Prognostic Value of [18F]FDG PET Radiomics to Detect Peritoneal and Distant Metastases in Locally Advanced Gastric Cancer—A Side Study of the Prospective Multicentre PLASTIC Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Image Acquisition and Reconstruction
2.3. Quantitative Image Analysis
2.3.1. VOI Delineation
2.3.2. Radiomic Feature Extraction
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Collaborators PLASTIC Study Group
- University Medical Center Utrecht: Hylke J. F. Brenkman, Frank J. Wessels
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital: Johanna W. van Sandick
- Amsterdam University Medical Center location University of Amsterdam: Mark I. van Berge Henegouwen, Suzanne S. Gisbertz
- Amsterdam University Medical Center location Free University of Amsterdam: Donald L. van der Peet, Freek Daams
- Cancer Center Amsterdam: Mark I. van Berge Henegouwen, Suzanne S. Gisbertz, Donald L. van der Peet, Freek Daams
- Catharina Hospital Eindhoven: Misha D. P. Luyer, Grard A. P. Nieuwenhuijzen
- Erasmus Medical Center Rotterdam: Sjoerd M. Lagarde, Bas P. L. Wijnhoven, Jan J. B. Van Lanschot
- Leiden University Medical Center: Henk H. Hartgrink
- Zuyderland Medical Center Heerlen: Jan H. M. B. Stoot, Karel W. E. Hulsewé
- Rijnstate Hospital Arnhem: Ernst J. Spillenaar Bilgen
- ZGT Hospitals Almelo: Marc J. van Det, Ewout A. Kouwenhoven
- Elisabeth Twee-Steden Hospital Tilburg: Joos Heisterkamp
- University Medical Center Groningen, University of Groningen: Boudewijn van Etten, Jan W. Haveman
- Medical Center Leeuwarden: Jean-Pierre Pierie, Hasan H. Eker
- Albert Schweizer Hospital Dordrecht: Annemieke Y. Thijssen, Eric J. T. Belt
- Gelre Hospital Apeldoorn: Peter van Duijvendijk, Eelco Wassenaar
- Isala Hospital Zwolle: Kevin P. Wevers
- Maasstad Hospital Rotterdam: Lieke Hol
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Integraal Kankercentrum Nederland. Maagcarcinoom: Landelijke Richtlijn, Versie: 2.2. Available online: https://richtlijnendatabase.nl/gerelateerde_documenten/f/16316/IKNL%20richtlijn%20Maagcarcinoom.pdf (accessed on 23 January 2023).
- Choi, J.Y.; Shim, K.N.; Kim, S.E.; Jung, H.K.; Jung, S.A.; Yoo, K. The clinical value of 18F-fluorodeoxyglucose uptake on positron emission tomography/computed tomography for predicting regional lymph node metastasis and non-curative surgery in primary gastric carcinoma. Korean J. Gastroenterol. 2014, 64, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Seevaratnam, R.; Cardoso, R.; McGregor, C.; Lourenco, L.; Mahar, A.; Sutradhar, R.; Law, C.; Paszat, L.; Coburn, N. How useful is preoperative imaging for tumor, node, metastasis (TNM) staging of gastric cancer? A meta-analysis. Gastric Cancer 2012, 15 (Suppl. S1), S3–S18. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.Q. Imaging in assessing hepatic and peritoneal metastases of gastric cancer: A systematic review. BMC Gastroenterol. 2011, 11, 19. [Google Scholar] [CrossRef]
- Brenkman, H.J.F.; Gertsen, E.C.; Vegt, E.; van Hillegersberg, R.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; Luyer, M.D.P.; Nieuwenhuijzen, G.A.P.; van Lanschot, J.J.B.; Lagarde, S.M.; et al. Evaluation of PET and laparoscopy in STagIng advanced gastric cancer: A multicenter prospective study (PLASTIC-study). BMC Cancer 2018, 18, 450. [Google Scholar] [CrossRef]
- Gertsen, E.C.; Brenkman, H.J.F.; van Hillegersberg, R.; van Sandick, J.W.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; Luyer, M.D.P.; Nieuwenhuijzen, G.A.P.; van Lanschot, J.J.B.; Lagarde, S.M.; et al. 18F-Fludeoxyglucose-Positron Emission Tomography/Computed Tomography and Laparoscopy for Staging of Locally Advanced Gastric Cancer: A Multicenter Prospective Dutch Cohort Study (PLASTIC). JAMA Surg. 2021, 156, e215340. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More Than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Limkin, E.J.; Sun, R.; Dercle, L.; Zacharaki, E.I.; Robert, C.; Reuze, S.; Schernberg, A.; Paragios, N.; Deutsch, E.; Ferte, C. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 2017, 28, 1191–1206. [Google Scholar] [CrossRef]
- Noortman, W.A.; Vriens, D.; Grootjans, W.; Tao, Q.; de Geus-Oei, L.F.; Van Velden, F.H. Nuclear medicine radiomics in precision medicine: Why we can’t do without artificial intelligence. Q. J. Nucl. Med. Mol. Imaging 2020, 64, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, W.; Yu, Y.; Liu, J.J.; Xue, H.D.; Qi, Y.F.; Lei, J.; Yu, J.C.; Jin, Z.Y. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur. Radiol. 2020, 30, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Tang, L.; Li, Z.Y.; Fang, M.J.; Gao, J.B.; Shan, X.H.; Ying, X.J.; Sun, Y.S.; Fu, J.; Wang, X.X.; et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann. Oncol. 2019, 30, 431–438. [Google Scholar] [CrossRef]
- Dong, D.; Fang, M.J.; Tang, L.; Shan, X.H.; Gao, J.B.; Giganti, F.; Wang, R.P.; Chen, X.; Wang, X.X.; Palumbo, D.; et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: An international multicenter study. Ann. Oncol. 2020, 31, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, J.; Xin, B.; Sun, Y.; Feng, D.; Fulham, M.J.; Wang, X.; Song, S. (18)F-FDG PET/CT Radiomics for Preoperative Prediction of Lymph Node Metastases and Nodal Staging in Gastric Cancer. Front. Oncol. 2021, 11, 723345. [Google Scholar] [CrossRef]
- Xue, B.; Jiang, J.; Chen, L.; Wu, S.; Zheng, X.; Zheng, X.; Tang, K. Development and Validation of a Radiomics Model Based on 18F-FDG PET of Primary Gastric Cancer for Predicting Peritoneal Metastasis. Front. Oncol. 2021, 11, 740111. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2009, 50, 122S–150S. [Google Scholar] [CrossRef]
- Frings, V.; van Velden, F.H.P.; Velasquez, L.M.; Hayes, W.; van de Ven, P.M.; Hoekstra, O.S.; Boellaard, R. Repeatability of Metabolically Active Tumor Volume Measurements with FDG PET/CT in Advanced Gastrointestinal Malignancies: A Multicenter Study. Radiology 2014, 273, 539–548. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Demšar, J.; Curk, T.; Erjavec, A.; Gorup, Č.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; et al. Orange: Data mining toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Orlhac, F.; Boughdad, S.; Philippe, C.; Stalla-Bourdillon, H.; Nioche, C.; Champion, L.; Soussan, M.; Frouin, F.; Frouin, V.; Buvat, I. A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET. J. Nucl. Med. 2018, 59, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Fortin, J.-P.; Cullen, N.; Sheline, Y.I.; Taylor, W.D.; Aselcioglu, I.; Cook, P.A.; Adams, P.; Cooper, C.; Fava, M.; McGrath, P.J.; et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 2018, 167, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Orlhac, F.; Eertink, J.J.; Cottereau, A.-S.; Zijlstra, J.M.; Thieblemont, C.; Meignan, M.; Boellaard, R.; Buvat, I. A Guide to ComBat Harmonization of Imaging Biomarkers in Multicenter Studies. J. Nucl. Med. 2022, 63, 172–179. [Google Scholar] [CrossRef]
- Kim, H.W.; Won, K.S.; Song, B.I.; Kang, Y.N. Correlation of Primary Tumor FDG Uptake with Histopathologic Features of Advanced Gastric Cancer. Nucl. Med. Mol. Imaging 2015, 49, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Buvat, I.; Orlhac, F. The dark side of radiomics: On the paramount importance of publishing negative results. J. Nucl. Med. 2019, 60, 1543–1544. [Google Scholar] [CrossRef]
- Kim, S.J.; Cho, Y.S.; Moon, S.H.; Bae, J.M.; Kim, S.; Choe, Y.S.; Kim, B.T.; Lee, K.H. Primary Tumor ¹⁸F-FDG Avidity Affects the Performance of ¹⁸F-FDG PET/CT for Detecting Gastric Cancer Recurrence. J. Nucl. Med. 2016, 57, 544–550. [Google Scholar] [CrossRef]
- Pfaehler, E.; van Sluis, J.; Merema, B.B.J.; van Ooijen, P.; Berendsen, R.C.M.; van Velden, F.H.; Boellaard, R. Experimental multicenter and multivendor evaluation of PET radiomic features performance using 3D printed phantom inserts. J. Nucl. Med. 2020, 61, 469–476. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J. The role of MRI in the diagnosis and treatment of gastric cancer. Diagn. Interv. Radiol. 2020, 26, 176–182. [Google Scholar] [CrossRef]
- Pang, Y.; Zhao, L.; Luo, Z.; Hao, B.; Wu, H.; Lin, Q.; Sun, L.; Chen, H. Comparison of (68)Ga-FAPI and (18)F-FDG Uptake in Gastric, Duodenal, and Colorectal Cancers. Radiology 2021, 298, 393–402. [Google Scholar] [CrossRef] [PubMed]
Characteristic (n (%)) | Value |
---|---|
Age (years), median (range) | 70 (35–87) |
Sex | |
Male | 130 (63%) |
Female | 76 (37%) |
Presence of metastases | |
Yes | 43 (21%) |
No | 163 (79%) |
Clinical T-stage | |
T3 | 15 (7%) |
T4a | 156 (76%) |
T4b | 33 (16%) |
Missing | 2 (1%) |
Clinical N-stage | |
N0 | 96 (47%) |
N+ | 106 (51%) |
Missing | 4 (2%) |
Tumour location | |
Cardia | 40 (19%) |
Corpus & fundus | 57 (28%) |
Antrum & pylorus | 85 (41%) |
Diffuse | 19 (9%) |
Missing | 5 (3%) |
Lauren classification | |
Intestinal and mixed | 125 (61%) |
Diffuse | 81 (39%) |
Differentiation | |
Well | 9 (4%) |
Moderate | 87 (42%) |
Poor | 107 (52%) |
Undifferentiated | 3 (2%) |
Her2Neu status | |
Positive | 13 (6%) |
Negative | 193 (94%) |
EARL-compliant PET scan | |
Yes | 94 (46%) |
No | 112 (54%) |
SUVmax (g/mL), median (range) | 6.9 (1.5–51.4) |
MTV (cm3), median (range) | 17.8 (2.6–135.0) |
Model | Variables | AUC |
---|---|---|
Clinical model | Age | 0.59 |
Sex | ||
Clinical T-stage | ||
Clinical N-stage | ||
Tumour Location | ||
Lauren classification | ||
Differentiation | ||
Her2Neu status | ||
Radiomic model | Small area low grey level emphasis (GLSZM) | 0.51 |
Grey level non-uniformity (GLRLM) | ||
Inverse difference moment normalised (GLCM) | ||
Grey level non-uniformity (GLSZM) | ||
Small area emphasis (GLSZM) | ||
Cluster prominence (GLCM) | ||
Cluster shade (GLCM) | ||
Large dependence high grey level emphasis (GLDM) | ||
Size zone non-uniformity (GLSZM) | ||
Sphericity (shape) | ||
Elongation (shape) | ||
Clinicoradiomic model | All variables specified above | 0.56 |
Model | Variables | AUC |
---|---|---|
Clinical model | Age | 0.67 |
Sex | ||
Clinical T-stage | ||
Clinical N-stage | ||
Tumour Location | ||
Differentiation | ||
Her2Neu status | ||
Radiomic model | Skewness (shape) | 0.60 |
Correlation (GLCM) | ||
Inverse difference moment normalised (GLCM) | ||
Grey level non-uniformity (GLSZM) | ||
Cluster prominence (GLCM) | ||
Elongation (shape) | ||
Clinicoradiomic model | All variables specified above | 0.71 |
Model | Variables | AUC |
---|---|---|
Clinical model | Age | 0.58 |
Sex | ||
Clinical T-stage | ||
Clinical N-stage | ||
Tumour Location | ||
Differentiation | ||
Her2Neu status | ||
Radiomic model | Contrast (NGTDM) | 0.53 |
Strength (NGTDM) | ||
Correlation (GLCM) | ||
Elongation (shape) | ||
Small area low grey level emphasis (GLSZM) | ||
Skewness (first order) | ||
Clinicoradiomic model | All variables specified above | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullen, L.C.E.; Noortman, W.A.; Triemstra, L.; de Jongh, C.; Rademaker, F.J.; Spijkerman, R.; Kalisvaart, G.M.; Gertsen, E.C.; de Geus-Oei, L.-F.; Tolboom, N.; et al. Prognostic Value of [18F]FDG PET Radiomics to Detect Peritoneal and Distant Metastases in Locally Advanced Gastric Cancer—A Side Study of the Prospective Multicentre PLASTIC Study. Cancers 2023, 15, 2874. https://doi.org/10.3390/cancers15112874
Pullen LCE, Noortman WA, Triemstra L, de Jongh C, Rademaker FJ, Spijkerman R, Kalisvaart GM, Gertsen EC, de Geus-Oei L-F, Tolboom N, et al. Prognostic Value of [18F]FDG PET Radiomics to Detect Peritoneal and Distant Metastases in Locally Advanced Gastric Cancer—A Side Study of the Prospective Multicentre PLASTIC Study. Cancers. 2023; 15(11):2874. https://doi.org/10.3390/cancers15112874
Chicago/Turabian StylePullen, Lieke C. E., Wyanne A. Noortman, Lianne Triemstra, Cas de Jongh, Fenna J. Rademaker, Romy Spijkerman, Gijsbert M. Kalisvaart, Emma C. Gertsen, Lioe-Fee de Geus-Oei, Nelleke Tolboom, and et al. 2023. "Prognostic Value of [18F]FDG PET Radiomics to Detect Peritoneal and Distant Metastases in Locally Advanced Gastric Cancer—A Side Study of the Prospective Multicentre PLASTIC Study" Cancers 15, no. 11: 2874. https://doi.org/10.3390/cancers15112874
APA StylePullen, L. C. E., Noortman, W. A., Triemstra, L., de Jongh, C., Rademaker, F. J., Spijkerman, R., Kalisvaart, G. M., Gertsen, E. C., de Geus-Oei, L. -F., Tolboom, N., de Steur, W. O., Dantuma, M., Slart, R. H. J. A., van Hillegersberg, R., Siersema, P. D., Ruurda, J. P., van Velden, F. H. P., Vegt, E., & on behalf of the PLASTIC Study Group. (2023). Prognostic Value of [18F]FDG PET Radiomics to Detect Peritoneal and Distant Metastases in Locally Advanced Gastric Cancer—A Side Study of the Prospective Multicentre PLASTIC Study. Cancers, 15(11), 2874. https://doi.org/10.3390/cancers15112874