Bagheri, K.P.; Shahbazzadeh, D. Apoptotic Effect of Melittin Purified from Iranian Honey Bee Venom on Human Cervical Cancer HeLa Cell Line. Int. J. Pept. Res. Ther. 2018, 24, 563–570. [Google Scholar] [CrossRef] [Green Version]
- Khamis, A.A.A.; Ali, E.M.M.; El-Moneim, M.A.A.; Abd-Alhaseeb, M.M.; El-Magd, M.A.; Salim, E.I. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed. Pharmacother. 2018, 105, 1335–1343. [Google Scholar] [CrossRef]
- Mohseni-Kouchesfahani, H.; Nabioni, M.; Khosravi, Z.; Rahimi, M. Honey bee venom combined with 1,25-dihydroxyvitamin D3 as a highly efficient inducer of differentiation in human acute myeloid leukemia cells. J. Cancer Res. Ther. 2017, 13, 544–549. [Google Scholar]
- Zhang, S.F.; Chen, Z. Melittin exerts an antitumor effect on non-small cell lung cancer cells. Mol. Med. Rep. 2017, 16, 3581–3586. [Google Scholar] [CrossRef] [Green Version]
- Alonezi, S.; Tusiimire, J.; Wallace, J.; Dufton, M.J.; Parkinson, J.A.; Young, L.C.; Clements, C.J.; Park, J.K.; Jeon, J.W.; Ferro, V.A.; et al. Metabolomic Profiling of the Synergistic Effects of Melittin in Combination with Cisplatin on Ovarian Cancer Cells. Metabolites 2017, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, F.; Tan, J.; Peng, X.; Sun, L.; Wang, P.; Jia, S.; Yu, Q.; Huo, H.; Zhao, H. Melittin inhibits the invasion of MCF-7 cells by downregulating CD147 and MMP-9 expression. Oncol. Lett. 2017, 13, 599–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonezi, S.; Tusiimire, J.; Wallace, J.; Dufton, M.J.; Parkinson, J.A.; Young, L.C.; Clements, C.J.; Park, J.K.; Jeon, J.W.; Ferro, V.A.; et al. Metabolomic Profiling of the Effects of Melittin on Cisplatin Resistant and Cisplatin Sensitive Ovarian Cancer Cells Using Mass Spectrometry and Biolog Microarray Technology. Metabolites 2016, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Drigla, F.; Balacescu, O.; Visan, S.; Bisboaca, S.E.; Berindan-Neagoe, I.; Marghitas, L.A. Synergistic Effects Induced by Combined Treatments of Aqueous Extract of Propolis and Venom. Clujul Med. 2016, 89, 104–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajski, G.; Čimbora-Zovko, T.; Rak, S.; Osmak, M.; Garaj-Vrhovac, V. Antitumour action on human glioblastoma A1235 cells through cooperation of bee venom and cisplatin. Cytotechnology 2016, 68, 1197–1205. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Lee, H.L.; Ham, Y.W.; Song, H.S.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B. Oncotarget 2015, 6, 44437–44451. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodzadeh, A.; Zarrinnahad, H.; Bagheri, K.P.; Moradia, A.; Shahbazzadeh, D. First report on the isolation of melittin from Iranian honey bee venom and evaluation of its toxicity on gastric cancer AGS cells. J. Chin. Med. Assoc. 2015, 78, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.W.; Chaturvedi, P.K.; Chun, S.N.; Lee, Y.G.; Ahn, W.S. Honeybee venom possesses anticancer and antiviral effects by differential inhibition of HPV E6 and E7 expression on cervical cancer cell line. Oncol. Rep. 2015, 33, 1675–1682. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.E.; Hwang, C.J.; Gu, S.M.; Park, M.H.; Kim, J.H.; Park, J.H.; Ahn, Y.J.; Kim, J.Y.; Song, M.J.; Song, H.S.; et al. Cancer cell growth inhibitory effect of bee venom via increase of death receptor 3 expression and inactivation of NF-kappa B in NSCLC cells. Toxins 2014, 6, 2210–2228. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Yang, X.; Liu, J.; Ge, Y.; Qin, Q.; Lu, J.; Zhan, L.; Liu, Z.; Zhang, H.; Chen, X.; et al. Melittin radiosensitizes esophageal squamous cell carcinoma with induction of apoptosis in vitro and in vivo. Tumour Biol. 2014, 35, 8699–8705. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, B.; Huang, C.; Meng, X.M.; Bian, E.B.; Li, J. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells. PLoS ONE 2014, 9, e95520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, Y.J.; Choi, Y.; Shin, J.M.; Cho, H.J.; Kang, J.H.; Park, K.K.; Choe, J.Y.; Bae, Y.S.; Han, S.M.; Kim, C.H.; et al. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem. Toxicol. 2014, 68, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Hoshina, M.M.; Marin-Morales, M.A. Anti-genotoxicity and anti-mutagenicity of Apis mellifera venom. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 762, 43–48. [Google Scholar] [CrossRef]
- Kollipara, P.S.; Kim, J.H.; Won, D.; Lee, S.M.; Sung, H.C.; Chang, H.S.; Lee, K.T.; Lee, K.S.; Park, M.H.; Song, M.J.; et al. Co-culture with NK-92MI cells enhanced the anti- cancer effect of bee venom on NSCLC cells by inactivation of NF-κB. Arch. Pharm. Res. 2014, 37, 379–389. [Google Scholar] [CrossRef]
- Safaeinejad, Z.; Nabiuni, M.; Nazari, Z. Potentiation of a novel palladium (II) complex lethality with bee venom on the human T-cell acute lymphoblastic leukemia cell line (MOLT-4). J. Venom. Anim. Toxins Incl. Trop. Dis. 2013, 19, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.M.; Jeong, Y.J.; Cho, H.J.; Park, K.K.; Chung, I.K.; Lee, I.K.; Kwak, J.Y.; Chang, H.W.; Kim, C.H.; Moon, S.K.; et al. Melittin suppresses HIF-1α/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cells. PLoS ONE 2013, 8, e69380. [Google Scholar] [CrossRef]
- Rocha, M.M.; Dariva, I.; Zornoff, G.C.; De Laurentis, G.S.; Mendes, G.C.; Santana, M.G.; de Miguel, G.C.; Ferreira, R.S.; Sciani, J.M.; Priolli, D.G. A new therapeutic approach for bone metastasis in colorectal cancer: Intratumoral melittin. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022, 28, e20210067. [Google Scholar] [CrossRef]
- El-Beltagy, A.E.B.M.; Elsyyad, H.I.H.; Abdelaziz, K.K.; Madany, A.S.; Elghazaly, M.M. Therapeutic Role of Annona muricata Fruit and Bee Venom Against MNU- Induced Breast Cancer in Pregnant Rats and its Complications on the Ovaries. Breast Cancer 2021, 13, 431–445. [Google Scholar] [CrossRef]
- El Bakary, N.M.; Alsharkawy, A.Z.; Shouaib, Z.A.; Barakat, E.M.S. Role of Bee Venom and Melittin on Restraining Angiogenesis and Metastasis in γ-Irradiated Solid Ehrlich Carcinoma-Bearing Mice. Integr. Cancer Ther. 2020, 19, 1534735420944476. [Google Scholar] [CrossRef]
- Lee, C.; Bae, S.S.; Joo, H.; Bae, H. Melittin suppresses tumor progression by regulating tumor-associated macrophages in a Lewis lung carcinoma mouse model. Oncotarget 2017, 8, 54951–54965. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.L.; Park, S.H.; Kim, T.M.; Jung, Y.Y.; Park, M.H.; Oh, S.H.; Yun, H.S.; Jun, H.O.; Yoo, H.S.; Han, S.B.; et al. Bee venom inhibits growth of human cervical tumors in mice. Oncotarget 2015, 6, 7280–7292. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Han, S.M.; Park, K.K. Therapeutic effects of apamin as a bee venom component for non-neoplastic disease. Toxins 2020, 12, 195. [Google Scholar] [CrossRef] [Green Version]
- Melero, I.; Castanon, E.; Alvarez, M.; Champiat, S.; Marabelle, A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat. Rev. Clin. Oncol. 2021, 18, 558–576. [Google Scholar] [CrossRef]
- Khalil, A.; Elesawy, B.H.; Ali, T.M.; Ahmed, O.M. Bee Venom: From Venom to Drug. Molecules 2021, 26, 4941. [Google Scholar] [CrossRef]
- Kim, W.H.; An, H.J.; Kim, J.Y.; Gwon, M.G.; Gu, H.; Jeon, M.; Kim, M.K.; Han, S.M.; Park, K.K. Anti-Inflammatory Effect of Melittin on Porphyromonas Gingivalis LPS-Stimulated Human Keratinocytes. Molecules 2018, 23, 332. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.J.; Kim, S.H.; Yang, S.C.; Lee, S.M.; Choi, S.M. Melittin restores proteasome function in an animal model of ALS. J. Neuroinflamm. 2011, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.F.; Pagani, W.; Lodin, D.; Orozco, G.; Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 2015, 6, 171. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.R.; Pak, S.C.; Park, K.K. The protective effect of bee venom on fibrosis causing inflammatory diseases. Toxins 2015, 7, 4758–4772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Park, J.H.; Kim, K.H.; Lee, W.R.; Chang, Y.C.; Park, K.K.; Lee, K.G.; Han, S.M.; Yeo, J.H.; Pak, S.C. Bee venom inhibits hepatic fibrosis through suppression of pro-fibrogenic cytokine expression. Am. J. Chin. Med. 2010, 38, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, Y.W.; Kim, H.; Chung, D.K. Bee venom alleviates atopic dermatitis symptoms through the upregulation of decay-accelerating factor (DAF/CD55). Toxins 2019, 11, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento de Souza, R.; Silva, F.K.; Alves de Medeiros, M. Bee Venom Acupuncture Reduces Interleukin-6, Increases Interleukin-10, and Induces Locomotor Recovery in a Model of Spinal Cord Compression. J. Acupunct. Meridian Stud. 2017, 10, 204–210. [Google Scholar] [CrossRef]
- Sobral, F.; Sampaio, A.; Falcão, S.; Queiroz, M.J.; Calhelha, R.C.; Vilas-Boas, M.; Ferreira, I.C. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food Chem. Toxicol. 2016, 94, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Frangieh, J.; Salma, Y.; Haddad, K.; Mattei, C.; Legros, C.; Fajloun, Z.; El Obeid, D. First characterization of the venom from Apis mellifera syriaca, a honeybee from the Middle East region. Toxins 2019, 11, 191. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Hakam, F.E.; Abo Laban, G.; Badr El-Din, S.; Abd El-Hamid, H.; Farouk, M.H. Apitherapy combination improvement of blood pressure, cardiovascular protection, and antioxidant and anti-inflammatory responses in dexamethasone model hypertensive rats. Sci. Rep. 2022, 12, 20765. [Google Scholar] [CrossRef]
- Dartnell, L.R. Ionizing radiation and life. Astrobiology 2011, 11, 551–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Adham, E.K.; Hassan, A.I.; ADawoud, M.M. Evaluating the role of propolis and bee venom on the oxidative stress induced by gamma rays in rats. Sci. Rep. 2022, 12, 2656. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.D.; Lee, G. Neuroprotective Activity of Melittin-The Main Component of Bee Venom-Against Oxidative Stress Induced by Aβ25-35 in In Vitro and In Vivo Models. Antioxidants 2021, 10, 1654. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.; El-Wahed, A.A.; Yosri, N.; Musharraf, S.G.; Chen, L.; Moustafa, M.; Zou, X.; Al-Mousawi, S.; Guo, Z.; Khatib, A.; et al. Antimicrobial Properties of Apis mellifera’s Bee Venom. Toxins 2020, 12, 451. [Google Scholar] [CrossRef]
- Jamasbi, E.; Batinovic, S.; Sharples, R.A.; Sani, M.A.; Robins-Browne, R.M.; Wade, J.D.; Separovic, F.; Hossain, M.A. Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids 2014, 46, 2759–2766. [Google Scholar] [CrossRef]
- Dosler, S.; Gerceker, A.A. In vitro activities of antimicrobial cationic peptides; melittin and nisin, alone or in combination with antibiotics against Gram-positive bacteria. J. Chemother. 2012, 24, 137–143. [Google Scholar] [CrossRef]
- Socarras, K.M.; Theophilus, P.A.S.; Torres, J.P.; Gupta, K.; Sapi, E. Antimicrobial Activity of Bee Venom and Melittin against Borrelia burgdorferi. Antibiotics 2017, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- McGhee, S.; Visovksy, C.; Zambroski, C.; Finnegan, A. Lyme disease: Recognition and management for emergency nurses. Emerg. Nurse 2018, 26, 17–34. [Google Scholar] [CrossRef]
- Da Mata, É.C.; Mourão, C.B.; Rangel, M.; Schwartz, E.F. Antiviral activity of animal venom peptides and related compounds. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, M.B.; Lee, B.H.; Nikapitiya, C.; Kim, J.H.; Kim, T.H.; Lee, H.C.; Kim, C.J.; Lee, J.-S.; Kim, C.-J. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J. Microbiol. 2016, 54, 853–866. [Google Scholar] [CrossRef] [PubMed]
- Vilas Boas, L.C.P.; Campos, M.L.; Berlanda, R.L.A.; de Carvalho Neves, N.; Franco, O.L. Antiviral peptides as promising therapeutic drugs. Cell Mol. Life Sci. 2019, 76, 3525–3542. [Google Scholar] [CrossRef] [PubMed]
- Galdiero, S.; Falanga, A.; Tarallo, R.; Russo, L.; Galdiero, E.; Cantisani, M.; Morelli, G.; Galdiero, M. Peptide inhibitors against herpes simplex virus infections. J. Pept. Sci. 2013, 19, 148–158. [Google Scholar] [CrossRef]
- Albiol Matanic, V.C.; Castilla, V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int. J. Antimicrob. Agents 2004, 23, 382–389. [Google Scholar] [CrossRef]
- Kasozi, K.I.; Niedbała, G.; Alqarni, M.; Zirintunda, G.; Ssempijja, F.; Musinguzi, S.P.; Usman, I.M.; Matama, K.; Hetta, H.F.; Mbiydzenyuy, N.E.; et al. Bee Venom—A Potential Complementary Medicine Candidate for SARS-CoV-2 Infections. Front. Public. Health 2020, 8, 594458. [Google Scholar] [CrossRef]
- Hori, S.; Nomura, T.; Sakaguchi, S. Control of regulatory T cel development by the transcription factor Foxp3. Science 2003, 299, 1057–1061. [Google Scholar] [CrossRef] [Green Version]
- Caramalho, I.; Melo, A.; Pedro, E.; Barbosa, M.M.P.; Victorino RM, M.; Pereira Santos, M.C.; Sousa, A.E. Bee venom enhances thdifferentiation of human regulatory T cells. Allergy 2015, 70, 1340–1345. [Google Scholar] [CrossRef]
No. | Author | Year | Cell Culture | Species | BV Component or Crude BV | Molecular Mechanism of Acting | Effect |
---|---|---|---|---|---|---|---|
1 | Tetikoğlu [28] | 2023 | Breast cancer | Human | BV | Interaction of γH2AX and β-actin | Genotoxicity |
2 | Obeidat [11] | 2023 | Leukemia | Human | BV, melittin | Modulation NF-κB and MAPK pathway, CDK4 inhibition | Apoptosis, necrosis, cell cycle arresting |
3 | Sevin [29] | 2023 | TNBC | Human | BV | Unknown | Apoptosis |
4 | Hwang [30] | 2023 | Lung cancer | Human | BV | Modulation of expression PARP, caspase-9, p53, Bcl2, Box | Cell death, cell cycle arresting |
5 | Yu [31] | 2023 | Lung cancer Glioblastoma TNBC Liver cancer | Human | BV | Inhibition of mTOR pathway | Autophagy induction |
6 | Sevin [32] | 2023 | Glioblastoma | Human | BV | Decrease of pro-inflammatory cytokine levels | Lack of cytotoxic effect |
7 | Ertilav [33] | 2023 | Glioblastoma | Human | Melittin | Stimulation of TRPM2 channel, prooxidative effect | Apoptosis |
8 | Erkoc [34] | 2022 | TNBC | Human | Melittin | Induction of calcium signaling apoptosis, inhibition of cAMP | Apoptosis, anti-proliferative effect |
9 | Li [35] | 2022 | Lung cancer | Human | Melittin | Upregulation of ROS production, increasing of intracellular ferrum level, disruption of GPx4, mitochondria damage | Apoptosis (ferroptosis) |
10 | Zhao [36] | 2022 | Pancreatic cancer | Human | BV | Modulation of cyclins and cyclin-dependent kinases (CDKs) expression, p53-p21 pathway activation | Apoptosis, cell cycle arresting |
11 | Duarte [37] | 2022 | Colon cancer Breast cancer | Human | BV | Unknown | Cytotoxic together with 5-FU and fluphenazine |
12 | Małek [38] | 2022 | Glioblastoma | Human | BV | Reduction of MMP2 and MMP9 secretion | Cytotoxic |
13 | Yaacoub [39] | 2022 | Cervical cancer | Human | BV, melittin | Unknown | Cytotoxic |
14 | Lischer [40] | 2021 | Breast cancer | Human | Melittin | Unknown | Cytotoxic |
15 | Gasanoff [41] | 2021 | Leukemia | Human | Melittin | Melittin-induced decline of mitochondrial bioenergetics | Cytotoxic |
16 | Mansour [42] | 2021 | Hepatocellular carcinoma | Human | BV, melittin | Upregulation of p53, Bax, Cas3, Cas7, PTEN. Downregulation Bcl-2, Cyclin-D1, Rac1, Nf-κB, HIF-1a, VEGF, MMP9. Oxidative stress induction. | Cell cycle arresting, apoptosis |
17 | Huang [43] | 2021 | Gastric cancer | Human | Melittin | MMP2 and MMP9 activity inhibition, decreasing of Wnt/BMP and MMP-2 signaling pathway activity. Inhibition of adhesion molecules. | Cytotoxic, adhesion and invasion inhibition |
18 | Lebel [44] | 2021 | Glioblastoma | Human | BV, melittin | Influence on Bak, Bax and Cas3 | Apoptosis, necrosis |
19 | Yaacoub [45] | 2021 | Colon cancer | Human | BV, melittin, PLA2 | Unknown | Synergistic activity of melittin and PLA2, cytotoxic |
20 | Borojeni [46] | 2020 | Cervical cancer Breast cancer | Human | BV | Unknown | Apoptosis |
21 | Kreinest [47] | 2020 | Hodgkin Lymphoma | Human | Melittin | Unknown | Cytotoxic, increase sensitivity of cisplatin |
22 | Grawish [48] | 2020 | Head and neck squamous cell carcinoma | Human | BV | Upregulation of Bax, downregulation of Bcl2 and EGFR, influence on cell cycle | Cytotoxic, cell cycle arresting, increasing of cisplatin activity |
23 | Sangboonruang [49] | 2020 | Malignant melanoma | Human | Melittin | Upregulation of cytochrome c and its translocation of cytosol, up regulation of Cas3 and Cas9. Reduction of EGFR expression. | Apoptosis |
24 | Salama [50] | 2020 | Liver carcinoma Breast cancer Cervical cancer | Human | BV | Influence on IL-10, TNF, IFN-γ. Elevation of Cas3 level. | Apoptosis |
25 | Kim [51] | 2020 | Cervical cancer | Human | BV | Increase in p53, p21, p27, Bax. Decrease in cyclin A, cyclin B, Bcl-2, Bcl-XL. Influence on caspases and intercellular signaling pathways. | Cytotoxic to HPVpositive cervical-cancer cell lines |
26 | Ceremuga [52] | 2020 | Leukemia | Human | BV | Effect on mitochondrial membrane potential, Annexin V binding and Caspases 3/7 activity | Apoptosis |
27 | Jeong [53] | 2019 | Non-small cell lung cancer | Human | BV | Inhibition of EGF-induced F-actin reorganization and cell invasion, inhibited EGF-induced ERK, JNK, FAK and mTOR phosphorylation | Cytotoxic |
28 | Soliman [54] | 2019 | Gastric cancer Colon cancer | Human | Melittin | Membrane affecting | Cytotoxic |
29 | Shaw [55] | 2019 | Breast cancer Malignant melanoma | Human | Melittin | Synergic effect with cold atmospheric plasma | Cytotoxic |
30 | Lim [56] | 2019 | Malignant melanoma | Human | BV, melittin | Inhibition of PI3K/AKT/mTOR and MAPK pathways. Upregulation of Cas3, Cas9. | Apoptosis, inhibition of migration and invasion |
31 | Shiassi Arani [57] | 2019 | Breast cancer | Mouse | BV | Unknown | Cytotoxic, synergy with cisplatin |
32 | Jung [58] | 2018 | TNBC | Human | BV | Reduction of Cas8, Cas9, Cas3 and PARP expression. Effect of cell morphology, DNA and protein fragmentation. | Apoptosis |
33 | Zarrinnahad [59] | 2018 | Cervical cancer | Human | Melittin | Unknown | Apoptosis |
34 | Khamis [60] | 2018 | Breast cancer | Human | BV | Upregulation of Bax, downregulation of Bcl2, EGFR, ERα. Influence of cell cycle. | Cytotoxic, synergy with hesperidin and piperine |
35 | Mohseni-Kouchesfahani [61] | 2017 | Acute myeloid leukemia | Human | BV | Unknown | Cytotoxic |
36 | Zhang [62] | 2017 | Non-small cell lung cancer | Human | Melittin | Decreasing of HIF-1α and VEGF level | Apoptosis, migration inhibiting |
37 | Alonezi [63] | 2017 | Ovarian cancer | Human | Melittin | Reduction in the levels of metabolites in TCA cycle, oxidative phosphorylation, purine and pyrimidine metabolism, and the arginine/proline pathway | Cytotoxic, synergy with cisplatin |
38 | Wang [64] | 2017 | Breast cancer | Human | Melittin | Downregulating CD147 and MMP-9 expression | Inhibition of migration and invasion |
39 | Alonezi [65] | 2016 | Ovarian cancer | Human | Melittin | Reduction in amino acids in the proline/glutamine/arginine pathway. Decreased levels of carnitines, polyamines, adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD+). | Cytotoxic |
40 | Drigla [66] | 2016 | Breast cancer | Human | BV | Unknown | Antiproliferative |
41 | Gajski [67] | 2016 | Glioblastoma | Human | BV | Unknown | Cytotoxic, synergy with cisplatin |
42 | Zheng [68] | 2015 | Colon cancer | Human | BV | Increasing in DR4, DR5, p53, p21, Bax, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9 expression. NF-κB inhibition. | Apoptosis, growth inhibition |
43 | Mahmoodzadeh [69] | 2015 | Gastric cancer | Human | Melittin | Unknown | Necrosis |
44 | Kim [70] | 2015 | Cervical cancer | Human | BV | Inhibition of HPV E6 and E7 expression | Cytotoxic, antiviral |
45 | Choi [71] | 2014 | Non-small cell lung cancer | Human | BV | Increasing in DR3 expression. NF-κB pathway inhibition. | Apoptosis |
46 | Zhu [72] | 2014 | Esophageal squamous cell carcinoma | Human | Melittin | Influence of Tax and Bcl-2 proteins. Lack influence of cell cycle. | Apoptosis, radiosensitization of cells |
47 | Zhang [73] | 2014 | Liver cancer | Human | Melittin | CyclinD1 and CDK4 downregulation. Upregulation of PTEN. Attenuation of HDAC2 expression. PI3K/Akt signaling pathways inhibition. | Apoptosis |
48 | Jeong [74] | 2014 | Breast cancer | Human | Melittin | Inhibition of EGF-induced MMP-9 expression. Inhibition of NF-κB and PI3K/Akt/mTOR pathway. Inhibition mTOR/p70S6K/4E-BP1 pathway. | Apoptosis, inhibition of migration |
49 | Hoshina [75] | 2014 | Liver immortal cells | Human | BV | Unknown | Induction of genotoxicity and mutagenicity in human cells |
50 | Kollipara [76] | 2014 | Non-small cell lung cancer | Human | BV | Increasing in DR3, DR6, Fas, Bax, cleaved caspase-3, cleaved caspase-8 | Enhancement of cytotoxicity against tumor of natural killer cells, apoptosis |
51 | Safaeinejad [77] | 2014 | Leukemia | Human | BV | Morphological changes, caspase-3-independent apoptosis | Potentiation of a novel palladium (II) complex, anti-proliferative, apoptosis |
52 | Shin [78] | 2013 | Cervical cancer | Human | Melittin | Decreasing of VEGF secretion, HIF-1ɑ inhibition | Inhibition of angiogenesis |
No. | Author | Year | Cancer | Species | BV Component or Crude BV | Mechanism of Acting | Effect |
---|---|---|---|---|---|---|---|
1 | Rocha [79] | 2022 | Colorectal cancer | Mouse | Melittin | Unknown | Inhibition of metastasis growth |
2 | El-Beltagy [80] | 2021 | Ovarian cancer Breast cancer | Rat | BV | Decreasing of serum MMP1, NF-κB, and TNF. Increasing in caspase 3. Influence on MDA, SOD, CAT. | Restoration of histological changes |
3 | El Bakary [81] | 2020 | Ehrlich ascites carcinoma | Mouse | BV, melittin | Decrease of Cas3, MMP2 and MMP9 activities. Decrease of TNF, VEGF, and NO levels. | Suppression of tumor proliferation, inhibition of angiogenesis |
4 | Lee [82] | 2017 | Lung carcinoma | Mouse | Melittin | Decrease the macrophage count in tumor environment, reduction of VEGF and CD206 expression in bone marrow-derived M2 macrophages | Reduction of tumor size, antiangiogenic effect |
5 | Zhang [62] | 2017 | Non-small cell lung cancer | Mouse | Melittin | Unknown | Inhibition of tumor growth |
6 | Lee [83] | 2015 | Cervical cancer | Mouse | BV | Increasing in FAS, DR3 and DR6 expression. Inhibition of NF-κB pathway. | Apoptosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małek, A.; Strzemski, M.; Kurzepa, J.; Kurzepa, J. Can Bee Venom Be Used as Anticancer Agent in Modern Medicine? Cancers 2023, 15, 3714. https://doi.org/10.3390/cancers15143714
Małek A, Strzemski M, Kurzepa J, Kurzepa J. Can Bee Venom Be Used as Anticancer Agent in Modern Medicine? Cancers. 2023; 15(14):3714. https://doi.org/10.3390/cancers15143714
Chicago/Turabian StyleMałek, Agata, Maciej Strzemski, Joanna Kurzepa, and Jacek Kurzepa. 2023. "Can Bee Venom Be Used as Anticancer Agent in Modern Medicine?" Cancers 15, no. 14: 3714. https://doi.org/10.3390/cancers15143714
APA StyleMałek, A., Strzemski, M., Kurzepa, J., & Kurzepa, J. (2023). Can Bee Venom Be Used as Anticancer Agent in Modern Medicine? Cancers, 15(14), 3714. https://doi.org/10.3390/cancers15143714