68Ga-PSMA-11 PET/CT Features Extracted from Different Radiomic Zones Predict Response to Androgen Deprivation Therapy in Patients with Advanced Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. PET/CT Imaging
2.3. PET-Derived Parameters
2.4. Analysis of Treatment Response
2.5. Radiomic Zones and Feature Extraction
2.6. Statistical Analysis
3. Results
3.1. Response to Androgen Deprivation Therapy
3.2. Prediction of Treatment Response Using Features from Radiomic Zone-1
3.3. Prediction of Treatment Response Using Features from Radiomic Zone-2
3.4. Prediction of Treatment Response Using Features from Radiomic Zone-3
3.5. Surface Volume Ratio in the Three Radiomic Zones
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- de Wit-van der Veen, B.; Donswijk, M.L.; Slump, C.H.; Stokkel, M.P.M. Day-to-day variability of [68Ga] Ga-PSMA-11 accumulation in primary prostate cancer: Effects on tracer uptake and visual interpretation. EJNMMI Res. 2020, 10, 1–10. [Google Scholar]
- Ghosh, A.; Wang, X.; Klein, E.; Heston, W.D. Novel role of prostate-specific membrane antigen in suppressing prostate cancer invasiveness. Cancer Res. 2005, 65, 727–731. [Google Scholar] [CrossRef]
- Bois, F.; Noirot, C.; Dietemann, S.; Mainta, I.C.; Zilli, T.; Garibotto, V.; Walter, M. [68Ga] Ga-PSMA-11 in prostate cancer: A comprehensive review. Am. J. Nucl. Med. Mol. Imaging 2020, 10, 349–374. [Google Scholar]
- Perlmutter, M.A.; Lepor, H. Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev. Urol. 2007, 9 (Suppl. 1), S3–S8. [Google Scholar] [PubMed]
- Li, J.-R.; Wang, S.-S.; Yang, C.-K.; Chen, C.-S.; Ho, H.-C.; Chiu, K.-Y.; Hung, C.-F.; Cheng, C.-L.; Yang, C.-R.; Chen, C.-C.; et al. First Line Androgen Deprivation Therapy Duration Is Associated with the Efficacy of Abiraterone Acetate Treated Metastatic Castration-Resistant Prostate Cancer after Docetaxel. Front. Pharmacol. 2017, 8, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmuck, S.; von Klot, C.A.; Henkenberens, C.; Sohns, J.M.; Christiansen, H.; Wester, H.-J.; Ross, T.L.; Bengel, F.M.; Derlin, T. Initial experience with volumetric 68Ga-PSMA I&T PET/CT for assessment of whole-body tumor burden as a quantitative imaging biomarker in patients with prostate cancer. J. Nucl. Med. 2017, 58, 1962–1968. [Google Scholar] [PubMed] [Green Version]
- Manafi-Farid, R.; Ranjbar, S.; Jamshidi Araghi, Z.; Pilz, J.; Schweighofer-Zwink, G.; Pirich, C.; Beheshti, M. Molecular Imaging in Primary Staging of Prostate Cancer Patients: Current Aspects and Future Trends. Cancers 2021, 13, 5360. [Google Scholar] [CrossRef] [PubMed]
- Tseng, J.-R.; Chang, S.-H.; Wu, Y.-Y.; Fan, K.-H.; Yu, K.-J.; Yang, L.-Y.; Hsiao, I.-T.; Liu, F.-Y.; Pang, S.-T.J.C. Impact of Three-Month Androgen Deprivation Therapy on [68Ga] Ga-PSMA-11 PET/CT Indices in Men with Advanced Prostate Cancer—Results from a Pilot Prospective Study. Cancers 2022, 14, 1329. [Google Scholar] [CrossRef] [PubMed]
- Cyll, K.; Ersvær, E.; Vlatkovic, L.; Pradhan, M.; Kildal, W.; Avranden Kjær, M.; Kleppe, A.; Hveem, T.S.; Carlsen, B.; Gill, S.; et al. Tumour heterogeneity poses a significant challenge to cancer biomarker research. Br. J. Cancer 2017, 117, 367–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carm, K.T.; Hoff, A.M.; Bakken, A.C.; Axcrona, U.; Axcrona, K.; Lothe, R.A.; Skotheim, R.I.; Løvf, M. Interfocal heterogeneity challenges the clinical usefulness of molecular classification of primary prostate cancer. Sci. Rep. 2019, 9, 13579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.W.; Lee, S.; Ryu, D.; Park, S.; Park, W.Y.; Joung, J.G.; Jeong, J. Biomarkers Associated with Tumor Heterogeneity in Prostate Cancer. Transl. Oncol. 2019, 12, 43–48. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, S.; Di Dong, J.W.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; Tian, J.J.T. The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges. Theranostics 2019, 9, 1303–1322. [Google Scholar] [CrossRef] [PubMed]
- Segal, E.; Sirlin, C.B.; Ooi, C.; Adler, A.S.; Gollub, J.; Chen, X.; Chan, B.K.; Matcuk, G.R.; Barry, C.T.; Chang, H.Y.J. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol. 2007, 25, 675–680. [Google Scholar] [CrossRef]
- Hawkins, S.H.; Korecki, J.N.; Balagurunathan, Y.; Gu, Y.; Kumar, V.; Basu, S.; Hall, L.O.; Goldgof, D.B.; Gatenby, R.A.; Gillies, R.J. Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access 2014, 2, 1418–1426. [Google Scholar] [CrossRef]
- Tu, S.-J.; Wang, C.-W.; Pan, K.-T.; Wu, Y.-C.; Wu, C.-T.J. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening. Phys. Med. Biol. 2018, 63, 065005. [Google Scholar] [CrossRef]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.J.N.C. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [Green Version]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H.J.R. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J.W.L. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci. Rep. 2015, 5, 13087. [Google Scholar] [CrossRef] [Green Version]
- Morland, D.; Triumbari, E.K.A.; Boldrini, L.; Gatta, R.; Pizzuto, D.; Annunziata, S. Radiomics in Oncological PET Imaging: A Systematic Review—Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics 2022, 12, 1330. [Google Scholar] [CrossRef]
- Quartuccio, N.; Marrale, M.; Laudicella, R.; Alongi, P.; Siracusa, M.; Sturiale, L.; Arnone, G.; Cutaia, G.; Salvaggio, G.; Midiri, M. The role of PET radiomic features in prostate cancer: A systematic review. Clin. Transl. Imaging 2021, 9, 579–588. [Google Scholar] [CrossRef]
- Leijenaar, R.T.; Nalbantov, G.; Carvalho, S.; Van Elmpt, W.J.; Troost, E.G.; Boellaard, R.; Aerts, H.J.; Gillies, R.J.; Lambin, P. The effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture analysis. Sci. Rep. 2015, 5, 11075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoyanova, R.; Takhar, M.; Tschudi, Y.; Ford, J.C.; Solórzano, G.; Erho, N.; Balagurunathan, Y.; Punnen, S.; Davicioni, E.; Gillies, R.J.; et al. Prostate cancer radiomics and the promise of radiogenomics. Transl. Cancer Res. 2016, 5, 432–447. [Google Scholar] [CrossRef] [Green Version]
- Feliciani, G.; Celli, M.; Ferroni, F.; Menghi, E.; Azzali, I.; Caroli, P.; Matteucci, F.; Barone, D.; Paganelli, G.; Sarnelli, A. Radiomics Analysis on [68Ga] Ga-PSMA-11 PET and MRI-ADC for the Prediction of Prostate Cancer ISUP Grades: Preliminary Results of the BIOPSTAGE Trial. Cancers 2022, 14, 1888. [Google Scholar] [CrossRef]
- Martin-Gonzalez, P.; Gómez de Mariscal, E.; Martino, M.-E.; Gordaliza, P.; Peligros, I.; Carreras Delgado, J.L.; Calvo, F.; Pascau, J.; Desco, M.; Muñoz-Barrutia, A. Association of visual and quantitative heterogeneity of 18F-FDG PET images with treatment response in locally advanced rectal cancer: A feasibility study. PLoS ONE 2020, 15, e0242597. [Google Scholar] [CrossRef]
- Cook, G.J.; Siddique, M.; Taylor, B.P.; Yip, C.; Chicklore, S.; Goh, V.J.C.; Imaging, T. Radiomics in PET: Principles and applications. Clin. Transl. Imaging 2014, 2, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Naqa, I.E. The role of quantitative PET in predicting cancer treatment outcomes. Clin. Transl. Imaging 2014, 2, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Orlhac, F.; Soussan, M.; Maisonobe, J.-A.; Garcia, C.A.; Vanderlinden, B.; Buvat, I. Tumor texture analysis in 18F-FDG PET: Relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J. Nucl. Med. 2014, 55, 414–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alongi, P.; Stefano, A.; Comelli, A.; Laudicella, R.; Scalisi, S.; Arnone, G.; Barone, S.; Spada, M.; Purpura, P.; Bartolotta, T.; et al. Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: An explorative study on machine learning feature classification in 94 patients. Eur. Radiol. 2021, 31, 4595–4605. [Google Scholar] [CrossRef]
- Zamboglou, C.; Carles, M.; Fechter, T.; Kiefer, S.; Reichel, K.; Fassbender, T.F.; Bronsert, P.; Koeber, G.; Schilling, O.; Ruf, J.J.T. Radiomic features from PSMA PET for non-invasive intraprostatic tumor discrimination and characterization in patients with intermediate-and high-risk prostate cancer-a comparison study with histology reference. Theranostics 2019, 9, 2595–2605. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo, P.; Marturano, F.; Bettinelli, A.; Gregianin, M.; Paiusco, M.; Evangelista, L. Additional Value of PET Radiomic Features for the Initial Staging of Prostate Cancer: A Systematic Review from the Literature. Cancers 2021, 13, 6026. [Google Scholar] [CrossRef] [PubMed]
- Beig, N.; Khorrami, M.; Alilou, M.; Prasanna, P.; Braman, N.; Orooji, M.; Rakshit, S.; Bera, K.; Rajiah, P.; Ginsberg, J.J.; et al. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology 2019, 290, 783–792. [Google Scholar] [CrossRef]
- Wu, L.; Gao, C.; Xiang, P.; Zheng, S.; Pang, P.; Xu, M.J. CT-imaging based analysis of invasive lung adenocarcinoma presenting as ground glass nodules using peri-and intra-nodular radiomic features. Front. Oncol. 2020, 10, 838. [Google Scholar] [CrossRef]
- Tu, S.J.; Tran, V.T.; Teo, J.M.; Chong, W.C.; Tseng, J.R. Utility of radiomic zones for risk classification and clinical outcome predictions using supervised machine learning during simultaneous 11C-choline PET/MRI acquisition in prostate cancer patients. Med. Phys. 2021, 48, 5192–5201. [Google Scholar] [CrossRef] [PubMed]
- Onal, C.; Guler, O.C.; Torun, N.; Reyhan, M.; Yapar, A.F. The effect of androgen deprivation therapy on 68Ga-PSMA tracer uptake in non-metastatic prostate cancer patients. Eur. J. Pediatr. 2020, 47, 632–641. [Google Scholar] [CrossRef]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef] [Green Version]
- Schmidkonz, C.; Cordes, M.; Schmidt, D.; Bäuerle, T.; Goetz, T.I.; Beck, M.; Prante, O.; Cavallaro, A.; Uder, M.; Wullich, B.J.; et al. 68Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer. Eur. J. Pediatr. 2018, 45, 1862–1872. [Google Scholar] [CrossRef]
- Gafita, A.; Bieth, M.; Krönke, M.; Tetteh, G.; Navarro, F.; Wang, H.; Günther, E.; Menze, B.; Weber, W.A.; Eiber, M.J. qPSMA: Semiautomatic software for whole-body tumor burden assessment in prostate cancer using 68Ga-PSMA11 PET/CT. J. Nucl. Med. 2019, 60, 1277–1283. [Google Scholar] [CrossRef] [Green Version]
- Christensen, T.N.; Andersen, P.K.; Langer, S.W.; Fischer, B.M.B. Prognostic Value of 18F–FDG–PET Parameters in Patients with Small Cell Lung Cancer: A Meta-Analysis and Review of Current Literature. Diagnostics 2021, 11, 174. [Google Scholar] [CrossRef]
- Fanti, S.; Goffin, K.; Hadaschik, B.A.; Herrmann, K.; Maurer, T.; MacLennan, S.; Oprea-Lager, D.E.; Oyen, W.J.; Rouvière, O.; Mottet, N.J.; et al. Consensus statements on PSMA PET/CT response assessment criteria in prostate cancer. Eur. J. Nucl. Med. 2021, 48, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alic, L.; Niessen, W.J.; Veenland, J.F. Quantification of heterogeneity as a biomarker in tumor imaging: A systematic review. PLoS ONE 2014, 9, e110300. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dang, H.; Wang, X.W. The significance of intertumor and intratumor heterogeneity in liver cancer. Exp. Mol. Med. 2018, 50, e416. [Google Scholar] [CrossRef]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 2020, 18, 59. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.; Santinha, J.; Galvão, B.; Matos, C.; Couto, F.M.; Papanikolaou, N. Prediction of Prostate Cancer Disease Aggressiveness Using Bi-Parametric Mri Radiomics. Cancers 2021, 13, 6065. [Google Scholar] [CrossRef] [PubMed]
- Cuocolo, R.; Stanzione, A.; Ponsiglione, A.; Romeo, V.; Verde, F.; Creta, M.; La Rocca, R.; Longo, N.; Pace, L.; Imbriaco, M. Clinically significant prostate cancer detection on MRI: A radiomic shape features study. Eur. J. Radiol. 2019, 116, 144–149. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value, n (%) |
---|---|
Age, years (mean ± SD) | 70 ± 9.9 |
Stage (AJCC Manual, eighth edition) | |
IIIB | 7 (20%) |
IIIC | 3 (9%) |
IVA | 8 (23%) |
IVB | 17 (48%) |
Serum prostate-specific antigen (ng/mL) | |
<10 | 4 (11%) |
10–20 | 9 (26%) |
>20 | 22 (63%) |
Gleason score | |
7 | 11 (31%) |
8 | 5 (14%) |
9 | 16 (46%) |
10 | 3 (9%) |
ISUP grade | |
2 | 3 (9%) |
3 | 7 (20%) |
4 | 5 (14%) |
5 | 20 (57%) |
ADT regimen | |
Leuprorelin + bicalutamide | 10 (28%) |
Leuprorelin + cyproterone | 4 (11%) |
Leuprorelin + abiraterone | 2 (6%) |
Triptorelin + cyproterone | 1 (3%) |
Goserelin + bicalutamide | 9 (26%) |
Leuprorelin + abiraterone + bicalutamide | 2 (6%) |
Leuprorelin | 2 (6%) |
Goserelin | 4 (11%) |
Degarelix | 1 (3%) |
PET Parameter and Classification | Prostate Tumor n = 35 (%) | Metastatic Nodes n = 16 (%) | Bone Metastases n = 17 (%) | |
---|---|---|---|---|
SUVmax | Response | 27 (77%) | 13 (81%) | 13 (76%) |
No response | 8 (23%) | 3 (19%) | 4 (24%) | |
SUVmean | Response | 26 (74%) | 14 (87%) | 10 (59%) |
No response | 9 (26%) | 2 (13%) | 7 (41%) | |
MTV | Response | 21 (60%) | 14 (87%) | 13 (76%) |
No response | 14 (40%) | 2 (13%) | 4 (24%) | |
TL | Response | 29 (83%) | 15 (94%) | 14 (82%) |
No response | 6 (17%) | 1 (6%) | 3 (18%) |
Category | Feature | Zone-1 | Zone-2 | Zone-3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SUVmax | SUVmean | MTV | TL | SUVmax | SUVmean | MTV | TL | SUVmax | SUVmean | MTV | TL | ||
glcm | idmn | 0.010 | 0.005 | 0.018 | 0.004 | 0.024 | 0.008 | _ | _ | _ | _ | _ | _ |
idn | 0.003 | 0.002 | 0.024 | 0.014 | 0.023 | 0.009 | _ | _ | _ | _ | _ | _ | |
imc1 | 0.002 | 7.33 × 10−41 | 0.037 | _ | _ | _ | _ | _ | _ | _ | _ | _ | |
ngtdm | Contrast | 0.004 | 0.002 | 0.037 | _ | _ | 0.034 | _ | _ | _ | _ | _ | _ |
glrlm | rln | 0.003 | 0.001 | 0.013 | 1.97 × 10−4 | 0.031 | 0.012 | _ | _ | _ | _ | _ | _ |
gldm | dn | 0.002 | 0.001 | _ | 0.009 | _ | _ | _ | _ | _ | _ | _ | _ |
Shape | MeshVolume | 0.038 | 0.034 | _ | 0.003 | 0.01 | 0.005 | _ | _ | _ | _ | _ | _ |
gldm | sdlgle | _ | _ | _ | _ | 0.034 | 0.027 | 0.045 | _ | _ | _ | _ | _ |
shape | MinorAxisLength | _ | _ | 0.050 | 0.025 | 0.018 | 0.005 | _ | 0.015 | _ | _ | _ | _ |
Sphericity | _ | _ | _ | _ | _ | _ | _ | _ | 0.012 | 0.004 | 0.034 | _ | |
diagnosis | Mask-interpolated_Minimum | 0.034 | 0.025 | _ | _ | _ | _ | _ | _ | 0.019 | 0.023 | _ | 0.038 |
shape | SurfaceVolumeRatio | _ | _ | 0.017 | 3.49 × 10−4 | 0.017 | 0.018 | _ | _ | 0.010 | _ | 0.027 | _ |
Feature | Responders/Non-Responders (Median ± IQR) | |
---|---|---|
Zone-1 | SUVmax | SUVmean |
glcm_idmn | 0.948 ± 0.036/0.970 ± 0.022 | 0.947 ± 0.036/0.968 ± 0.019 |
glcm_idn | 0.850 ± 0.054/0.890 ± 0.043 | 0.850 ± 0.053/0.885 ± 0.037 |
glcm_imc1 | −0.480 ± 0.213/−0.232 ± 0.168 | −0.473 ± 0.341/−0.196 ± 0.096 |
ngtdm_Contrast | 0.853 ± 1.892/0.153 ± 0.494 | 0.853 ± 2.144/0.210 ± 0.477 |
glrlm_rln | 211.2 ± 247.7/362.1 ± 1019.3 | 206.9 ± 226.4/528.9 ± 908.7 |
gldm_dn | 114.0 ± 104.5/196.3 ± 81.12 | 93.42 ± 98.73/97.44 ± 214.4 |
shape_MeshVolume | 4616 ± 6799/9411 ± 23988 | 4460 ± 5463/13,303 ± 20721 |
shape_SurfaceVolumeRatio | 0.451 ± 0.159/0.396 ± 0.262 | 0.451 ± 0.155/0.354 ± 0.241 |
Zone-2 | ||
gldm_sdlgle | 0.034 ± 0.0225/0.020 ± 0.0165 | 0.034 ± 0.024/0.0216 ± 0.015 |
shape_MinoAxisLength | 39.18 ± 12.64/46.90 ± 6.837 | 38.43 ± 12.71/47.00 ± 7.060 |
shape_SurfaceVolumeRatio | 0.558 ± 0.218/0.368 ± 0.108 | 0.509 ± 0.279/0.426 ± 0.191 |
Zone-3 | ||
shape_Sphericity | 0.609 ± 0.093/0.525 ± 0.186 | 0.614 ± 0.091/0.497 ± 0.152 |
diagnostics_Mask-interpolated_Minimum | 0.204 ± 0.112/0.320 ± 0.163 | 0.199 ± 0.127/0.299 ± 0.150 |
shape_SurfaceVolumeRatio | 0.173 ± 0.052/0.211 ± 0.081 | 0.175 ± 0.053/0.197 ± 0.079 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, V.T.; Tu, S.-J.; Tseng, J.-R. 68Ga-PSMA-11 PET/CT Features Extracted from Different Radiomic Zones Predict Response to Androgen Deprivation Therapy in Patients with Advanced Prostate Cancer. Cancers 2022, 14, 4838. https://doi.org/10.3390/cancers14194838
Tran VT, Tu S-J, Tseng J-R. 68Ga-PSMA-11 PET/CT Features Extracted from Different Radiomic Zones Predict Response to Androgen Deprivation Therapy in Patients with Advanced Prostate Cancer. Cancers. 2022; 14(19):4838. https://doi.org/10.3390/cancers14194838
Chicago/Turabian StyleTran, Vuong Thuy, Shu-Ju Tu, and Jing-Ren Tseng. 2022. "68Ga-PSMA-11 PET/CT Features Extracted from Different Radiomic Zones Predict Response to Androgen Deprivation Therapy in Patients with Advanced Prostate Cancer" Cancers 14, no. 19: 4838. https://doi.org/10.3390/cancers14194838
APA StyleTran, V. T., Tu, S. -J., & Tseng, J. -R. (2022). 68Ga-PSMA-11 PET/CT Features Extracted from Different Radiomic Zones Predict Response to Androgen Deprivation Therapy in Patients with Advanced Prostate Cancer. Cancers, 14(19), 4838. https://doi.org/10.3390/cancers14194838