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Abstract: Bee venom is a natural toxin produced by honeybees and plays an important role in
defending bee colonies. Bee venom has several kinds of peptides, including melittin, apamin,
adolapamine, and mast cell degranulation peptides. Apamin accounts for about 2%–3% dry weight of
bee venom and is a peptide neurotoxin that contains 18 amino acid residues that are tightly crosslinked
by two disulfide bonds. It is well known for its pharmacological functions, which irreversibly block
Ca2+-activated K+ (SK) channels. Apamin regulates gene expression in various signal transduction
pathways involved in cell development. The aim of this study was to review the current understanding
of apamin in the treatment of apoptosis, fibrosis, and central nervous system diseases, which are
the pathological processes of various diseases. Apamin’s potential therapeutic and pharmacological
applications are also discussed.

Keywords: apamin; Component of bee venom; SK channels

Key Contribution: This review summarizes the existing knowledge and therapeutic effects of
apamin in various diseases, including atherosclerosis, heart failure, liver fibrosis, pancreatitis,
Alzheimer’s disease, Parkinson’s disease, and atopic dermatitis.

1. Introduction

Bee venom (Apis mellifera L.) has traditionally been used to treat a variety of diseases, including
arthritis, back pain, cancerous tumors, and multiple sclerosis [1,2]. Bee venom contains various
bioactive proteins, such as melittin, apamin, adolapin, phospholipases A2 and B, hyaluronidase,
serotonin, histamine, dopamine, and noradrenaline [3]. The peptides melittin, apamin, and mast cell
degranulating peptides are exclusive to bees.

Given the anti-inflammatory properties of bee venom, various forms of traditional bee venom
treatment, including stings, venom injections, and venom acupuncture, have been used to alleviate pain
and to treat chronic inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis [2,4,5].
In addition, our previous studies suggested that bee venom attenuates atherosclerosis atopic dermatitis
and periodontitis by the suppression of pro-inflammatory cytokines [6–8].

Moreno et al. [3] examined the most recent and innovative therapeutic and biological applications
of the most widely known components of bee venom, namely melittin and apamin. Apamin, an 18
amino acid peptide neurotoxin, is one of the bioactive components of bee venom, making up 2%–3% of
its total dry weight [1].

Apamin has long been known as a specifically selective blocker of small conductance
Ca2+-activated K+ (SK) channels [9], therefore, it acts as an allosteric inhibitor [10]. These channels
play a pivotal role in various pathophysiological responses, such as atherosclerosis, Parkinson’s disease,
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and hepatic fibrosis [11–14]. Kim et al. [15] found that high concentrations (≥0.5 µg/mL) of apamin
increase pro-inflammatory cytokines. A relatively low concentration of apamin has not been shown to
affect cell death. According to several studies, the proposed treatments use relatively low concentrations
(1–10 µg/mL) of apamin injections [3,15]. Thus, it has been suggested that the therapeutic element does
not have a toxicologic effect on target lesions. In addition, recent studies have demonstrated apamin’s
biological and pharmacological functions [16]; however, little is known about the molecular mechanisms
and pathogenesis involved in SK channel blockers or in the anti-inflammatory process. Therefore, this
review focuses on an overview of a variety of studies on the pharmacological properties of apamin in
atherosclerosis, liver fibrosis, central nervous system (CNS) disease, and anti-inflammatory responses.
Given the importance of the pharmacological action of apamin against various problematic diseases,
this review provides a thorough examination of apamin and summarizes its potential therapeutic
mechanisms (Table 1).
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Table 1. Pharmacological actions of apamin for various diseases.

Disease Entity Experimental Model Biological Role Molecular Mechanisms Reference

Atherosclerosis - THP-1 cell treated with oxLDL
- LPS injection with high fat diet Inhibited apoptosis Decreased NF-κB signaling pathway [17]

Heart failure Pacing-induced heart failure Increased the action potential duration SK channel blockade [18]

Liver fibrosis

- AML12 cell treated with
TGF-β1

- DDC-fed or
CCl4-injection mice

Suppressed hepatic fibrosis Inhibited MAPK, Smad, and TGF-β1
signaling pathway [14,19]

Pancreatitis Cerulein-injected mice Attenuated cytokine production Suppressed JNK activation [20]

Alzheimer’s disease Transgenic mice Improved memory acquisition Improved efficiency of nicotinic signaling [16]

Parkinson’s disease MPTP/probenecid-injection
PD mice Hypercholinergic state to DA denervation SK channel blockade [12]

Neurofibromatosis Heterozygous Nf1+/−

mouse model
Increased membrane potential in

postsynaptic cell SK channel blockade [21]

Atopic dermatitis HaCaT cell treated with
TNF-α/IFN-γ Suppressed inflammatory cytokines Inhibited JAK/STAT and NF-κB

signaling pathway [15]

THP-1, human monocytic cell line; oxLDL, oxidized low-density lipoprotein; LPS, lipopolysaccharide; DDC, 3,5-diethoxycarbonyl-1,4-dihydrocollidine; CCl4, carbon thtrachloride4;
AP, acute pancreatitis; PD, Parkinson’s disease; SK, small conductance Ca2+-activated K+; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; HaCaT, spontaneously transformed
aneuploid immortal keratinocyte cell line.
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2. Pharmacological Actions of Apamin

2.1. Ca2+ Channels Blocker

The SK channel consists of three members, SK1, SK, and SK3, which are voltage independent.
SK channels link intracellular Ca2+ transients to changes of the membrane potential by promoting
K+ efflux with increasing intracellular calcium during the action potential [11,22]. SK channels were
first identified in the brain [23,24] and later described in various tissues, including smooth muscle,
endothelial, epithelial, and blood cells [24,25].

SK1, 2, and 3 channels are widely expressed throughout the body, including the heart, the liver,
and skeletal muscle [22]. Of these, SK1 and SK2 channels are co-expressed in the neurons of the
neocortex, the hippocampal formation, the cerebellum, and brain stem, and SK3 channels have been
reported to be present in the midbrain, hypothalamus, and hypothalamus regions [26–28].

Apamin has long been known as a selective blocker of SK channels [29], and it is a peptide with a
highly specific mode of pharmacological action. Apamin binds to the pores of the SK channels, acts as
an allosteric inhibitor, and blocks them. Subsequently, it suppresses delayed cell hyperpolarization [10].
This binding specificity provides apamin with its electrical properties.

SK channels have been associated with learning regulation, and they may play specific roles in
dopamine-related disorders [12]. SK channels are believed to affect learning by regulating synaptic
plasticity through N-Methyl-d-aspartate (NMDA) receptors [30]. Based on these findings, it is suggested
that apamin can selectively block SK cannels involved in learning and memory regulation, thereby
contributing to learning and memory control [16,21,31].

2.2. Atherosclerosis

Atherosclerosis is a progressive disease in which the inner wall of the arteries forms plaque,
consisting mainly of debris from cholesterol, other lipids, and cell death [32]. Many macrophages
can be observed in atherosclerotic lesions, and the initial lesions of atherosclerosis are characterized
by an infiltration of macrophages, a proliferation of smooth muscle cells, and the presence of
macrophage-derived foam cells [33]. Macrophages, which are differentiated from blood peripheral
monocytes, are mixed with modified lipoproteins and then transformed into lipid-rich foam cells,
which comprise the main feature of atherosclerosis [34]. The accumulation of free cholesterol and
oxidatively modified cholesterol induces macrophage apoptosis [35].

Macrophages are pluripotent inflammatory cells with the ability to synthesize and to secrete
pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, and IL-6.
These cytokine plays a central role during the development of atherosclerosis [36]. Pro-inflammatory
cytokines are regulated at the level of transcription by several transcription factors, including nuclear
factor kappa B (NF-κB) and activator protein-1 [37,38]. NF-κB is a transcription factor that affects
different stages of the atherosclerotic process, including early atherosclerosis, foam cell formation,
proliferation of smooth muscle cells, and fibrous cap formation [39–41].

Several studies [42–44] have shown that some calcium channel blockers can reduce atherosclerotic
lesions, the production of oxidative stress, and the expression of inflammatory cytokines. Apamin,
an SK channel blocker, has been reported to exert an anti-inflammatory effect with a decrease in
seromucoid and haptoglobin levels [45].

Kim et al. [13] evaluated the anti-atherosclerotic mechanisms of apamin function in THP-1-derived
macrophages and examined the anti-atherosclerotic effects of apamin in mouse models of atherosclerosis.
Treatment with apamin in lipopolysaccharide (LPS)-treated THP-1-derived macrophages inhibited
inflammatory responses due to a decrease in the NF-κB signal pathway. Similarly, some studies have
demonstrated that apamin treatment effectively downregulates the NF-kB signaling pathway and
signal transducers and activators of transcription (STAT) in vitro, thereby inhibiting pro-inflammatory
cytokines and Th2 lymphocyte chemokines [13,15]. Kim et al. [13] showed that intracellular lipid
levels are inhibited by apamin in oxidized low-density lipoprotein (oxLDL)-treated macrophages.
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The inhibition of macrophage activity attenuates the elevation of lipid levels in oxLDL-induced
macrophage apoptosis through apamin. Furthermore, treatment with apamin for atherosclerotic mice
predominantly alleviates serum lipids, Ca2+ levels, pro-inflammatory cytokines, adhesion molecules,
fibrotic factors, and macrophage infiltration [13]. In the atherosclerosis model, mice injected with
apamin had an inhibited expression of TNF-α, intracellular cell adhesion molecule (ICAM)-1, vascular
cell adhesion molecule (VCAM)-1, transforming growth factor (TGF)-β1, fibronectin, and the NF-κB
signaling pathway [13]. Apamin also suppresses platelet-derived growth factor subunit B homodimer
(PDGF-BB)-induced vascular smooth muscle cell proliferation and migration [15].

The consequences of macrophage apoptosis may vary from early to late atherosclerotic lesions [46].
For early lesions, apoptosis appears to be efficient for cell phagocytosis, and macrophage apoptosis
reduces lesion cellularity and lesion progression. For late lesions, a number of factors can
contribute to phagocytic clearance defects in apoptosis macrophages, causing secondary necrosis and
pro-inflammatory responses in these cells [47,48]. Pro-apoptosis processes that occur in atheroma
include oxidant stress through high levels of cytokine activation of oxidized low-density lipoproteins
(oxLDL) [49]. Apoptosis is thought to be caused by an extrinsic pathway using death receptors and/or
by an intrinsic pathway, including cytochrome C and caspase activation [50]. OxLDL and oxidized
lipids are also produced in atherosclerotic lesions [51].

Kim et al. [17] investigated the anti-apoptosis mechanism of oxLDL-induced THP-1-derived
macrophage apoptosis. Apoptotic macrophages were significantly reduced by reducing the expression
of pro-apoptotic genes, such as Bax, PARP, caspase-3, and cytosolic cytochrome C protein levels, through
treatment with apamin. Likewise, treatment with apamin increased the expression of anti-apoptotic
genes, such as Bcl-2, Bcl-xL, and mitochondrial cytochrome C activation. The authors demonstrated
that apamin reduces apoptosis through the mitochondria-related apoptotic pathway. Furthermore,
treatment with apamin in mouse models of atherosclerosis dramatically alleviated apoptotic cell
death [17].

In summary, apamin inhibits inflammatory responses in macrophages and weakens the
LPS/fat-induced atherosclerosis model in vivo. Apamin could potentially be used to develop new agents
that inhibit macrophage apoptosis to protect against atherosclerosis. In the studies reviewed, apamin
has been proposed as another therapeutic agent for the treatment and prevention of atherosclerosis.

2.3. Ventricular Fibrillation

Heart failure is associated with structural and electrophysiological remodeling, which enhances
cases of arrhythmogenesis and the propensity of sudden cardiac death [18,52]. Mapping ventricular
fibrillation (VF) reveals various mechanisms ranging from wavelets of different stimuli to reentrant
spiral waves [53].

Structural and electrical remodeling within a heart failure substrate can lead to increased
arrhythmogenicity and VF [54]. This is in contrast to structurally normal hearts with VF characterized
by unstable reentrant spiral waves or multiple waves and transient, highly dominant frequency
regions [53,55]. Huang et al. showed that VF in heart failure is slower to activate, is more frequently
blocked, and has fewer reentrant wave fronts compared to a structurally normal heart [56].

Apamin has been shown to heterogeneously increase the action potential duration (APD) within
a heart failure substrate in both human studies with transplant hearts [57,58] and in animal models
of heart failure [59,60]. Some studies have demonstrated that VF duration is decreased after apamin
treatment [18,60,61]. Apamin treatment to the heart shortens VF duration and promotes its spontaneous
termination [60]. Bonilla et al. [62] and Ni et al. [63] reported that apamin significantly prolonged
APD in failing human and canine ventricular cardiomyocytes, along with the increased expression
of SK channel protein in failing ventricles [18]. Treatment with apamin has been shown to decrease
phase singularities and dominant frequencies during VF in a rabbit heart failure model [60]. Therefore,
it has been suggested that an increase in myocyte contraction time could be a consequence of a more
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prolonged calcium entry due to the prolonged APD. This would increase myocyte energy needs,
which is not good for a failing heart.

2.4. Liver Fibrosis

Liver fibrosis is caused by various types of chronic liver damage, which can be caused by chronic
liver injuries, including viral agents, alcoholic hepatitis, and autoimmune hepatitis [64]. Cholestasis
leads to hepatic accumulation of liver cytotoxic bile acids and inflammation of the liver, followed by
biliary fibrosis, cirrhosis, and end stage liver disease [65,66]. Cholestatic liver disease, such as primary
biliary cirrhosis and primary sclerotic cholangitis, is characterized by the gradual destruction of biliary
epithelial cells and autoimmune and inflammatory diseases [67,68]. This progressive pathological
process is described as the accumulation of extracellular matrix (ECM) proteins inside and around
damaged liver tissue [69].

The process of liver fibrosis involves multiple cellular and molecular mechanisms in most chronic
liver diseases. In addition, this process affects not only hepatocytes but also nonparenchymal cells, such
as hepatic stellate cells (HSCs) and hepatic myofibroblasts, which are essential for maintaining liver
structure and function [70]. Activated HSCs and portal fibroblasts enhance collagen deposition and
act as the major cellular effectors of liver fibrosis [69,71]. Hepatocytes can also be transdifferentiated
into mesenchymal cells through the deposition of collagen in the liver during epithelial mesenchymal
transition (EMT) and chronic damage [72].

The cellular mechanism and antifibrotic effect of TGF-β1-induced hepatic fibrosis due to apamin
have been explored [14]. Apamin prevents carbon tetrachloride-induced liver fibrosis [19]. Apamin
treatment has led to decreased liver injury and pro-inflammatory cytokine levels. Treatment with
apamin has resulted in a considerable reduction in the expression of TGF-β1, collagen I, fibronectin,
and α-smooth muscle actin by suppressed Smad-signaling pathway TGF-β1-induced HSCs [19].
In addition, apamin has suppressed the activation of HSCs and the proliferation of biliary epithelial
cells (BECs). Apamin has significantly inhibited bile duct proliferation and has reduced ECM
accumulation in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice [19].

Kim et al. [19] suggested that apamin suppresses the proliferation of BECs and the activation
of HSCs by inhibiting the TGF-β1 signaling pathway in hepatic fibrosis. In addition, some
studies were conducted to investigate the antifibrosis or anti-epithelial mesenchymal transition
(anti-EMT) mechanism by examining the effect of apamin on TGF-β1-induced hepatic fibrosis [14,19].
The anti-fibrotic effects of apamin in the carbon tetrachloride (CCl)4-induced liver fibrosis animal model
were also examined in these studies. The major findings are that apamin alleviates the manifestation of
liver tissue lesions and reduces the expression of TGF-β1 and fibronectin associated with liver fibrosis.
Furthermore, other studies showed that apamin suppresses PDGF-BB-induced vascular smooth muscle
cell proliferation and TGF-β1-induced hepatocyte EMT [14,73].

Treatment with TGF-β1 in AML12 murine hepatocytes results in losses of the E-cadherin protein at
the cell–cell junctions and in an increased expression of vimentin [14]. Furthermore, the phosphorylation
levels of Smad2/3, Smad4, ERK1/2, and Akt by TGF-β1 stimulation were increased. On the other
hand, cells treated simultaneously with TGF-β1 and apamin maintained localized expression of high
levels of E-cadherin and did not show an increase in vimentin [14]. Collected data provide in vitro
evidence that apamin prevents hepatic epithelial cells from transitioning to the mesenchymal-like
phenotype in response to TGF-β1 [14]. These results prove the potential of apamin for the prevention
of EMT progression in vivo and in vitro. In summary, numerous studies have demonstrated that
apamin inhibits TGF-β1-induced hepatocyte EMT in vitro and inhibits CCl4-injected fibrosis in vivo.
The administration of apamin markedly increases the expression of epithelial marker E-cadherin and
reduces mesenchymal marker vimentin in TGF-β1-induced hepatic fibrosis [14,19,74].

In addition, fibrotic liver tissue from both human and animal models showed increased expression
of SK channels compared to control [75,76], but the distribution of SK channels in human liver differed
according to the degree of fibrosis [77]. In fibrotic livers, SK channels were mainly expressed in
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hepatocytes, and in cirrhotic human livers, SK channels were mainly over-expressed in hepatocytes
of cirrhosis nodules [76]. Likewise, Moller et al. [76] confirmed that expression of the SK channel
genes increased during liver fibrogenesis in CCL4-induced liver injury mice and rats. Furthermore,
the expression of SK channels was also significantly increased in three rat models of liver fibrosis
induced by high-fat diet, bile duct ligation, or thioacetamide [76]. Freise et al. [75] found that SK
channel blockers other than apamin inhibited the proliferation of a rat hepatic stellate cells and inhibited
the expression of profibrotic genes in primary rat hepatic stellate cells.

2.5. Pancreatitis

Acute pancreatitis (AP) is a sudden inflammatory disease of the pancreas. The mortality rate
associated with the most severe form of AP, characterized by pancreatic necrosis, is 30%–40% [78,79].
AP is caused by damage or disruption of pancreatic acini by digestive enzymes, such as amylase
and lipase, which can break down tissue and cell membranes [80]. The acinar cells then produce
proinflammatory cytokines, such as IL-1, IL-6, and TNF-α, which can induce acinar cell necrosis and
can promote local pancreatic damage [80,81].

Bae et al. [20] explored the possibility that apamin suppresses AP on acinal cells via SK channel
regulation and the role of SK channels in AP in acinar cells. Bae et al. [20] demonstrated evidence
that apamin inhibits the development of AP by cerulein, a well-known substance that stimulates
smooth muscles and induces digestion. Treatment with apamin in mice reduces serum amylase,
lipase, cytokine, and myeloid oxidase activities. Based on Bae et al.’s study [20], the inhibitory
effects of apamin have been demonstrated through c-Jun N-terminal kinases (JNK) inactivation in
a cerulein-induced AP model in vivo. The administration of apamin inhibits the development of
cerulein-induced AP, reducing inflammation, edema, cytokine production, and neutrophil infiltration
in the pancreas. Apamin does not inhibit ERK1/2, p38, nor NF-kB. These results may suggest that
apamin can prevent AP through the inhibition of JNK activation.

2.6. CNS Disease

Apamin is a very powerful and selective antagonist of the SK channel. This SK channel subtype
is involved in the mediation of slow hyperpolarization that occurs after a train of action potentials,
which in turn regulate neuronal excitability [82]. As a result of the pharmacological blockade of this
particular SK channel, the after-hyperpolarization is reduced, and neuronal re-excitability is increased.
Apamin can cross the blood-brain barrier and is rich in certain high-affinity sites associated with SK
channels in the brain [83]. However, the increased neuronal excitability would be close to the potential
possibility to trigger a seizure by damaged neurons as well an increased excitability due to altered
membrane permeabilities. Further studies are required for this relation. SK channels are primarily
located in the central nervous system and are present at a high density in the cerebral cortex and limbic
system, which is known to be involved in cognitive and mood processes [82]. Hypothalamic neurons,
in addition to the inwardly rectified K+ channels, also express SK channels sensitive to antagonism
by apamin. These currents underlie the after-hyperpolarization that is observed at the tail end of the
action potential or a prolonged depolarizing stimulus. [84,85].

SK channels play an important role in the repetitive activity of neurons [86] and block
many hyperpolarizing inhibitory effects, including alpha-adrenergic, cholinergic, purinergic,
and neurotensin-induced relaxation [87,88]. These channels, activated only by an increase in
intracellular Ca2+, contribute to regulating the excitability and function of many cell types, including
neurons, epithelial cells, T-lymphocytes, and skeletal muscle cells [89]. It has also been reported that the
SK channels have the potential to inhibit inflammatory processes mediated by microglial cells [90–92].

The blockade of SK channels present in microglial cells is clearly mediated by the anti-inflammatory
effects of apamin [91]. The blockage of SK channels by apamin increases the membrane potential of
postsynaptic cells and increases the amplitude of excitatory postsynaptic potential with long-term
effects [30,93]. Apamin not only protects the unmarred neuron but also restores the function of the
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silent neurons [3]. Therefore, the experimental studies on apamin have mainly focused on its use as an
SK channel blocker in the central nervous system.

2.6.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disorder affecting more than 40 million people
worldwide and is expected to increase exponentially in the coming decades. The main cause of
neurodegeneration in the brain affected by Alzheimer’s disease is due to the deposition of senile
plaques, and the neurofibrillary tangles formed by tau proteins that accumulate in neuropil from the
cerebral cortex and hippocampus [31].

An attention deficit is recognized as an early symptom of Alzheimer’s disease, which affects
other cognitive areas and cellular mechanisms. The root cause of this attention deficit is being actively
studied [94–98].

The early attention deficits are evident in TgCRND8 mice according to a well-established murine
model of Alzheimer’s disease that recreates various features of the disease [99–101]. Attention control
is performed by cholinergic regulation of the prefrontal cortex [102–104]. In addition, SK channels can
be activated directly by Ca2+ influx through nicotinic receptors [105,106].

Proulx et al.’s study [107] showed that normal, robust cholinergic activation of the prefrontal
attention circuitry was impaired in TgCRND8 mice and that this deficit can be pharmacologically
corrected by inhibiting SK channels with the selective blocker apamin. Proulx et al. [16] confirmed
that blocking SK channels through apamin treatment improved the efficiency of nicotinic signaling
in layer 6 of the prefrontal cortex in TgCRND8 mice, according to an aggressive early onset model
of brain amyloidosis. Studies have shown that apamin enhancement appears to be related to both
the degree and timing of cholinergic attention regulation in the prefrontal cortex [102]. In addition,
nicotinic receptor-mediated excitation severely damages the brain in Alzheimer’s disease mice, and the
damage is sensitive to an SK channel blockade caused by apamin [108,109]. Accordingly, it has been
demonstrated that apamin can overcome the inhibitory regulation of nicotinic receptors in the attention
circuit of the frontal cortex [16].

Several behavioral and electrophysiological studies have suggested apamin for the treatment of
AD, indicating that blocking of SK channels by apamin may enhance neuronal excitability, synaptic
plasticity and organ long-term potentiation in the CA1 hippocampal region [31,110]. Apamin is
considered useful for investigating physiological mechanisms related to brain functions, such as
cognitive processes or mood control [31]. Thus, apamin has been presented as a new treatment strategy
with added potential benefits in the treatment and improvement of the attention deficit in Alzheimer’s
disease [111].

2.6.2. Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by typical motor symptoms
due to the gradual loss of dopaminergic (DA) neurons in the substantia nigra, and it represents the
second most common degenerative disease of the central nervous system [112]. Bradykinesia, rigidity,
and resting tremors are highlighted as the main signs of PD. Although symptomatic treatment can
provide benefits for many years, the disorder progresses slowly, eventually leading to a significant
disability [113]. To carry out experiments, some studies used a chronic mouse model of MPTP
intoxication that closely mimics the progressive loss of DA neurons in PD. Intoxication of the
MPTP/probenecid paradigm represents a chronic, progressive, toxin-based mouse model of PD with
substantial loss of DA neurons [114,115].

Previous studies suggest that bee venom can protect DA neurons from degeneration in
experimental PD [12]. Interestingly, two studies have reported that peptide apamin can protect
DA neurons in a model system of a midbrain culture that mimics the selective disappearance of these
neurons in PD [116,117]. In some studies, it has been reported that two SK channel subtypes, SK2
and SK3, which are primarily blocked by apamin, exist in the neurons, resulting in a structural effect
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through their direct action on DA neurons [118–120]. The protective effect of apamin is due to the
small excitatory increase in DA neurons that causes a moderate and sustained elevation of cytosolic
calcium [116]. This is consistent with the pharmacological properties of apamin, which are known
as potent and irreversible blockers of SK channels. These channels link the intracellular calcium
transients to changes in membrane potential by promoting K+ efflux with increasing intracellular
calcium during their action potential [121]. In addition, the use of apamin has been patented to
overcome the shortcomings of drugs used in the treatment of PD, namely L-Dopa.

As mentioned by Aufschnaiter et al. [31], SK channels control the firing frequency of neurons,
especially at NMDA glutamatergic synapses, and are responsible for hyperpolarization following
action potentials. Positive regulation in these channels promotes channel activity, impairing memory
and learning, while negative regulation improves memory and learning, and reduces calcium channel
sensitivity [122]. In neurons, this SK channel blockage decreases hyperpolarizing effects, regulating
synaptic plasticity and memory encoding [31,123].

It has already been found that apamin has a protective effect against dopamine neurons in vitro [12,124].
It has been claimed that degenerative brain disease can be treated with an active ingredient consisting of an
apamin component and other compounds for the treatment of PD [125].

2.7. Neurofibromatosis

Neurofibromatosis 1 (NF1) is a common genetic disorder that affects about 1 in 3500 people [126].
The disease is characterized by a number of physiological symptoms, including benign and malignant
tumors of the nerve sheath and the CNS, hyperpigmentation of the skin, irises, and hippocampus,
unidentified bright objects in the brain and macroencephaly [127]. In addition, about 30%–60% of NF1
patients suffer from some type of learning deficit [128]. Patients with NF1 experience difficulties in both
verbal and nonverbal learning tasks [129,130], and have been reported to have particular difficulties in
working with visuospatial tasks [131–133].

Kallarackal et al. [21] found that Nf+/- mice in genetically engineered murine models with
heterozygous mutations in Nf1 have a spatial cognitive deficit. The learning deficits in Nf1+/− mice are
similar to those observed in humans and tend to be primarily visuospatial. In addition, very similar to
the human state, learning deficits occurring in Nf1+/- mice occur in approximately 40%–60% of mice
with mutations [134].

SK channels are associated with the possible role of learning regulation and dopamine-related
disorders. SK channels are believed to affect learning by regulating synaptic plasticity through NMDA
receptors [30,135]; however, the defect observed in Nf1+/- mice was confirmed to have been eliminated
by treatment with apamin (either through acute intraperitoneal injections or chronic micro-pump
delivery) [21].

Blockage of SK channels by apamin increases membrane potential in postsynaptic cells and increases
the amplitude of excitatory postsynaptic potential as a result of long-term potentiation [30,93]. These data
suggest that apamin may be an effective treatment for option learning disorders that potentially appear
in Nf1+/- mice and patients. In addition, early studies have shown that systemic apamin administration
facilitates learning and memory [3]. Several studies have highlighted the relevance of the SK channels in
information processing and storage at the system level [3,21,136]. These studies suggest that SK channels
are an appropriate target for apamin treatment for learning deficits.

2.8. Atopic Dermatitis

Inflammatory skin diseases such as atopic dermatitis involve the increased infiltration of some
inflammatory cells, such as lymphocytes, macrophages, some eosinophils, and dendritic cells [137].
These inflammatory cells secrete various inflammatory cytokines, such as IL-1, TNF-α, interferon
(IFN)-γ, and IL-6, after stimulation [138]. Increased inflammatory cytokines play an important
role in the pathogenesis of atopic dermatitis [139,140]. In particular, TNF-α and IFN-γ can induce
type-2 T helper cell (Th2)-related chemokines, as well as activation of regulating chemokines and
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macrophage-derived chemokines [141]. These Th2-related chemokines are considered to play an
important role in developing atopic dermatitis [139,142]. Many researchers have attempted to inhibit
the inflammatory cytokines and chemokines in TNF-α- and IFN-γ-stimulated keratinocytes and have
analyzed the biological and pharmacological mechanisms with various factors [143–145].

Kim et al. [15] investigated the anti-inflammatory effect of apamin on TNF-α- and IFN-γ-induced
inflammatory response in human keratinocytes. Apamin administration prevents the activation of
JAK/STAT and NF-κB, which are transcription factors associated with inflammatory cytokines in TNF-α-
and IFN-γ-treated human keratinocytes. These results showed that apamin has anti-inflammatory
effects on atopic dermatitis.

Apamin improves inflammatory conditions through the inhibition of Th2-related cytokines [15].
In addition, apamin down-regulates the activation of the JAK/STAT and NF-kB signaling
pathways in human keratinocytes. The expressions of inflammatory cytokines, such as IL-1β and
IL-6, and Th2-related chemokines, including thymus- and activation-regulated chemokines and
macrophage-derived chemokines, are increased in TNF-α-and IFN-γ-stimulated human keratinocytes.
Apamin has an inhibitory effect on TNF-α- and IFN-γ-induced activation of the JAK/STAT and NF-κB
signaling pathways [15]. Therefore, these results suggest that apamin has a therapeutic effect on atopic
dermatitis through the amelioration of inflammatory conditions.

3. Conclusions

Apamin is currently being researched to target and to develop new therapeutic agents. In this
review, its potential therapeutic and pharmacologic applications for non-neoplastic diseases have been
discussed, and the focus has been the emerging roles and the functions of apamin in the pathogenesis
of inflammation and fibrosis-related diseases as a novel regulatory agent. In addition, further studies
are required to examine the toxicity, including experimental descriptions of optimal doses, allergic
reactions, and side effects. The evaluation of pharmacokinetics and biological properties are also
important. Collectively, therapy with apamin could be a potential therapeutic alternative for the
treatment of non-neoplastic diseases; however, more research is needed to examine the toxicity and the
pharmacokinetics for realistic treatment and applications.
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