Preclinical Models of Adrenocortical Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Cell Lines
2.2. Xenografts
2.3. 3D Models
2.4. Genetically Engineered Mouse Models
Model Name | Type 1 | Type 2 | Gene (Promoter) | Year | Reference |
---|---|---|---|---|---|
P540scc-SV40 | ACC | transgenic | SV40-TAg (CYP11A1) | 1994 | [109] |
FG-Tag | NEPC, ACT | transgenic | SV40-TAg (HBG) | 1996 | [110,111,112] |
PEPCK-IGF-II | ACC | transgenic | IGF2 (PEPCK) | 1999 | [102] |
Nr5a1+/− | ACT | KO | NR5A1 | 2000 | [113] |
AdTAg | ACC | transgenic | SV40-TAg (AKR1B7) | 2000 | [54,114,115] |
YAC-TR | ACT | transgenic | NR5A1 (YAC) | 2007 | [116] |
FAdE-SF1 | Pediatric ACT | transgenic | NR5A1 (FAdE) | 2009 | [117] |
ACDacd/acd::p53+/− | ACC | KO | ACD, TP53 | 2009 | [118] |
APC KO | ACC | TS KO | APC | 2012 | [104] |
Adlgf2 | ACC | transgenic | IGF2 (AKR1B7) | 2012 | [105] |
H19ADMD | ACC | transgenic | APC, IGF2/H19-ICR (NR5A1) | 2012 | [104] |
Apc+/− | ACC | KO | APC | 2014 | [119] |
RNF43−/− | - | TS KO | RNF43 | 2019 | [120] |
ZNRF−/− CTNNB1+/− | adrenal hyperplasia | TS KO | ZNRF3, CTNNB1 | 2019 | [120] |
ZNRF−/− | - | TS KO | ZNRF3 | 2019 | [120] |
p53-LOF (ASCre/+::Trp53flox/flox), PCreAS/+ | - | TS transgenic | TP53 | 2020 | [121] |
βcat-GOF (ASCre/+::Ctnnbflox(ex3)/+), BCreAS/+ | - | TS transgenic | CTNNB1 | 2020 | [121] |
p53-LOF/βcat-GOF (ASCre/+::Trp53flox/flox::Ctnnbflox(ex3)/+), BPCreAS/+ | ACC | TS transgenic | TP53, CTNNB1 | 2020 | [121] |
Znrf3flox/flox SF1-Crehigh | ACC | TS KO | ZNRF3 | 2022 | [108] |
3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dutt, M.; Wehrle, C.J.; Jialal, I. Physiology, Adrenal Gland. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Tischler, A.S.; Pacak, K.; Eisenhofer, G. The Adrenal Medulla and Extra-Adrenal Paraganglia: Then and Now. Endocr. Pathol. 2014, 25, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.M.; Sheps, S.G.; Kurland, L.T.; Carney, J.A.; Lie, J.T. Occurrence of Pheochromocytoma in Rochester, Minnesota, 1950 through 1979. Mayo Clin. Proc. 1983, 58, 802–804. [Google Scholar] [PubMed]
- Guerrero, M.A.; Schreinemakers, J.M.J.; Vriens, M.R.; Suh, I.; Hwang, J.; Shen, W.T.; Gosnell, J.; Clark, O.H.; Duh, Q.-Y. Clinical Spectrum of Pheochromocytoma. J. Am. Coll. Surg. 2009, 209, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Al Subhi, A.R.; Boyle, V.; Elston, M.S. Systematic Review: Incidence of Pheochromocytoma and Paraganglioma over 70 Years. J. Endocr. Soc. 2022, 6, bvac105. [Google Scholar] [CrossRef]
- Willenberg, H.S.; Bornstein, S.R. Adrenal Cortex; Development, Anatomy, Physiology. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Sherlock, M.; Scarsbrook, A.; Abbas, A.; Fraser, S.; Limumpornpetch, P.; Dineen, R.; Stewart, P.M. Adrenal Incidentaloma. Endocr. Rev. 2020, 41, 775–820. [Google Scholar] [CrossRef]
- Mantero, F.; Terzolo, M.; Arnaldi, G.; Osella, G.; Masini, A.M.; Alı̀, A.; Giovagnetti, M.; Opocher, G.; Angeli, A. A Survey on Adrenal Incidentaloma in Italy1. J. Clin. Endocrinol. Metab. 2000, 85, 637–644. [Google Scholar] [CrossRef]
- Russell, R.P.; Masi, A.T.; Richter, E.D. Adrenal Cortical Adenomas and Hypertension. A Clinical Pathologic Analysis of 690 Cases with Matched Controls and a Review of the Literature. Medicine 1972, 51, 211–225. [Google Scholar] [CrossRef]
- Terzolo, M.; Stigliano, A.; Chiodini, I.; Loli, P.; Furlani, L.; Arnaldi, G.; Reimondo, G.; Pia, A.; Toscano, V.; Zini, M.; et al. AME Position Statement on Adrenal Incidentaloma. Eur. J. Endocrinol. 2011, 164, 851–870. [Google Scholar] [CrossRef]
- Mahmood, E.; Anastasopoulou, C. Adrenal Adenoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Barzon, L.; Fallo, F.; Sonino, N.; Boscaro, M. Development of Overt Cushing’s Syndrome in Patients with Adrenal Incidentaloma. Eur. J. Endocrinol. 2002, 146, 61–66. [Google Scholar] [CrossRef]
- Morelli, V.; Reimondo, G.; Giordano, R.; Della Casa, S.; Policola, C.; Palmieri, S.; Salcuni, A.S.; Dolci, A.; Mendola, M.; Arosio, M.; et al. Long-Term Follow-Up in Adrenal Incidentalomas: An Italian Multicenter Study. J. Clin. Endocrinol. Metab. 2014, 99, 827–834. [Google Scholar] [CrossRef]
- Angelousi, A.; Kassi, E.; Kaltsas, G.A. Adrenocortical Carcinoma. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Wajchenberg, B.L.; Albergaria Pereira, M.A.; Medonca, B.B.; Latronico, A.C.; Carneiro, P.C.; Ferreira Alves, V.A.; Zerbini, M.C.N.; Liberman, B.; Gomes, G.C.; Kirschner, M.A. Adrenocortical carcinoma. Cancer 2000, 88, 711–736. [Google Scholar] [CrossRef]
- Allolio, B.; Fassnacht, M. Clinical Review: Adrenocortical Carcinoma: Clinical Update. J. Clin. Endocrinol. Metab. 2006, 91, 2027–2037. [Google Scholar] [CrossRef]
- Sharma, E.; Dahal, S.; Sharma, P.; Bhandari, A.; Gupta, V.; Amgai, B.; Dahal, S. The Characteristics and Trends in Adrenocortical Carcinoma: A United States Population Based Study. J. Clin. Med. Res. 2018, 10, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Kebebew, E.; Reiff, E.; Duh, Q.-Y.; Clark, O.H.; McMillan, A. Extent of Disease at Presentation and Outcome for Adrenocortical Carcinoma: Have We Made Progress? World J. Surg. 2006, 30, 872–878. [Google Scholar] [CrossRef]
- Kerkhofs, T.M.A.; Verhoeven, R.H.A.; Van der Zwan, J.M.; Dieleman, J.; Kerstens, M.N.; Links, T.P.; Van de Poll-Franse, L.V.; Haak, H.R. Adrenocortical Carcinoma: A Population-Based Study on Incidence and Survival in the Netherlands since 1993. Eur. J. Cancer 2013, 49, 2579–2586. [Google Scholar] [CrossRef]
- Luton, J.P.; Cerdas, S.; Billaud, L.; Thomas, G.; Guilhaume, B.; Bertagna, X.; Laudat, M.H.; Louvel, A.; Chapuis, Y.; Blondeau, P. Clinical Features of Adrenocortical Carcinoma, Prognostic Factors, and the Effect of Mitotane Therapy. N. Engl. J. Med. 1990, 322, 1195–1201. [Google Scholar] [CrossRef]
- Koschker, A.-C.; Fassnacht, M.; Hahner, S.; Weismann, D.; Allolio, B. Adrenocortical Carcinoma—Improving Patient Care by Establishing New Structures. Exp. Clin. Endocrinol. Diabetes 2006, 114, 45–51. [Google Scholar] [CrossRef]
- Fassnacht, M.; Allolio, B. Clinical Management of Adrenocortical Carcinoma. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 273–289. [Google Scholar] [CrossRef]
- Henley, D.J.; van Heerden, J.A.; Grant, C.S.; Carney, J.A.; Carpenter, P.C. Adrenal Cortical Carcinoma—A Continuing Challenge. Surgery 1983, 94, 926–931. [Google Scholar] [PubMed]
- Mantero, F.; Arnaldi, G. Management Approaches to Adrenal Incidentalomas: A View from Ancona, Italy. Endocrinol. Metab. Clin. N. Am. 2000, 29, 107–125. [Google Scholar] [CrossRef]
- Libé, R. Adrenocortical Carcinoma (ACC): Diagnosis, Prognosis, and Treatment. Front. Cell Dev. Biol. 2015, 3, 45. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, Y.; Wu, H.; Zhao, D.; Chen, J. Distinguishing Adrenal Cortical Carcinomas and Adenomas: A Study of Clinicopathological Features and Biomarkers. Histopathology 2014, 64, 567–576. [Google Scholar] [CrossRef]
- Sturgeon, C.; Shen, W.T.; Clark, O.H.; Duh, Q.-Y.; Kebebew, E. Risk Assessment in 457 Adrenal Cortical Carcinomas: How Much Does Tumor Size Predict the Likelihood of Malignancy? J. Am. Coll. Surg. 2006, 202, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.-Y.; Lo, C.-Y. Metastatic Tumours of the Adrenal Glands: A 30-Year Experience in a Teaching Hospital. Clin. Endocrinol. 2002, 56, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.; Stojkovic, M.; Schmidt, M.; Arlt, W.; Allolio, B.; Reincke, M. Adrenocortical Function in Patients with Macrometastases of the Adrenal Gland. Eur. J. Endocrinol. 2000, 143, 91–97. [Google Scholar] [CrossRef]
- Batalini, F.; Peacock, E.G.; Stobie, L.; Robertson, A.; Garber, J.; Weitzel, J.N.; Tung, N.M. Li-Fraumeni Syndrome: Not a Straightforward Diagnosis Anymore-the Interpretation of Pathogenic Variants of Low Allele Frequency and the Differences between Germline PVs, Mosaicism, and Clonal Hematopoiesis. Breast Cancer Res. 2019, 21, 107. [Google Scholar] [CrossRef]
- Li, F.P.; Fraumeni, J.F.; Mulvihill, J.J.; Blattner, W.A.; Dreyfus, M.G.; Tucker, M.A.; Miller, R.W. A Cancer Family Syndrome in Twenty-Four Kindreds. Cancer Res. 1988, 48, 5358–5362. [Google Scholar]
- Bougeard, G.; Sesboüé, R.; Baert-Desurmont, S.; Vasseur, S.; Martin, C.; Tinat, J.; Brugières, L.; Chompret, A.; de Paillerets, B.B.; Stoppa-Lyonnet, D.; et al. Molecular Basis of the Li-Fraumeni Syndrome: An Update from the French LFS Families. J. Med. Genet. 2008, 45, 535–538. [Google Scholar] [CrossRef]
- Varley, J.M.; McGown, G.; Thorncroft, M.; James, L.A.; Margison, G.P.; Forster, G.; Evans, D.G.R.; Harris, M.; Kelsey, A.M.; Birch, J.M. Are There Low-Penetrance TP53 Alleles? Evidence from Childhood Adrenocortical Tumors. Am. J. Hum. Genet. 1999, 65, 995–1006. [Google Scholar] [CrossRef]
- Rodriguez-Galindo, C.; Figueiredo, B.C.; Zambetti, G.P.; Ribeiro, R.C. Biology, Clinical Characteristics, and Management of Adrenocortical Tumors in Children. Pediatr. Blood Cancer 2005, 45, 265–273. [Google Scholar] [CrossRef]
- Costa, T.E.J.; Gerber, V.K.Q.; Ibañez, H.C.; Melanda, V.S.; Parise, I.Z.S.; Watanabe, F.M.; Pianovski, M.A.D.; Fiori, C.M.C.M.; Fabro, A.L.M.R.; da Silva, D.B.; et al. Penetrance of the TP53 R337H Mutation and Pediatric Adrenocortical Carcinoma Incidence Associated with Environmental Influences in a 12-Year Observational Cohort in Southern Brazil. Cancers 2019, 11, 1804. [Google Scholar] [CrossRef] [PubMed]
- Lapunzina, P. Risk of Tumorigenesis in Overgrowth Syndromes: A Comprehensive Review. Am. J. Med. Genet. Part C Semin. Med. Genet. 2005, 137C, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, H.-R. Tumours and Hemihypertrophy Associated with Wiedemann-Beckwith Syndrome. Eur. J. Pediatr. 1983, 141, 129. [Google Scholar] [CrossRef]
- Manor, J.; Lalani, S.R. Overgrowth Syndromes—Evaluation, Diagnosis, and Management. Front. Pediatr. 2020, 8, 574857. [Google Scholar] [CrossRef] [PubMed]
- Else, T.; Kim, A.C.; Sabolch, A.; Raymond, V.M.; Kandathil, A.; Caoili, E.M.; Jolly, S.; Miller, B.S.; Giordano, T.J.; Hammer, G.D. Adrenocortical Carcinoma. Endocr. Rev. 2014, 35, 282–326. [Google Scholar] [CrossRef]
- Sigala, S.; Rossini, E.; Abate, A.; Tamburello, M.; Bornstein, S.R.; Hantel, C. An Update on Adrenocortical Cell Lines of Human Origin. Endocrine 2022, 77, 432–437. [Google Scholar] [CrossRef]
- Jubelin, C.; Muñoz-Garcia, J.; Griscom, L.; Cochonneau, D.; Ollivier, E.; Heymann, M.-F.; Vallette, F.M.; Oliver, L.; Heymann, D. Three-Dimensional in Vitro Culture Models in Oncology Research. Cell Biosci. 2022, 12, 155. [Google Scholar] [CrossRef]
- Rosfjord, E.; Lucas, J.; Li, G.; Gerber, H.-P. Advances in Patient-Derived Tumor Xenografts: From Target Identification to Predicting Clinical Response Rates in Oncology. Biochem. Pharm. 2014, 91, 135–143. [Google Scholar] [CrossRef]
- Tentler, J.J.; Tan, A.C.; Weekes, C.D.; Jimeno, A.; Leong, S.; Pitts, T.M.; Arcaroli, J.J.; Messersmith, W.A.; Eckhardt, S.G. Patient-Derived Tumour Xenografts as Models for Oncology Drug Development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350. [Google Scholar] [CrossRef]
- Schimmer, B.P. [52] Adrenocortical Y1 Cells. In Methods in Enzymology; Cell Culture; Academic Press: New York, NY, USA, 1979; Volume 58, pp. 570–574. [Google Scholar]
- Szyf, M.; Milstone, D.S.; Schimmer, B.P.; Parker, K.L.; Seidman, J.G. Cis Modification of the Steroid 21-Hydroxylase Gene Prevents Its Expression in the Y1 Mouse Adrenocortical Tumor Cell Line. Mol. Endocrinol. 1990, 4, 1144–1152. [Google Scholar] [CrossRef]
- Yasumura, Y.; Buonassisi, V.; Sato, G. Clonal Analysis of Differentiated Function in Animal Cell Cultures: I. Possible Correlated Maintenance of Differentiated Function and the Diploid Karyotype1. Cancer Res. 1966, 26, 529–535. [Google Scholar] [PubMed]
- Tissier, F.; Cavard, C.; Groussin, L.; Perlemoine, K.; Fumey, G.; Hagneré, A.-M.; René-Corail, F.; Jullian, E.; Gicquel, C.; Bertagna, X.; et al. Mutations of Beta-Catenin in Adrenocortical Tumors: Activation of the Wnt Signaling Pathway Is a Frequent Event in Both Benign and Malignant Adrenocortical Tumors. Cancer Res. 2005, 65, 7622–7627. [Google Scholar] [CrossRef]
- Gaujoux, S.; Hantel, C.; Launay, P.; Bonnet, S.; Perlemoine, K.; Lefèvre, L.; Guillaud-Bataille, M.; Beuschlein, F.; Tissier, F.; Bertherat, J.; et al. Silencing Mutated β-Catenin Inhibits Cell Proliferation and Stimulates Apoptosis in the Adrenocortical Cancer Cell Line H295R. PLoS ONE 2013, 8, e55743. [Google Scholar] [CrossRef] [PubMed]
- Gazdar, A.F.; Oie, H.K.; Shackleton, C.H.; Chen, T.R.; Triche, T.J.; Myers, C.E.; Chrousos, G.P.; Brennan, M.F.; Stein, C.A.; La Rocca, R.V. Establishment and Characterization of a Human Adrenocortical Carcinoma Cell Line that Expresses Multiple Pathways of Steroid Biosynthesis. Cancer Res. 1990, 50, 5488–5496. [Google Scholar] [PubMed]
- Rahman, N.A.; Kiiveri, S.; Siltanen, S.; Levallet, J.; Kero, J.; Lensu, T.; Wilson, D.B.; Heikinheimo, M.T.; Huhtaniemi, I.T. Adrenocortical Tumorigenesis in Transgenic Mice: The Role of Luteinizing Hormone Receptor and Transcription Factors GATA-4 and GATA-61. Reprod. Biol. 2001, 1, 5–9. [Google Scholar]
- Schteingart, D.E.; Giordano, T.J.; Benitez, R.S.; Burdick, M.D.; Starkman, M.N.; Arenberg, D.A.; Strieter, R.M. Overexpression of CXC Chemokines by an Adrenocortical Carcinoma: A Novel Clinical Syndrome. J. Clin. Endocrinol. Metab. 2001, 86, 3968–3974. [Google Scholar] [CrossRef]
- Ueno, M.; Nakashima, J.; Akita, M.; Ban, S.-I.; Nakanoma, T.; Iida, M.; Deguchi, N. Characterization of a Newly Established Cell Line Derived from Human Adrenocortical Carcinoma. Int. J. Urol. 2001, 8, 17–22. [Google Scholar] [CrossRef]
- Ragazzon, B.; Lefrançois-Martinez, A.M.; Val, P.; Tournaire, C.; Berger, M.; Gachancard-Bouya, J.L.; Bègue, R.J.; Veyssière, G.; Martinez, A. ACTH and PRL Sensitivity of Highly Differentiated Cell Lines Obtained by Adrenocortical Targeted Oncogenesis. Endocr. Res. 2004, 30, 945–950. [Google Scholar] [CrossRef]
- Ragazzon, B.; Lefrançois-Martinez, A.-M.; Val, P.; Sahut-Barnola, I.; Tournaire, C.; Chambon, C.; Gachancard-Bouya, J.-L.; Begue, R.-J.; Veyssière, G.; Martinez, A. Adrenocorticotropin-Dependent Changes in SF-1/DAX-1 Ratio Influence Steroidogenic Genes Expression in a Novel Model of Glucocorticoid-Producing Adrenocortical Cell Lines Derived from Targeted Tumorigenesis. Endocrinology 2006, 147, 1805–1818. [Google Scholar] [CrossRef]
- Hantel, C.; Shapiro, I.; Poli, G.; Chiapponi, C.; Bidlingmaier, M.; Reincke, M.; Luconi, M.; Jung, S.; Beuschlein, F. Targeting Heterogeneity of Adrenocortical Carcinoma: Evaluation and Extension of Preclinical Tumor Models to Improve Clinical Translation. Oncotarget 2016, 7, 79292–79304. [Google Scholar] [CrossRef]
- Kiseljak-Vassiliades, K.; Zhang, Y.; Bagby, S.M.; Kar, A.; Pozdeyev, N.; Xu, M.; Gowan, K.; Sharma, V.; Raeburn, C.D.; Albuja-Cruz, M.; et al. Development of New Preclinical Models to Advance Adrenocortical Carcinoma Research. Endocr. Relat. Cancer 2018, 25, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Landwehr, L.-S.; Schreiner, J.; Appenzeller, S.; Kircher, S.; Herterich, S.; Sbiera, S.; Fassnacht, M.; Kroiss, M.; Weigand, I. A Novel Patient-Derived Cell Line of Adrenocortical Carcinoma Shows a Pathogenic Role of Germline MUTYH Mutation and High Tumour Mutational Burden. Eur. J. Endocrinol. 2021, 184, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Sigala, S.; Bothou, C.; Penton, D.; Abate, A.; Peitzsch, M.; Cosentini, D.; Tiberio, G.A.M.; Bornstein, S.R.; Berruti, A.; Hantel, C. A Comprehensive Investigation of Steroidogenic Signaling in Classical and New Experimental Cell Models of Adrenocortical Carcinoma. Cells 2022, 11, 1439. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.Q.; Fragoso, M.C.B.V.; Lotfi, C.F.P.; Santos, M.G.; Nishi, M.Y.; Costa, M.H.S.; Lerario, A.M.; Maciel, C.C.; Mattos, G.E.; Jorge, A.A.L.; et al. Expression of Insulin-Like Growth Factor-II and Its Receptor in Pediatric and Adult Adrenocortical Tumors. J. Clin. Endocrinol. Metab. 2008, 93, 3524–3531. [Google Scholar] [CrossRef]
- França, M.M.; Ferraz-de-Souza, B.; Santos, M.G.; Lerario, A.M.; Fragoso, M.C.B.V.; Latronico, A.C.; Kuick, R.D.; Hammer, G.D.; Lotfi, C.F.P. POD-1 Binding to the E-Box Sequence Inhibits SF-1 and StAR Expression in Human Adrenocortical Tumor Cells. Mol. Cell. Endocrinol. 2013, 371, 140–147. [Google Scholar] [CrossRef]
- Gara, S.K.; Wang, Y.; Patel, D.; Liu-Chittenden, Y.; Jain, M.; Boufraqech, M.; Zhang, L.; Meltzer, P.S.; Kebebew, E. Integrated Genome-Wide Analysis of Genomic Changes and Gene Regulation in Human Adrenocortical Tissue Samples. Nucleic Acids Res. 2015, 43, 9327–9339. [Google Scholar] [CrossRef]
- Nilubol, N.; Boufraqech, M.; Zhang, L.; Gaskins, K.; Shen, M.; Zhang, Y.-Q.; Gara, S.K.; Austin, C.P.; Kebebew, E. Synergistic Combination of Flavopiridol and Carfilzomib Targets Commonly Dysregulated Pathways in Adrenocortical Carcinoma and Has Biomarkers of Response. Oncotarget 2018, 9, 33030–33042. [Google Scholar] [CrossRef]
- Fragni, M.; Palma Lopez, L.P.; Rossini, E.; Abate, A.; Cosentini, D.; Salvi, V.; Vezzoli, S.; Poliani, P.L.; Bosisio, D.; Hantel, C.; et al. In Vitro Cytotoxicity of Cabazitaxel in Adrenocortical Carcinoma Cell Lines and Human Adrenocortical Carcinoma Primary Cell Cultures☆. Mol. Cell. Endocrinol. 2019, 498, 110585. [Google Scholar] [CrossRef]
- Abate, A.; Rossini, E.; Bonini, S.A.; Fragni, M.; Cosentini, D.; Tiberio, G.A.M.; Benetti, D.; Hantel, C.; Laganà, M.; Grisanti, S.; et al. Cytotoxic Effect of Trabectedin In Human Adrenocortical Carcinoma Cell Lines and Primary Cells. Cancers 2020, 12, 928. [Google Scholar] [CrossRef]
- Rossini, E.; Tamburello, M.; Abate, A.; Beretta, S.; Fragni, M.; Cominelli, M.; Cosentini, D.; Hantel, C.; Bono, F.; Grisanti, S.; et al. Cytotoxic Effect of Progesterone, Tamoxifen and Their Combination in Experimental Cell Models of Human Adrenocortical Cancer. Front. Endocrinol. 2021, 12, 669426. [Google Scholar] [CrossRef]
- Fudulu, D.P.; Horn, G.; Hazell, G.; Lefrançois-Martinez, A.-M.; Martinez, A.; Angelini, G.D.; Lightman, S.L.; Spiga, F. Co-Culture of Monocytes and Zona Fasciculata Adrenal Cells: An in Vitro Model to Study the Immune-Adrenal Cross-Talk. Mol. Cell. Endocrinol. 2021, 526, 111195. [Google Scholar] [CrossRef] [PubMed]
- Hazell, G.; Horn, G.; Lightman, S.L.; Spiga, F. Dynamics of ACTH-Mediated Regulation of Gene Transcription in ATC1 and ATC7 Adrenal Zona Fasciculata Cell Lines. Endocrinology 2019, 160, 587–604. [Google Scholar] [CrossRef] [PubMed]
- Francis, J.C.; Gardiner, J.R.; Renaud, Y.; Chauhan, R.; Weinstein, Y.; Gomez-Sanchez, C.; Lefrançois-Martinez, A.-M.; Bertherat, J.; Val, P.; Swain, A. HOX Genes Promote Cell Proliferation and Are Potential Therapeutic Targets in Adrenocortical Tumours. Br. J. Cancer 2021, 124, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Leibovitz, A.; McCombs, W.M.; Johnston, D.; McCoy, C.E.; Stinson, J.C. New Human Cancer Cell Culture Lines. I. SW-13, Small-Cell Carcinoma of the Adrenal Cortex. J. Natl. Cancer Inst. 1973, 51, 691–697. [Google Scholar]
- Wang, T.; Rainey, W.E. Human Adrenocortical Carcinoma Cell Lines. Mol. Cell. Endocrinol. 2012, 351, 58–65. [Google Scholar] [CrossRef]
- Laha, D.; Grant, R.R.C.; Mishra, P.; Boufraqech, M.; Shen, M.; Zhang, Y.-Q.; Hall, M.D.; Quezado, M.; De Melo, M.S.; Del Rivero, J.; et al. Preclinical Assessment of Synergistic Efficacy of MELK and CDK Inhibitors in Adrenocortical Cancer. J. Exp. Clin. Cancer Res. 2022, 41, 282. [Google Scholar] [CrossRef]
- Avena, P.; De Luca, A.; Chimento, A.; Nocito, M.C.; Sculco, S.; La Padula, D.; Zavaglia, L.; Giulietti, M.; Hantel, C.; Sirianni, R.; et al. Estrogen Related Receptor Alpha (ERRα) a Bridge between Metabolism and Adrenocortical Cancer Progression. Cancers 2022, 14, 3885. [Google Scholar] [CrossRef]
- Parmar, J.; Key, R.E.; Rainey, W.E. Development of an Adrenocorticotropin-Responsive Human Adrenocortical Carcinoma Cell Line. J. Clin. Endocrinol. Metab. 2008, 93, 4542–4546. [Google Scholar] [CrossRef]
- Nanba, K.; Chen, A.X.; Turcu, A.F.; Rainey, W.E. H295R Expression of Melanocortin 2 Receptor Accessory Protein Results in ACTH Responsiveness. J. Mol. Endocrinol. 2016, 56, 69–76. [Google Scholar] [CrossRef]
- Creemers, S.G.; van Koetsveld, P.M.; van den Dungen, E.S.R.; Korpershoek, E.; van Kemenade, F.J.; Franssen, G.J.H.; de Herder, W.W.; Feelders, R.A.; Hofland, L.J. Inhibition of Human Adrenocortical Cancer Cell Growth by Temozolomide in Vitro and the Role of the MGMT Gene. J. Clin. Endocrinol. Metab. 2016, 101, 4574–4584. [Google Scholar] [CrossRef]
- van Koetsveld, P.M.; Creemers, S.G.; Dogan, F.; Franssen, G.J.H.; de Herder, W.W.; Feelders, R.A.; Hofland, L.J. The Efficacy of Mitotane in Human Primary Adrenocortical Carcinoma Cultures. J. Clin. Endocrinol. Metab. 2020, 105, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Warde, K.M.; Lim, Y.J.; Ribes Martinez, E.; Beuschlein, F.; O’Shea, P.; Hantel, C.; Dennedy, M.C. Mitotane Targets Lipid Droplets to Induce Lipolysis in Adrenocortical Carcinoma. Endocrinology 2022, 163, bqac102. [Google Scholar] [CrossRef] [PubMed]
- Yalon, T.; Yalon, M.; Assaf, D.; Lenartowicz, K.; Foster, T.; Lyden, M.; Dy, B.; Bancos, I.; McKenzie, T. Differentiating between Adrenocortical Carcinoma and Lipid-Poor Cortical Adenoma: A Novel Cross-Sectional Imaging-Based Score. Surgery 2023, 173, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Kahramangil, B.; Kose, E.; Remer, E.M.; Reynolds, J.P.; Stein, R.; Rini, B.; Siperstein, A.; Berber, E. A Modern Assessment of Cancer Risk in Adrenal Incidentalomas: Analysis of 2219 Patients. Ann. Surg. 2022, 275, e238. [Google Scholar] [CrossRef] [PubMed]
- Armignacco, R.; Cantini, G.; Poli, G.; Guasti, D.; Nesi, G.; Romagnoli, P.; Mannelli, M.; Luconi, M. The Adipose Stem Cell as a Novel Metabolic Actor in Adrenocortical Carcinoma Progression: Evidence from an In Vitro Tumor Microenvironment Crosstalk Model. Cancers 2019, 11, 1931. [Google Scholar] [CrossRef]
- Detjen, K.; Hammerich, L.; Özdirik, B.; Demir, M.; Wiedenmann, B.; Tacke, F.; Jann, H.; Roderburg, C. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 2021, 111, 217–236. [Google Scholar] [CrossRef]
- Tsumura, R.; Koga, Y.; Hamada, A.; Kuwata, T.; Sasaki, H.; Doi, T.; Aikawa, K.; Ohashi, A.; Katano, I.; Ikarashi, Y.; et al. Report of the Use of Patient-Derived Xenograft Models in the Development of Anticancer Drugs in Japan. Cancer Sci. 2020, 111, 3386–3394. [Google Scholar] [CrossRef] [PubMed]
- Doghman, M.; Wakil, A.E.; Cardinaud, B.; Thomas, E.; Wang, J.; Zhao, W.; Peralta-Del Valle, M.H.C.; Figueiredo, B.C.; Zambetti, G.P.; Lalli, E. Regulation of Insulin-like Growth Factor–Mammalian Target of Rapamycin Signaling by MicroRNA in Childhood Adrenocortical Tumors. Cancer Res. 2010, 70, 4666–4675. [Google Scholar] [CrossRef]
- Doghman, M.; Lalli, E. Efficacy of the Novel Dual PI3-Kinase/MTOR Inhibitor NVP-BEZ235 in a Preclinical Model of Adrenocortical Carcinoma. Mol. Cell. Endocrinol. 2012, 364, 101–104. [Google Scholar] [CrossRef]
- Doghman, M.; Lalli, E. Lack of Long-Lasting Effects of Mitotane Adjuvant Therapy in a Mouse Xenograft Model of Adrenocortical Carcinoma. Mol. Cell. Endocrinol. 2013, 381, 66–69. [Google Scholar] [CrossRef]
- Nagy, Z.; Baghy, K.; Hunyadi-Gulyás, É.; Micsik, T.; Nyírő, G.; Rácz, G.; Butz, H.; Perge, P.; Kovalszky, I.; Medzihradszky, K.F.; et al. Evaluation of 9-Cis Retinoic Acid and Mitotane as Antitumoral Agents in an Adrenocortical Xenograft Model. Am. J. Cancer Res. 2015, 5, 3645–3658. [Google Scholar] [PubMed]
- Hantel, C.; Ozimek, A.; Lira, R.; Ragazzon, B.; Jäckel, C.; Frantsev, R.; Reincke, M.; Bertherat, J.; Mussack, T.; Beuschlein, F. TNF Alpha Signaling Is Associated with Therapeutic Responsiveness to Vascular Disrupting Agents in Endocrine Tumors. Mol. Cell. Endocrinol. 2016, 423, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Cerquetti, L.; Bucci, B.; Carpinelli, G.; Lardo, P.; Proietti, A.; Saporito, R.; Rindi, G.; Petrangeli, E.; Toscano, V.; Stigliano, A. Antineoplastic Effect of a Combined Mitotane Treatment/Ionizing Radiation in Adrenocortical Carcinoma: A Preclinical Study. Cancers 2019, 11, 1768. [Google Scholar] [CrossRef] [PubMed]
- Nadella, K.; Faucz, F.R.; Stratakis, C.A. C-KIT Oncogene Expression in PRKAR1A-Mutant Adrenal Cortex. Endocr. Relat. Cancer 2020, 27, 591–599. [Google Scholar] [CrossRef]
- Hantel, C.; Beuschlein, F. Xenograft Models for Adrenocortical Carcinoma. Mol. Cell. Endocrinol. 2016, 421, 28–33. [Google Scholar] [CrossRef]
- Pinto, E.M.; Morton, C.; Rodriguez-Galindo, C.; McGregor, L.; Davidoff, A.M.; Mercer, K.; Debelenko, L.V.; Billups, C.; Ribeiro, R.C.; Zambetti, G.P. Establishment and Characterization of the First Pediatric Adrenocortical Carcinoma Xenograft Model Identifies Topotecan as a Potential Chemotherapeutic Agent. Clin. Cancer Res. 2013, 19, 1740–1747. [Google Scholar] [CrossRef]
- Kar, A.; Zhang, Y.; Yacob, B.; Tompkins, K.; Bagby, S.; Leong, S.; Pitts, T.; Wierman, M.; Kiseljak-Vassiliades, K. SUN-337 Anti-Tumorigenic Effects Of The Maternal Leucine Zipper Kinase (MELK) Inhibitor, OTSSP167, In Pre-Clinical In Vivo Models Of Adrenocortical Carcinomas (ACC). J. Endocr. Soc. 2019, 3, SUN-337. [Google Scholar] [CrossRef]
- Lang, J.; Capasso, A.; Jordan, K.R.; French, J.D.; Kar, A.; Bagby, S.M.; Barbee, J.; Yacob, B.W.; Head, L.S.; Tompkins, K.D.; et al. Development of an Adrenocortical Cancer Humanized Mouse Model to Characterize Anti-PD1 Effects on Tumor Microenvironment. J. Clin. Endocrinol. Metab. 2020, 105, dgz014. [Google Scholar] [CrossRef]
- Bornstein, S.; Shapiro, I.; Malyukov, M.; Züllig, R.; Luca, E.; Gelfgat, E.; Beuschlein, F.; Nölting, S.; Berruti, A.; Sigala, S.; et al. Innovative Multidimensional Models in a High-Throughput-Format for Different Cell Types of Endocrine Origin. Cell Death Dis. 2022, 13, 648. [Google Scholar] [CrossRef]
- Baregamian, N.; Sekhar, K.R.; Krystofiak, E.S.; Vinogradova, M.; Thomas, G.; Mannoh, E.; Solórzano, C.C.; Kiernan, C.M.; Mahadevan-Jansen, A.; Abumrad, N.; et al. Engineering Functional 3-Dimensional Patient-Derived Endocrine Organoids for Broad Multiplatform Applications. Surgery 2023, 173, 67–75. [Google Scholar] [CrossRef]
- Nilubol, N.; Zhang, L.; Shen, M.; Zhang, Y.-Q.; He, M.; Austin, C.P.; Kebebew, E. Four Clinically Utilized Drugs Were Identified and Validated for Treatment of Adrenocortical Cancer Using Quantitative High-Throughput Screening. J. Transl. Med. 2012, 10, 198. [Google Scholar] [CrossRef] [PubMed]
- Cerquetti, L.; Bucci, B.; Raffa, S.; Amendola, D.; Maggio, R.; Lardo, P.; Petrangeli, E.; Torrisi, M.R.; Toscano, V.; Pugliese, G.; et al. Effects of Sorafenib, a Tyrosin Kinase Inhibitor, on Adrenocortical Cancer. Front. Endocrinol. 2021, 12, 667798. [Google Scholar] [CrossRef] [PubMed]
- Langer, C.; Köll-Weber, M.; Holzer, M.; Hantel, C.; Süss, R. Mitotane Nanocarriers for the Treatment of Adrenocortical Carcinoma: Evaluation of Albumin-Stabilized Nanoparticles and Liposomes in a Preclinical In Vitro Study with 3D Spheroids. Pharmaceutics 2022, 14, 1891. [Google Scholar] [CrossRef] [PubMed]
- Dedhia, P.H.; Sivakumar, H.; Rodriguez, M.A.; Nairon, K.G.; Zent, J.M.; Zheng, X.; Jones, K.; Popova, L.; Leight, J.L.; Skardal, A. A 3D Adrenocortical Carcinoma Tumor Platform for Preclinical Modeling of Drug Response and Matrix Metalloproteinase Activity. bioRxiv 2023. [Google Scholar] [CrossRef]
- Basham, K.J.; Hung, H.A.; Lerario, A.M.; Hammer, G.D. Mouse Models of Adrenocortical Tumors. Mol. Cell. Endocrinol. 2016, 421, 82–97. [Google Scholar] [CrossRef]
- Gahete, M.D.; Jiménez-Vacas, J.M.; Alors-Pérez, E.; Herrero-Aguayo, V.; Fuentes-Fayos, A.C.; Pedraza-Arévalo, S.; Castaño, J.P.; Luque, R.M. Mouse Models of Endocrine Tumors. J. Endocrinol. 2019, 240, R73–R96. [Google Scholar] [CrossRef]
- Weber, M.M.; Fottner, C.; Schmidt, P.; Brodowski, K.M.H.; Gittner, K.; Lahm, H.; Engelhardt, D.; Wolf, E. Postnatal Overexpression of Insulin-Like Growth Factor II in Transgenic Mice Is Associated with Adrenocortical Hyperplasia and Enhanced Steroidogenesis*. Endocrinology 1999, 140, 1537–1543. [Google Scholar] [CrossRef]
- Pereira, S.S.; Monteiro, M.P.; Costa, M.M.; Moreira, Â.; Alves, M.G.; Oliveira, P.F.; Jarak, I.; Pignatelli, D. IGF2 Role in Adrenocortical Carcinoma Biology. Endocrine 2019, 66, 326–337. [Google Scholar] [CrossRef]
- Heaton, J.H.; Wood, M.A.; Kim, A.C.; Lima, L.O.; Barlaskar, F.M.; Almeida, M.Q.; Fragoso, M.C.B.V.; Kuick, R.; Lerario, A.M.; Simon, D.P.; et al. Progression to Adrenocortical Tumorigenesis in Mice and Humans through Insulin-Like Growth Factor 2 and β-Catenin. Am. J. Pathol. 2012, 181, 1017–1033. [Google Scholar] [CrossRef]
- Drelon, C.; Berthon, A.; Ragazzon, B.; Tissier, F.; Bandiera, R.; Sahut-Barnola, I.; de Joussineau, C.; Batisse-Lignier, M.; Lefrançois-Martinez, A.-M.; Bertherat, J.; et al. Analysis of the Role of Igf2 in Adrenal Tumour Development in Transgenic Mouse Models. PLoS ONE 2012, 7, e44171. [Google Scholar] [CrossRef]
- Kar, A.; Wierman, M.E.; Kiseljak-Vassiliades, K. Update on In-Vivo Preclinical Research Models in Adrenocortical Carcinoma. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Berthon, A.; Sahut-Barnola, I.; Lambert-Langlais, S.; de Joussineau, C.; Damon-Soubeyrand, C.; Louiset, E.; Taketo, M.M.; Tissier, F.; Bertherat, J.; Lefrançois-Martinez, A.-M.; et al. Constitutive β-Catenin Activation Induces Adrenal Hyperplasia and Promotes Adrenal Cancer Development. Hum. Mol. Genet. 2010, 19, 1561–1576. [Google Scholar] [CrossRef] [PubMed]
- Wilmouth, J.J.; Olabe, J.; Garcia-Garcia, D.; Lucas, C.; Guiton, R.; Roucher-Boulez, F.; Dufour, D.; Damon-Soubeyrand, C.; Sahut-Barnola, I.; Pointud, J.-C.; et al. Sexually Dimorphic Activation of Innate Antitumor Immunity Prevents Adrenocortical Carcinoma Development. Sci. Adv. 2022, 8, eadd0422. [Google Scholar] [CrossRef] [PubMed]
- Mellon, S.H.; Miller, W.L.; Bair, S.R.; Moore, C.C.; Vigne, J.L.; Weiner, R.I. Steroidogenic Adrenocortical Cell Lines Produced by Genetically Targeted Tumorigenesis in Transgenic Mice. Mol. Endocrinol. 1994, 8, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Perez-Stable, C.; Altman, N.H.; Brown, J.; Harbison, M.; Cray, C.; Roos, B.A. Prostate, Adrenocortical, and Brown Adipose Tumors in Fetal Globin/T Antigen Transgenic Mice. Lab. Investig. 1996, 74, 363–373. [Google Scholar] [PubMed]
- Perez-Stable, C.; Altman, N.H.; Mehta, P.P.; Deftos, L.J.; Roos, B.A. Prostate Cancer Progression, Metastasis, and Gene Expression in Transgenic Mice. Cancer Res. 1997, 57, 900–906. [Google Scholar]
- Reiner, T.; de las Pozas, A.; Parrondo, R.; Perez-Stable, C. Progression of Prostate Cancer from a Subset of P63-Positive Basal Epithelial Cells in FG/Tag Transgenic Mice. Mol. Cancer Res. 2007, 5, 1171–1179. [Google Scholar] [CrossRef]
- Bland, M.L.; Jamieson, C.A.M.; Akana, S.F.; Bornstein, S.R.; Eisenhofer, G.; Dallman, M.F.; Ingraham, H.A. Haploinsufficiency of Steroidogenic Factor-1 in Mice Disrupts Adrenal Development Leading to an Impaired Stress Response. Proc. Natl. Acad. Sci. USA 2000, 97, 14488–14493. [Google Scholar] [CrossRef]
- Sahut-Barnola, I.; Lefrancois-Martinez, A.M.; Jean, C.; Veyssiere, G.; Martinez, A. Adrenal Tumorigenesis Targeted by the Corticotropin-Regulated Promoter of the Aldo-Keto Reductase AKR1B7 Gene in Transgenic Mice. Endocr. Res. 2000, 26, 885–898. [Google Scholar] [CrossRef]
- Batisse-Lignier, M.; Sahut-Barnola, I.; Tissier, F.; Dumontet, T.; Mathieu, M.; Drelon, C.; Pointud, J.-C.; Damon-Soubeyrand, C.; Marceau, G.; Kemeny, J.-L.; et al. P53/Rb Inhibition Induces Metastatic Adrenocortical Carcinomas in a Preclinical Transgenic Model. Oncogene 2017, 36, 4445–4456. [Google Scholar] [CrossRef]
- Doghman, M.; Karpova, T.; Rodrigues, G.A.; Arhatte, M.; De Moura, J.; Cavalli, L.R.; Virolle, V.; Barbry, P.; Zambetti, G.P.; Figueiredo, B.C.; et al. Increased Steroidogenic Factor-1 Dosage Triggers Adrenocortical Cell Proliferation and Cancer. Mol. Endocrinol. 2007, 21, 2968–2987. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Oka, S.; Parker, K.L.; Morohashi, K. Transgenic Expression of Ad4BP/SF-1 in Fetal Adrenal Progenitor Cells Leads to Ectopic Adrenal Formation. Mol. Endocrinol. 2009, 23, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Else, T.; Trovato, A.; Kim, A.C.; Wu, Y.; Ferguson, D.O.; Kuick, R.D.; Lucas, P.C.; Hammer, G.D. Genetic P53 Deficiency Partially Rescues the Adrenocortical Dysplasia Phenotype at the Expense of Increased Tumorigenesis. Cancer Cell 2009, 15, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Assié, G.; Letouzé, E.; Fassnacht, M.; Jouinot, A.; Luscap, W.; Barreau, O.; Omeiri, H.; Rodriguez, S.; Perlemoine, K.; René-Corail, F.; et al. Integrated Genomic Characterization of Adrenocortical Carcinoma. Nat. Genet. 2014, 46, 607–612. [Google Scholar] [CrossRef]
- Basham, K.J.; Rodriguez, S.; Turcu, A.F.; Lerario, A.M.; Logan, C.Y.; Rysztak, M.R.; Gomez-Sanchez, C.E.; Breault, D.T.; Koo, B.-K.; Clevers, H.; et al. A ZNRF3-Dependent Wnt/β-Catenin Signaling Gradient Is Required for Adrenal Homeostasis. Genes Dev. 2019, 33, 209–220. [Google Scholar] [CrossRef]
- Borges, K.S.; Pignatti, E.; Leng, S.; Kariyawasam, D.; Ruiz-Babot, G.; Ramalho, F.S.; Taketo, M.M.; Carlone, D.L.; Breault, D.T. Wnt/β-Catenin Activation Cooperates with Loss of P53 to Cause Adrenocortical Carcinoma in Mice. Oncogene 2020, 39, 5282–5291. [Google Scholar] [CrossRef]
- Strajhar, P.; Tonoli, D.; Jeanneret, F.; Imhof, R.M.; Malagnino, V.; Patt, M.; Kratschmar, D.V.; Boccard, J.; Rudaz, S.; Odermatt, A. Steroid Profiling in H295R Cells to Identify Chemicals Potentially Disrupting the Production of Adrenal Steroids. Toxicology 2017, 381, 51–63. [Google Scholar] [CrossRef]
Study | Cell Line | Source | Repository | Ref. No. 1 | Notes | Year | Reference |
---|---|---|---|---|---|---|---|
Yasumura, 1966 | Y-1 | mouse | ATCC | 48 | Produces 20α- and 11β-20α-hydroxyprogesterone in culture, cannot produce corticosterone due to lack of CYP21 expression [44,45]. | 1966 | [46] |
Gazdar, 1990 | H295R | primary | ATCC 2 | 717 | Has an activating S45P CTNNB1 mutation [47,48]. Limited response to ACTH stimulation, although compensatory variant has been generated (see text). | 1980 | [49] |
Rahman, 2001 | Calpha1 | mouse | - | 1 | Generated by introduction of SV40-TAg expression under INHA promoter, ACC developed only by mice which were gonadectomized prepubertally. Limited use. | 2001 | [50] |
Schteingart, 2001 | RL-251 | primary | - | 6 | Limited response to ACTH stimulation. Secretion of IL-8 and angiogenic factors. | 2001 | [51] |
Ueno, 2001 | ACT-1 | primary | - | 1 | Expression of 3β-hydroxysteroid dehydrogenase. Significant chromosomal abnormalities, modal number 61. | 2001 | [52] |
Ragazzon, 2004 | ATC1 | mouse | - | 8 | Generated by introduction of SV40-Tag expression under AKR1B7 promoter. Zona fasciculata phenotype. ACTH responsive, corticosterone production positive. | 2004 | [53] |
Ragazzon, 2006 | ATC7 | mouse | - | 8 | As ATC1. | 2006 | [54] |
Hantel, 2016 | MUC-1 | PDX | - | 33 | Nuclear expression of SF1, cytoplasmic expression of 3β-hydroxysteroid dehydrogenase. Cortisol production positive. | 2016 | [55] |
Kiseljak-Vassiliades, 2018 | CU-ACC1 | PDX | - | 6 | G34R CTNNB1 mutation. Cortisol and corticosterone production positive, aldosterone production negative (although primary tumor was aldosterone-secreting, metastases from which line is derived were not). ACTH unresponsive. | 2018 | [56] |
Kiseljak-Vassiliades, 2018 | CU-ACC2 | PDX | - | 6 | G245S TP53 mutation. ACTH unresponsive. Minor cortisol secretion. Deletion of MSH2 exons 1–6. | 2018 | [56] |
Landwehr, 2021 | JIL-2266 | primary | - | 1 | Hemizygous mutations in MUTYH and TP53. Insignificant hormone secretion. High mutational burden relative to most ACC. | 2021 | [57] |
Sigala, 2022 | TVBF-7 | primary | - | 2 | Q247* APC mutation (nonsense). Derived from primary culture ACC115m (Table 2). Significant expression of MC2R compared to H295R, but limited responsiveness to ACTH stimulation. | 2022 | [58] |
Study | Culture | Source | Repository | Ref. No. 1 | Notes | Year | Reference |
---|---|---|---|---|---|---|---|
Almeida, 2008 | Almeida pediatric | primary | - | 1 | Survived to eight passages. | 2008 | [59] |
França, 2013 | ACC-T36 | primary | - | 6 | Demonstrated that forced expression of TCF21 reduced expression of SF1. | 2013 | [60] |
Gara, 2015 | BD140A | primary | - | 7 | Generated at Phoenix Translational Genomics Research Institute, limited information available in publication. | 2015 | [61,62] |
Fragni, 2019 | Fragni series | primary | - | 2 | Six unique reported cultures. | 2019 | [63] |
Abate, 2020 | ACC24-I | primary | - | 1 | Metastasis derived. Previously treated with EDP + M. | 2020 | [64] |
Rossini, 2021 | ACC115m | primary | - | 3 | Lymph node metastasis derived. Primary non-secretory. Survived continuous culture as TVBF-7 cell line (Table 1). | 2021 | [65] |
CDX Line | Host | Source | Notes | Year | Reference |
---|---|---|---|---|---|
RL-251 (Schteingart, 2001) | SCID | RL-251 | Seeded cells produced detectable circulating IL-8 and ENA-78 in xenografted mice. | 2001 | [51] |
Doghman, 2010 | NOD/SCID/γcnull | H295R | Showed miRNAs miR-99a and miR-100 coordinately regulate expression of mTOR in ACC. | 2010 | [83] |
Doghman, 2012 | NOD/SCID/γcnull | H295R | Showed dual inhibitor of PI3K/mTOR reduced ACC xenograft growth. | 2012 | [84] |
Doghman, 2013 | NOD/SCID/γcnull | H295R | Showed that mitotane does not inhibit the growth of H295R xenografts long-term even with sustained therapeutic levels. | 2013 | [85] |
Nagy, 2015 | BALB/c SCID | H295R | Showed mitotane inhibits xenografted tumor growth. | 2015 | [86] |
Hantel, 2016 | NMRI nu/nu | H295R | Identified TNFAIP3/A20 overexpression as mechanism of TNFα inhibition resistance in xenografted ACC. | 2016 | [87] |
Nilubol, 2018 | Nuþ/Nuþ | H295R, BD140A, SW-13 | Showed combination of flavopiridol and carfilzomib inhibits xenografted tumor growth. | 2018 | [62] |
Cerquetti, 2019 | nu/nu Forkhead mice | H295R, SW13 | Showed radiosensitizing effect of mitotane to inhibit tumor growth in full-body irradiation of xenografted mice. | 2019 | [88] |
Nadella, 2020 | nu/nu | H295R | Showed c-KIT inhibitor inhibits xenografted tumor growth. | 2020 | [89] |
Laha, 2022 | Nuþ/Nuþ | H295R, SW-13 | High-throughput drug screening identifying combination inhibition of MELK and CDK as potential therapeutic target. | 2022 | [71] |
Study | PDX Line | Host | Notes | Year | Reference |
---|---|---|---|---|---|
Pinto, 2013 | SJ-ACC3 | CB17 scid−/− | First (pediatric) ACC PDX. Primary-derived. Treatment naïve at establishment. Successfully reseeded into multiple different lines [90]. | 2013 | [91] |
Hantel, 2016 | MUC-1 | NMRI nu/nu | First adult ACC PDX. Neck metastasis derived; originally treated with EDP + M 1. | 2016 | [55] |
Kiseljak-Vassiliades, 2018 | CU-ACC1 | nu/nu | Perinephric metastasis derived. Treatment naïve at establishment. Androgen-secreting primary. | 2018 | [56] |
Kiseljak-Vassiliades, 2018 | CU-ACC2 | nu/nu | Liver metastasis derived, post-mitotane, SBRT 2, and embolization. | 2018 | [56] |
Kar, 2019 | CU-ACC9 | nu/nu | Primary-derived. Cortisol-secreting primary. Originally treated with EDP + M 1. | 2019 | [92] |
Lang, 2020 | CU-ACC2-M2B | BRGS | CU-ACC2 variant in humanized mouse model for immunotherapy studies. | 2020 | [93] |
3D Model Line | Type | Source | Notes | Year | Reference |
---|---|---|---|---|---|
Nilubol, 2012 | spheroid | H295R, SW3 | Bortezomib, ouabain, methotrexate, and pyrimethamine showed inhibitory activity against spheroids and monolayers. | 2012 | [96] |
Armignacco, 2019 | transwell | H295R | Co-culture of H295R monolayer above an adipose stem cell monolayer leads to reprogramming of both cell types, leading to more aggressive disease phenotype. | 2019 | [80] |
Cerquetti, 2021 | spheroid | H295R | Sorafenib inhibited growth and caused disaggregation of tumor spheroids. | 2021 | [8] |
Fudulu, 2021 | transwell | ATC7 | Co-culture of ATC7 monolayer below human monocytes to study immune interactions and cross-talk, showing that IL-6 release by monocytes may modulate steroidogenesis. | 2021 | [66] |
Langer, 2022 | spheroid | H295R | Albumin-stabilized carrier nanoparticles efficiently delivered higher doses of mitotane to spheroids than are possible in aqueous solution. | 2022 | [98] |
ACC15m (Bornstein, 2022) | spheroid | primary | Lymph node met-derived. Treatment history unpublished. No hormone secretion. | 2022 | [94] |
Laha, 2022 | aggregate | H295R, SW-3 | High-throughput drug screening identifying combination inhibition of MELK and CDK as potential therapeutic target. | 2022 | [71] |
Bornstein, 2022 | spheroid | primary, MUC-, H295R | Standardized spheroid generation in a custom 24-well plate format. Proof-of-concept for generation and pharmacological testing of not only malignant but also benign hyperplasia derived spheroids. | 2022 | [94] |
Baregamian, 2023 | organoid | primary | Three ACC and five benign adrenal neoplasia established in continuous organoid culture. Hormone secretion reduced after second passage. | 2023 | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedlack, A.J.H.; Hatfield, S.J.; Kumar, S.; Arakawa, Y.; Roper, N.; Sun, N.-Y.; Nilubol, N.; Kiseljak-Vassiliades, K.; Hoang, C.D.; Bergsland, E.K.; et al. Preclinical Models of Adrenocortical Cancer. Cancers 2023, 15, 2873. https://doi.org/10.3390/cancers15112873
Sedlack AJH, Hatfield SJ, Kumar S, Arakawa Y, Roper N, Sun N-Y, Nilubol N, Kiseljak-Vassiliades K, Hoang CD, Bergsland EK, et al. Preclinical Models of Adrenocortical Cancer. Cancers. 2023; 15(11):2873. https://doi.org/10.3390/cancers15112873
Chicago/Turabian StyleSedlack, Andrew J. H., Samual J. Hatfield, Suresh Kumar, Yasuhiro Arakawa, Nitin Roper, Nai-Yun Sun, Naris Nilubol, Katja Kiseljak-Vassiliades, Chuong D. Hoang, Emily K. Bergsland, and et al. 2023. "Preclinical Models of Adrenocortical Cancer" Cancers 15, no. 11: 2873. https://doi.org/10.3390/cancers15112873
APA StyleSedlack, A. J. H., Hatfield, S. J., Kumar, S., Arakawa, Y., Roper, N., Sun, N. -Y., Nilubol, N., Kiseljak-Vassiliades, K., Hoang, C. D., Bergsland, E. K., Hernandez, J. M., Pommier, Y., & del Rivero, J. (2023). Preclinical Models of Adrenocortical Cancer. Cancers, 15(11), 2873. https://doi.org/10.3390/cancers15112873