Cognitive Aging in Older Breast Cancer Survivors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Dam, F.S.; Schagen, S.B.; Muller, M.J.; Boogerd, W.; vd Wall, E.; Droogleever Fortuyn, M.E.; Rodenhuis, S. Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: High-dose versus standard-dose chemotherapy. J. Natl. Cancer Inst. 1998, 90, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Schagen, S.B.; van Dam, F.S.; Muller, M.J.; Boogerd, W.; Lindeboom, J.; Bruning, P.F. Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer 1999, 85, 640–650. [Google Scholar] [CrossRef]
- Ahles, T.A.; Saykin, A.J.; Furstenberg, C.T.; Cole, B.; Mott, L.A.; Skalla, K.; Whedon, M.B.; Bivens, S.; Mitchell, T.; Greenberg, E.R.; et al. Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J. Clin. Oncol. 2002, 20, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.H.; Denburg, N.L.; Beglinger, L.J.; Schultz, S.K. Neuropsychological outcomes of older breast cancer survivors: Cognitive features ten or more years after chemotherapy. J. Neuropsychiatry Clin. Neurosci. 2010, 22, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Wouters, H.; Baars, J.W.; Schagen, S.B. Neurocognitive function of lymphoma patients after treatment with chemotherapy. Acta Oncol. 2016, 55, 1121–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, H.G.; Houede-Tchen, N.; Yi, Q.L.; Chemerynsky, I.; Downie, F.P.; Sabate, K.; Tannock, I.F. Fatigue, menopausal symptoms, and cognitive function in women after adjuvant chemotherapy for breast cancer: 1- and 2-year follow-up of a prospective controlled study. J. Clin. Oncol. 2005, 23, 8025–8032. [Google Scholar] [CrossRef]
- Shilling, V.; Jenkins, V.; Morris, R.; Deutsch, G.; Bloomfield, D. The effects of adjuvant chemotherapy on cognition in women with breast cancer—Preliminary results of an observational longitudinal study. Breast 2005, 14, 142–150. [Google Scholar] [CrossRef]
- Schagen, S.B.; Muller, M.J.; Boogerd, W.; Mellenbergh, G.J.; van Dam, F.S. Change in cognitive function after chemotherapy: A prospective longitudinal study in breast cancer patients. J. Natl. Cancer Inst. 2006, 98, 1742–1745. [Google Scholar] [CrossRef]
- Hermelink, K.; Untch, M.; Lux, M.P.; Kreienberg, R.; Beck, T.; Bauerfeind, I.; Munzel, K. Cognitive function during neoadjuvant chemotherapy for breast cancer: Results of a prospective, multicenter, longitudinal study. Cancer 2007, 109, 1905–1913. [Google Scholar] [CrossRef]
- Ahles, T.A.; Li, Y.; McDonald, B.C.; Schwartz, G.N.; Kaufman, P.A.; Tsongalis, G.J.; Moore, J.H.; Saykin, A.J. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: The impact of APOE and smoking. Psychooncology 2014, 23, 1382–1390. [Google Scholar] [CrossRef] [Green Version]
- Janelsins, M.C.; Heckler, C.E.; Peppone, L.J.; Mohile, S.G.; Mustian, K.M.; Ahles, T.; Palesh, O.; O’Mara, A.M.; Minasian, L.M.; Williams, A.; et al. Longitudinal assessment of cancer-related cognitive impairment (CRCI) up to six-months post-chemotherapy with multiple cognitive testing methods in 943 breast cancer (BC) patients and controls. J. Clin. Oncol. 2017, 35, 10014. [Google Scholar] [CrossRef]
- Mandelblatt, J.S.; Small, B.J.; Luta, G.; Hurria, A.; Jim, H.; McDonald, B.C.; Graham, D.; Zhou, X.; Clapp, J.; Zhai, W.; et al. Cancer-Related Cognitive Outcomes Among Older Breast Cancer Survivors in the Thinking and Living With Cancer Study. J. Clin. Oncol. 2018, 36, 3211–3222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreukels, B.P.; van Dam, F.S.; Ridderinkhof, K.R.; Boogerd, W.; Schagen, S.B. Persistent neurocognitive problems after adjuvant chemotherapy for breast cancer. Clin. Breast Cancer 2008, 8, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Koppelmans, V.; Breteler, M.M.; Boogerd, W.; Seynaeve, C.; Gundy, C.; Schagen, S.B. Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. J. Clin. Oncol. 2012, 30, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Searle, S.D.; Rockwood, K. Frailty and the risk of cognitive impairment. Alzheimer’s Res. Ther. 2015, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Avila-Funes, J.A.; Amieva, H.; Barberger-Gateau, P.; Le Goff, M.; Raoux, N.; Ritchie, K.; Carriere, I.; Tavernier, B.; Tzourio, C.; Gutierrez-Robledo, L.M.; et al. Cognitive impairment improves the predictive validity of the phenotype of frailty for adverse health outcomes: The three-city study. J. Am. Geriatr. Soc. 2009, 57, 453–461. [Google Scholar] [CrossRef]
- Buchman, A.S.; Schneider, J.A.; Leurgans, S.; Bennett, D.A. Physical frailty in older persons is associated with Alzheimer disease pathology. Neurology 2008, 71, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Buchman, A.S.; Yu, L.; Wilson, R.S.; Boyle, P.A.; Schneider, J.A.; Bennett, D.A. Brain pathology contributes to simultaneous change in physical frailty and cognition in old age. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 1536–1544. [Google Scholar] [CrossRef]
- Hurria, A.; Jones, L.; Muss, H.B. Cancer Treatment as an Accelerated Aging Process: Assessment, Biomarkers, and Interventions. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, e516–e522. [Google Scholar] [CrossRef]
- Keating, N.L.; Norredam, M.; Landrum, M.B.; Huskamp, H.A.; Meara, E. Physical and mental health status of older long-term cancer survivors. J. Am. Geriatr. Soc. 2005, 53, 2145–2152. [Google Scholar] [CrossRef]
- Pinder, M.C.; Duan, Z.; Goodwin, J.S.; Hortobagyi, G.N.; Giordano, S.H. Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J. Clin. Oncol. 2007, 25, 3808–3815. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Adams, J.E.; Coleman, R.E.; Howell, A.; Hannon, R.A.; Cuzick, J.; Mackey, J.R.; Beckmann, M.W.; Clack, G. Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J. Clin. Oncol. 2008, 26, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Mandelblatt, J.S.; Stern, R.A.; Luta, G.; McGuckin, M.; Clapp, J.D.; Hurria, A.; Jacobsen, P.B.; Faul, L.A.; Isaacs, C.; Denduluri, N.; et al. Cognitive impairment in older patients with breast cancer before systemic therapy: Is there an interaction between cancer and comorbidity? J. Clin. Oncol. 2014, 32, 1909–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahles, T.A.; Schofield, E.; Li, Y.; Ryan, E.; Root, J.C.; Patel, S.K.; McNeal, K.; Gaynor, A.; Tan, H.; Katheria, V.; et al. Relationship between cognitive functioning and frailty in older breast cancer survivors. J. Geriatr. Oncol. 2021, 13, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Ahles, T.A.; Schofield, E.; Li, Y.; Ryan, E.; Orlow, I.; Patel, S.K.; Traina, T.; Root, J.C. Cognitive function is mediated by deficit accumulation in older, long-term breast cancer survivors. J. Cancer Surviv. 2023. [Google Scholar] [CrossRef]
- Calamia, M.; Markon, K.; Tranel, D. Scoring higher the second time around: Meta-analyses of practice effects in neuropsychological assessment. Clin. Neuropsychol. 2012, 26, 543–570. [Google Scholar] [CrossRef]
- Salthouse, T.A. Trajectories of normal cognitive aging. Psychol Aging 2019, 34, 17–24. [Google Scholar] [CrossRef]
- Salthouse, T.A. Influence of age on practice effects in longitudinal neurocognitive change. Neuropsychology 2010, 24, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Gaynor, A.M.; Ahles, T.A.; Ryan, E.; Schofield, E.; Li, Y.; Patel, S.K.; McNeal, K.; Traina, T.; Root, J.C. Initial encoding deficits with intact memory retention in older long-term breast cancer survivors. J. Cancer Surviv. 2022, 16, 940–947. [Google Scholar] [CrossRef]
- Shenk, D. What is the Flynn Effect, and how does it change our understanding of IQ? Wiley Interdiscip Rev. Cogn. Sci. 2017, 8, e1366. [Google Scholar] [CrossRef]
- Bratsberg, B.; Rogeberg, O. Flynn effect and its reversal are both environmentally caused. Proc. Natl. Acad. Sci. USA 2018, 115, 6674–6678. [Google Scholar] [CrossRef] [Green Version]
- Dutton, E.; van der Linden, D.; Lynn, R. The negative Flynn effect: A systematic literature review. Intelligence 2016, 59, 163–169. [Google Scholar] [CrossRef]
- Platt, J.M.; Keyes, K.M.; McLaughlin, K.A.; Kaufman, A.S. The Flynn effect for fluid IQ may not generalize to all ages or ability levels: A population-based study of 10,000 US adolescents. Intelligence 2019, 77, 101385. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A. Clinical applications II: Age and intelligence across the adult life span. In Essentials of WAIS IV Assessment; Lichtenberg, K., Ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Ahles, T.A.; Orlow, I.; Schofield, E.; Li, Y.; Ryan, E.; Root, J.C.; Patel, S.K.; McNeal, K.; Gaynor, A.; Tan, H.; et al. The impact of APOE and smoking history on cognitive function in older, long-term breast cancer survivors. J. Cancer Surviv. 2022. [Google Scholar] [CrossRef] [PubMed]
- Mandelblatt, J.S.; Zhou, X.; Small, B.J.; Ahn, J.; Zhai, W.; Ahles, T.; Extermann, M.; Graham, D.; Jacobsen, P.B.; Jim, H.; et al. Deficit Accumulation Frailty Trajectories of Older Breast Cancer Survivors and Non-Cancer Controls: The Thinking and Living with Cancer Study. J. Natl. Cancer Inst. 2021, 113, 1053–1064. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Society. Ser. B Methodol. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV); Pearson: San Antonio, TX, USA, 2008. [Google Scholar]
- Reitan, R.M. Trail Making Test: Manual for Adminstration and Scoring; Reitan Neuropsychological Laboratory: Tuscon, AZ, USA, 1971. [Google Scholar]
- Delis, D.C.; Kaplan, E.; Kramer, J.H. Delis-Kaplan Executive Function System; Pearson: San Antonio, TX, USA, 2001. [Google Scholar]
- Stern, R.A.; White, T. Neuropsychological Assessment Battery; WPS: Ada, OK, USA, 2003. [Google Scholar]
- Weintraub, S.; Salmon, D.; Mercaldo, N.; Ferris, S.; Graff-Radford, N.R.; Chui, H.; Cummings, J.; DeCarli, C.; Foster, N.L.; Galasko, D.; et al. The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): The neuropsychologic test battery. Alzheimer Dis. Assoc. Disord. 2009, 23, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Fillenbaum, G.G.; Smyer, M.A. The development, validity, and reliability of the OARS multidimensional functional assessment questionnaire. J. Gerontol. 1981, 36, 428–434. [Google Scholar] [CrossRef]
- Stewart, A.L.; Ware, J.E. Measuring Functioning and Well-Being: The Medical Outcomes Study Approach; Duke University Press: Durham, NC, USA, 1992. [Google Scholar]
- Karnofsky, D.A. The clinical evaluation of chemotherapeutic agents in cancer. In Evaluation of Chemotherapeutic Agents; MacLeod, C.M., Ed.; Columbia University Press: New York, NY, USA, 1949; pp. 191–205. [Google Scholar]
- Radloff, L.S. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.G. Manual for the State-Trait Anxiety Inventory for Adults; Mind Garden: Palo Alto, CA, USA, 1983. [Google Scholar]
- Hann, D.; Jacobsen, P.; Azzarello, L.; Martin, S.; Curran, S.; Fields, K.; Greenberg, H.; Lyman, G. Measurement of fatigue in cancer patients: Development and validation of the Fatigue Symptom Inventory. Qual. Life Res. 1998, 7, 301–310. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.J.; Smith, D.; Sun, C.L.; Tew, W.; Mohile, S.G.; Owusu, C.; Klepin, H.D.; Gross, C.P.; Lichtman, S.M.; Gajra, A.; et al. Frailty as determined by a comprehensive geriatric assessment-derived deficit-accumulation index in older patients with cancer who receive chemotherapy. Cancer 2016, 122, 3865–3872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models, 2nd ed.; Sage Publications, Inc.: Newbury Park, CA, USA, 2002; Volume 1. [Google Scholar]
- Salthouse, T.A. Do cognitive interventions alter the rate of age-related cognitive change? Intelligence 2015, 53, 86–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Ahles, T.A.; Root, J.C.; Ryan, E.L. Cancer- and cancer treatment-associated cognitive change: An update on the state of the science. J. Clin. Oncol. 2012, 30, 3675–3686. [Google Scholar] [CrossRef]
- McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Kruschke, J.K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, 2nd ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Sorensen, T.; Hohenstein, S.; Vasishth, S. Bayesian linear mixed models using Stan: A tutorial for psychologists, linguists, and cognitive scientists. Quant Meth. Psychol. 2016, 12, 175–200. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, D.; Kurowicka, D.; Joe, H. Generating random correlation matrices based on vines and extended onion method. J. Multivar. Anal. 2009, 100, 1989–2001. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, S. LKJ Priors. Available online: https://psychstatistics.github.io/2014/12/27/d-lkj-priors/ (accessed on 27 December 2014).
No. of Patients (%) | |||||
---|---|---|---|---|---|
Characteristic | Overall | Chemo | No Chemo | Control | p-Value |
(n = 486) | (n = 160) | (n = 168) | (n = 158) | ||
Age, M (SD) | 72.5 (5.8) | 70.9 (5.1) | 74.6 (5.9) | 71.7 (5.8) | <0.001 |
Race | |||||
White | 411 (85%) | 129 (81%) | 141 (84%) | 141 (89%) | 0.320 |
Black | 37 (8%) | 16 (10%) | 15 (9%) | 6 (4%) | |
Asian/PI | 17 (3%) | 8 (5%) | 5 (3%) | 4 (3%) | |
Other | 14 (3%) | 5 (3%) | 5 (3%) | 4 (3%) | |
Missing | 7 (1%) | 2 (1%) | 2 (1%) | 3 (2%) | |
Ethnicity | |||||
Hispanic | 48 (10%) | 18 (11%) | 12 (7%) | 18 (11%) | 0.338 |
Non-Hispanic | 429 (88%) | 138 (86%) | 153 (91%) | 138 (87%) | |
Missing | 9 (2%) | 4 (3%) | 3 (2%) | 2 (1%) | |
Education | |||||
Less than college | 195 (40%) | 67 (42%) | 71 (42%) | 57 (36%) | 0.420 |
College or more | 289 (59%) | 92 (58%) | 96 (57%) | 101 (64%) | |
Missing | 2 (0%) | 1 (1%) | 1 (1%) | 0 (0%) | |
Smoking Hx | |||||
Yes | 221 (45%) | 85 (53%) | 74 (44%) | 62 (39%) | 0.036 |
No | 263 (54%) | 74 (46%) | 93 (55%) | 96 (61%) | |
Missing | 2 (0%) | 1 (1%) | 1 (1%) | 0 (0%) | |
Endocrine Therapy | |||||
Ever | 234 (75%) | 110 (72%) | 124 (77%) | NA | 0.298 |
At Assessment 1 | 80 (25%) | 52 (34%) | 28 (17%) | NA | <0.001 |
Cancer Characteristics | |||||
ER Positive | 237 (80%) | 111 (73%) | 126 (88%) | NA | 0.001 |
PR Positive | 190 (65%) | 84 (55%) | 106 (76%) | NA | <0.001 |
HER2+ (FISH) | 32 (12%) | 25 (17%) | 7 (6%) | NA | 0.006 |
Tumor size (cm) | 1.7 (1.4) | 2.2 (1.5) | 1.2 (1.2) | NA | <0.001 |
Years since DX | 8.0 (2.7) | 8.1 (2.7) | 8.0 (2.6) | NA | 0.574 |
Baseline Psych | |||||
FSI Disruption | 8.1 (11.0) | 9.5 (12.4) | 8.9 (10.8) | 5.9 (9.4) | 0.008 |
STAI State Sum | 25.8 (7.3) | 26.8 (8.3) | 25.5 (6.9) | 25.1 (6.6) | 0.088 |
CESD Sum | 6.8 (7.1) | 7.9 (8.8) | 6.6 (6.1) | 6.0 (5.9) | 0.049 |
APE | LM | ||||
---|---|---|---|---|---|
Fixed Effects | Mean | 95% HDI | Mean | 95% HDI | |
Intercept | 0.013 | −0.110, 0.138 | 0.048 | −0.092, 0.187 | |
age | −0.047 | −0.065, −0.029 * | −0.048 | −0.069, −0.028 * | |
age2 | 0.00001 | −0.002, 0.002 | −0.0006 | −0.003, 0.002 | |
survivor | −0.130 | −0.279, 0.020 | −0.205 | −0.376, −0.034 * | |
age × survivor | 0.016 | −0.006, 0.038 | 0.012 | −0.013, 0.037 | |
age2 × survivor | −0.01 | −0.004, 0.002 | 0.0004 | −0.003, 0.003 | |
months † | 0.004 | 0.0004, 0.007 * | 0.019 | 0.013, 0.025 * | |
months × survivor | 0.0002 | −0.004, 0.004 | −0.0029 | −0.011, 0.005 | |
months × age 69–72 | 0.001 | −0.004, 0.005 | 0.0006 | −0.008, 0.010 | |
months × age 73–76 | −0.002 | −0.008, 0.003 | −0.007 | −0.016, 0.003 | |
months × age 77–89 | −0.008 | −0.013, −0.002 * | −0.007 | −0.017, 0.002 | |
survivor × months × age 69–72 | −0.001 | −0.006, 0.007 | 0.0005 | −0.011, 0.012 | |
survivor × months × age 73–76 | 0.0004 | −0.006, 0.007 | 0.0073 | −0.005, 0.019 | |
survivor × months × age 77–89 | 0.005 | -0.002, 0.011 | 0.0053 | −0.007, 0.017 | |
Random effect. | |||||
Residual error | = 0.194 | = 0.361 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Root, J.C.; Li, Y.; Schofield, E.; Orlow, I.; Ryan, E.; Traina, T.; Patel, S.K.; Ahles, T.A. Cognitive Aging in Older Breast Cancer Survivors. Cancers 2023, 15, 3208. https://doi.org/10.3390/cancers15123208
Root JC, Li Y, Schofield E, Orlow I, Ryan E, Traina T, Patel SK, Ahles TA. Cognitive Aging in Older Breast Cancer Survivors. Cancers. 2023; 15(12):3208. https://doi.org/10.3390/cancers15123208
Chicago/Turabian StyleRoot, James C., Yuelin Li, Elizabeth Schofield, Irene Orlow, Elizabeth Ryan, Tiffany Traina, Sunita K. Patel, and Tim A. Ahles. 2023. "Cognitive Aging in Older Breast Cancer Survivors" Cancers 15, no. 12: 3208. https://doi.org/10.3390/cancers15123208
APA StyleRoot, J. C., Li, Y., Schofield, E., Orlow, I., Ryan, E., Traina, T., Patel, S. K., & Ahles, T. A. (2023). Cognitive Aging in Older Breast Cancer Survivors. Cancers, 15(12), 3208. https://doi.org/10.3390/cancers15123208