Review of Under-Recognized Adjunctive Therapies for Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Exercise as Cancer Therapy
2.1. Exercise Recommendations
2.2. Tai Chi, Yoga, and Baduanjin as a Form of Exercise
3. Stress-Reduction Practices
4. Management of Sleep Disturbances as an Adjunctive Cancer Therapy
5. Melatonin, a Potential Chemotherapy Agent
6. Diet
6.1. Overview of Recommendations for Diet after Cancer Diagnosis
6.2. Ketogenic Diet Therapy for Cancer
6.3. Short-Term Fasting Prior to Chemotherapy
6.4. Duration of Fasting and Cancer Recurrence
7. Smoking
Effect of Smoking and Response to Chemotherapy
8. Green Tea
8.1. Background
8.2. Mechanism of GT Effect on Cancer Cells [85,86,87,88,89,90,91]
8.3. Human Studies: Evidence of Green Tea Effects on Specific Cancers
8.4. Safety Concerns
9. Curcumin/Turmeric
10. Aspirin
11. Metformin
12. Statin Therapy
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schmitz, K.H.; Campbell, A.M.; Stuiver, M.M.; Pinto, B.M.; Schwartz, A.L.; Morris, G.S.; Ligibel, J.A.; Cheville, A.; Galvão, D.A.; Alfano, C.M.; et al. Exercise is medicine in oncology: Engaging clinicians to help patients move through cancer. CA A Cancer J. Clin. 2019, 69, 468–484. [Google Scholar] [CrossRef] [PubMed]
- Stout, N.L.; Baima, J.; Swisher, A.K.; Winters-Stone, K.M.; Welsh, J. A Systematic Review of Exercise Systematic Reviews in the Cancer Literature (2005–2017). PM&R 2017, 9, S347–S384. [Google Scholar] [CrossRef]
- Walcher, L.; Kistenmacher, A.-K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.-R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer Stem Cells—Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front. Immunol. 2020, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Ligibel, J.A.; Bohlke, K.; May, A.M.; Clinton, S.K.; Demark-Wahnefried, W.; Gilchrist, S.C.; Irwin, M.L.; Late, M.; Mansfield, S.; Marshall, T.F.; et al. Exercise, Diet, and Weight Management During Cancer Treatment: ASCO Guideline. J. Clin. Oncol. 2022, 40, 2491–2507. [Google Scholar] [CrossRef] [PubMed]
- Morishita, S.; Hamaue, Y.; Fukushima, T.; Tanaka, T.; Fu, J.B.; Nakano, J. Effect of Exercise on Mortality and Recurrence in Patients With Cancer: A Systematic Review and Meta-Analysis. Integr. Cancer Ther. 2020, 19, 1534735420917462. [Google Scholar] [CrossRef] [PubMed]
- Ashcraft, K.A.; Warner, A.B.; Jones, L.W.; Dewhirst, M.W. Exercise as Adjunct Therapy in Cancer. Semin. Radiat. Oncol. 2019, 29, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Lee, N. The Benefits of Exercise Effect on Cancer: A Review. Exerc. Sci. 2020, 29, 4–9. [Google Scholar] [CrossRef]
- Winters-Stone, K.M.; Moe, E.L.; Perry, C.; Medysky, M.; Pommier, R.; Vetto, J.; Naik, A. Enhancing an oncologist’s recommendation to exercise to manage fatigue levels in breast cancer patients: A randomized controlled trial. Support. Care Cancer 2018, 26, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.; Maiya, A.; Fernandes, D. Impact of a 11 week exercise program in head and neck cancer patients treated with radical chemo-radiotherapy: A randomized controlled trial. Support. Care Cancer 2018, 26, 3913–3920. [Google Scholar]
- Yang, L.; Winters-Stone, K.; Rana, B.; Cao, C.; Carlson, L.E.; Courneya, K.S.; Friedenreich, C.M.; Schmitz, K.H. Tai Chi for cancer survivors: A systematic review toward consensus-based guidelines. Cancer Med. 2021, 10, 7447–7456. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Wang, C.-C.; Chang, W.-L.; Liao, T.-C.; Chen, P.-E.; Tung, T.-H. Clinical Effects of Baduanjin Qigong Exercise on Cancer Patients: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Evid.-Based Complement. Altern. Med. 2021, 2021, 6651238. [Google Scholar] [CrossRef]
- Armer, J.S.; Lutgendorf, S.K. The Impact of Yoga on Fatigue in Cancer Survivorship: A Meta-Analysis. JNCI Cancer Spectr. 2020, 4, pkz098. [Google Scholar] [CrossRef]
- Saini, S.K.; Prakash, K.; Pugazhendi, S. Effectiveness of yoga on quality of life of breast cancer patients undergoing chemotherapy: A randomized clinical controlled study. Indian J. Palliat. Care 2020, 26, 323–331. [Google Scholar] [CrossRef]
- Carson, J.W.; Carson, K.M.; Olsen, M.; Sanders, L.; Westbrook, K.; Keefe, F.J.; Porter, L.S. Yoga Practice Predicts Improvements in Day-to-Day Pain in Women With Metastatic Breast Cancer. J. Pain Symptom Manag. 2021, 61, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, E.-J.; Loh, E.-W.; Lin, J.J.-A.; Tam, K.-W. Effects of yoga on improving quality of life in patients with breast cancer: A meta-analysis of randomized controlled trials. Breast Cancer 2021, 28, 264–276. [Google Scholar] [CrossRef]
- Song, S.; Yu, J.; Ruan, Y.; Liu, X.; Xiu, L.; Yue, X. Ameliorative effects of Tai Chi on cancer-related fatigue: A meta-analysis of randomized controlled trials. Support. Care Cancer 2018, 26, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Gosain, R.; Gage-Bouchard, E.; Ambrosone, C.; Repasky, E.; Gandhi, S. Stress reduction strategies in breast cancer: Review of pharmacologic and non-pharmacologic based strategies. Semin. Immunopathol. 2020, 42, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Kabat-Zinn, J. Mindfulness-Based Interventions in Context: Past, Present, and Future. Clin. Psychol. Sci. Pract. 2003, 10, 144–156. [Google Scholar] [CrossRef]
- Xunlin, N.; Lau, Y.; Klainin-Yobas, P. The effectiveness of mindfulness-based interventions among cancer patients and survivors: A systematic review and meta-analysis. Support. Care Cancer 2020, 28, 1563–1578. [Google Scholar] [CrossRef] [PubMed]
- Pedro, J.; Monteiro-Reis, S.; Carvalho-Maia, C.; Henrique, R.; Jerónimo, C.; Silva, E.R. Evidence of psychological and biological effects of structured Mindfulness-Based Interventions for cancer patients and survivors: A meta-review. Psycho-Oncology 2021, 30, 1836–1848. [Google Scholar] [CrossRef]
- Oberoi, S.; Yang, J.; Woodgate, R.L.; Niraula, S.; Banerji, S.; Israels, S.; Altman, G.; Beattie, S.; Rabbani, R.; Askin, N.; et al. Association of Mindfulness-Based Interventions With Anxiety Severity in Adults With Cancer. JAMA Netw. Open 2020, 3, e2012598. [Google Scholar] [CrossRef]
- Rossi, C.; Maggiore, C.; Rossi, M.M.; Filippone, A.; Guarino, D.; Di Micco, A.; Forcina, L.; Magno, S. A Model of an Integrative Approach to Breast Cancer Patients. Integr. Cancer Ther. 2021, 20, 15347354211040826. [Google Scholar] [CrossRef]
- Fink, J.; Burns, J.; Moreno, A.C.P.; Kram, J.J.; Armstrong, M.; Chopp, S.; Maul, S.J.; Conway, N. A Quality Brief of an Oncological Multisite Massage and Acupuncture Therapy Program to Improve Cancer-Related Outcomes. J. Altern. Complement. Med. 2020, 26, 822–826. [Google Scholar] [CrossRef]
- Greenlee, H.; DuPont-Reyes, M.J.; Rn, L.G.B.; Carlson, L.E.; Cohen, M.R.; Deng, G.; Johnson, J.A.; Mumber, M.; Seely, D.; Zick, S.M.; et al. Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA A Cancer J. Clin. 2017, 67, 194–232. [Google Scholar] [CrossRef]
- Kievisiene, J.; Jautakyte, R.; Rauckiene-Michaelsson, A.; Fatkulina, N.; Agostinis-Sobrinho, C. The Effect of Art Therapy and Music Therapy on Breast Cancer Patients: What We Know and What We Need to Find Out—A Systematic Review. Evid.-Based Complement. Altern. Med. 2020, 2020, 7390321. [Google Scholar] [CrossRef]
- Hopper, S.I.; Murray, S.L.; Ferrara, L.R.; Singleton, J.K. Effectiveness of diaphragmatic breathing for reducing physiological and psychological stress in adults. JBI Database Syst. Rev. Implement. Rep. 2019, 17, 1855–1876. [Google Scholar] [CrossRef]
- Hamilton-West, K.; Pellatt-Higgins, T.; Sharief, F. Evaluation of a Sudarshan Kriya Yoga (SKY) based breath intervention for patients with mild-to-moderate depression and anxiety disorders. Prim. Health Care Res. Dev. 2019, 20, e73. [Google Scholar] [CrossRef] [PubMed]
- Chui, P.L.; Wai, S.; Lai, L.-L.; See, M.H.; Tan, S.B. Mindful Breathing: Effects of a Five-Minute Practice on Perceived Stress and Mindfulness Among Patients With Cancer. Clin. J. Oncol. Nurs. 2021, 25, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Santoso, A.M.; Jansen, F.; de Vries, R.; Leemans, C.R.; van Straten, A.; Leeuw, I.M.V.-D. Prevalence of sleep disturbances among head and neck cancer patients: A systematic review and meta-analysis. Sleep Med. Rev. 2019, 47, 62–73. [Google Scholar] [CrossRef]
- Momayyezi, M.; Fallahzadeh, H.; Farzaneh, F.; Momayyezi, M. Sleep Quality and Cancer-Related Fatigue in Patients with Cancer. J. Caring Sci. 2021, 10, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Santoso, A.M.; Jansen, F.; Lissenberg-Witte, B.I.; de Jong, R.J.B.; Langendijk, J.A.; Leemans, C.R.; Smit, J.H.; Takes, R.P.; Terhaard, C.H.; van Straten, A.; et al. Sleep quality trajectories from head and neck cancer diagnosis to six months after treatment. Oral Oncol. 2021, 115, 105211. [Google Scholar] [CrossRef]
- Ralli, M.; Campo, F.; Angeletti, D.; Allegra, E.; Minni, A.; Polimeni, A.; Greco, A.; De Vincentiis, M. Obstructive Sleep Apnoea in Patients Treated for Head and Neck Cancer: A Systematic Review of the Literature. Medicina 2020, 56, 399. [Google Scholar] [CrossRef] [PubMed]
- Leone, F.; Marciante, G.A.; Re, C.; Bianchi, A.; Costantini, F.; Salamanca, F.; Salvatori, P. Obstructive sleep apnoea after radiotherapy for head and neck cancer. Acta Otorhinolaryngol. Ital. 2020, 40, 338–342. [Google Scholar] [CrossRef]
- Seifen, C.; Huppertz, T.; Matthias, C.; Gouveris, H. Obstructive Sleep Apnea in Patients with Head and Neck Cancer—More than Just a Comorbidity? Medicina 2021, 57, 1174. [Google Scholar] [CrossRef]
- Besedovsky, L.; Lange, T.; Haack, M. The Sleep-Immune Crosstalk in Health and Disease. Physiol. Rev. 2019, 99, 1325–1380. [Google Scholar] [CrossRef] [PubMed]
- Burki, T. Nobel Prize awarded for discoveries in circadian rhythm. Lancet 2017, 390, e25. [Google Scholar] [CrossRef]
- Patel, S.; Kondratov, R. Clock at the Core of Cancer Development. Biology 2021, 10, 150. [Google Scholar] [CrossRef]
- Erren, T.C.; Morfeld, P.; Groß, J.V.; Wild, U.; Lewis, P. IARC 2019: “Night shift work” is probably carcinogenic: What about disturbed chronobiology in all walks of life? J. Occup. Med. Toxicol. 2019, 14, 29. [Google Scholar] [CrossRef]
- Szkiela, M.; Kusideł, E.; Makowiec-Dąbrowska, T.; Kaleta, D. Night Shift Work—A Risk Factor for Breast Cancer. Int. J. Environ. Res. Public Health 2020, 17, 659. [Google Scholar] [CrossRef] [PubMed]
- Behrens, T.; Rabstein, S.; Wichert, K.; Erbel, R.; Eisele, L.; Arendt, M.; Dragano, N.; Brã¼Ning, T.; Jã¶ckel, K.-H. Shift work and the incidence of prostate cancer: A 10-year follow-up of a German population-based cohort study. Scand. J. Work. Environ. Health 2017, 43, 560–568. [Google Scholar] [CrossRef]
- Ritonja, J.; Papantoniou, K.; Ebenberger, A.; Wagner, G.; Gartlehner, G.; Klerings, I.; Morgan, R.; Herkner, H.; Aronson, K.J.; Schernhammer, E.S. Effects of exposure to night shift work on cancer risk in workers. Cochrane Database Syst. Rev. 2019, 2019, CD013466. [Google Scholar] [CrossRef]
- Li, S.; Shui, K.; Zhang, Y.; Lv, Y.; Deng, W.; Ullah, S.; Zhang, L.; Xue, Y. CGDB: A database of circadian genes in eukaryotes. Nucleic Acids Res. 2016, 45, D397–D403. [Google Scholar] [CrossRef]
- Wendeu-Foyet, M.G.; Cénée, S.; Koudou, Y.; Trétarre, B.; Rébillard, X.; Cancel-Tassin, G.; Cussenot, O.; Boland, A.; Olaso, R.; Deleuze, J.; et al. Circadian genes polymorphisms, night work and prostate cancer risk: Findings from the EPICAP study. Int. J. Cancer 2020, 147, 3119–3129. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, K.; Zheng, J.; Lin, H.; Zhao, Q.; Zhang, X.; Feng, W.; Wang, L.; Xu, J.; Xie, D.; et al. Dysregulation, functional implications, and prognostic ability of the circadian clock across cancers. Cancer Med. 2019, 8, 1710–1720. [Google Scholar] [CrossRef]
- Savard, J.; Liu, L.; Natarajan, L.; Rissling, M.B.; Neikrug, A.B.; He, F.; Dimsdale, J.E.; Mills, P.J.; Parker, B.A.; Sadler, G.R.; et al. Breast Cancer Patients have Progressively Impaired Sleep-Wake Activity Rhythms during Chemotherapy. Sleep 2009, 32, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kwok, C.C.-H.; Chan, D.C.-W.; Ho, A.W.-Y.; Ho, C.-S.; Zhang, J.; Wing, Y.K.; Wang, F.; Tse, L.A. Disruption of sleep, sleep-wake activity rhythm, and nocturnal melatonin production in breast cancer patients undergoing adjuvant chemotherapy: Prospective cohort study. Sleep Med. 2019, 55, 14–21. [Google Scholar] [CrossRef] [PubMed]
- van Straten, A.; van der Zweerde, T.; Kleiboer, A.; Cuijpers, P.; Morin, C.M.; Lancee, J. Cognitive and behavioral therapies in the treatment of insomnia: A meta-analysis. Sleep Med. Rev. 2018, 38, 3–16. [Google Scholar] [CrossRef]
- Talib, W.; Alsayed, A.; Abuawad, A.; Daoud, S.; Mahmod, A. Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021, 26, 2506. [Google Scholar] [CrossRef]
- Chen, W.Y.; Giobbie-Hurder, A.; Gantman, K.; Savoie, J.; Scheib, R.; Parker, L.M.; Schernhammer, E. A randomized, placebo-controlled trial of melatonin on breast cancer survivors: Impact on sleep, mood, and hot flashes. Breast Cancer Res. Treat. 2014, 145, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Hrushesky, W.J.M.; Lis, C.G.; Levin, R.D.; Grutsch, J.F.; Birdsall, T.; Wood, P.A.; Huff, D.F.Q.; Reynolds, J.L.; Pearl, D.K.; Shen, X.; et al. Daily evening melatonin prolongs survival among patients with advanced non-small-cell lung cancer. Biol. Rhythm Res. 2022, 53, 1043–1057. [Google Scholar] [CrossRef]
- Zare, H.; Shafabakhsh, R.; Reiter, R.J.; Asemi, Z. Melatonin is a potential inhibitor of ovarian cancer: Molecular aspects. J. Ovarian Res. 2019, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Baburina, Y.; Lomovsky, A.; Krestinina, O. Melatonin as a Potential Multitherapeutic Agent. Phytother. Res. 2021, 11, 274. [Google Scholar] [CrossRef]
- Guerra, J.; Devesa, J. Usefulness of Melatonin and Other Compounds as Antioxidants and Epidrugs in the Treatment of Head and Neck Cancer. Antioxidants 2022, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Aras, S.; Tanzer, I.O.; Can, Ü.; Demir, H.; Sümer, E.; Baydili, K.N.; Orak, R. Radioprotective effects of melatonin against varying dose rates on radiotherapy-induced salivary gland damage scintigraphy findings. Radiat. Phys. Chem. 2022, 193, 109953. [Google Scholar] [CrossRef]
- Shin, Y.Y.; Seo, Y.; Oh, S.; Ahn, J.; Song, M.; Kang, M.; Oh, J.; Lee, D.; Kim, Y.H.; Sung, E.; et al. Melatonin and verteporfin synergistically suppress the growth and stemness of head and neck squamous cell carcinoma through the regulation of mitochondrial dynamics. J. Pineal Res. 2022, 72, e12779. [Google Scholar] [CrossRef]
- Guerra-Librero, A.; Fernandez-Gil, B.; Florido, J.; Martinez-Ruiz, L.; Rodríguez-Santana, C.; Shen, Y.-Q.; García-Verdugo, J.; López-Rodríguez, A.; Rusanova, I.; Quiñones-Hinojosa, A.; et al. Melatonin Targets Metabolism in Head and Neck Cancer Cells by Regulating Mitochondrial Structure and Function. Antioxidants 2021, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Alonso-González, C.; González-González, A.; Menéndez-Menéndez, J.; Cos, S.; Martínez-Campa, C. Melatonin as an Adjuvant to Antiangiogenic Cancer Treatments. Cancers 2021, 13, 3263. [Google Scholar] [CrossRef] [PubMed]
- Kartini, D.; Taher, A.; Panigoro, S.S.; Setiabudy, R.; Jusman, S.W.; Haryana, S.M.; Abdullah, M.; Rustamadji, P.; Purwanto, D.J.; Sutandyo, N.; et al. Effect of melatonin supplementation in combination with neoadjuvant chemotherapy to miR-210 and CD44 expression and clinical response improvement in locally advanced oral squamous cell carcinoma: A randomized controlled trial. J. Egypt. Natl. Cancer Inst. 2020, 32, 12. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Choi, W.S. Use of Melatonin in Cancer Treatment: Where Are We? Int. J. Mol. Sci. 2022, 23, 3779. [Google Scholar] [CrossRef]
- Schrire, Z.M.; Phillips, C.L.; Chapman, J.L.; Duffy, S.L.; Wong, G.; D’Rozario, A.L.; Comas, M.; Raisin, I.; Saini, B.; Gordon, C.J.; et al. Safety of higher doses of melatonin in adults: A systematic review and meta-analysis. J. Pineal Res. 2022, 72, e12782. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kang, M.; Shvetsov, Y.B.; Setiawan, V.W.; Boushey, C.J.; Haiman, C.A.; Wilkens, L.R.; Le Marchand, L. Diet quality and all-cause and cancer-specific mortality in cancer survivors and non-cancer individuals: The Multiethnic Cohort Study. Eur. J. Nutr. 2021, 61, 925–933. [Google Scholar] [CrossRef]
- Clinton, S.K.; Giovannucci, E.L.; Hursting, S.D. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on Diet, Nutrition, Physical Activity, and Cancer: Impact and Future Directions. J. Nutr. 2020, 150, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Dowis, K.; Banga, S. The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients 2021, 13, 1654. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Tognini, P. Molecular Mechanisms Underlying the Bioactive Properties of a Ketogenic Diet. Nutrients 2022, 14, 782. [Google Scholar] [CrossRef]
- Ma, D.C.; Anderson, C.M.; Rodman, S.N.; Buranasudja, V.; McCormick, M.L.; Davis, A.; Loth, E.; Bodeker, K.L.; Ahmann, L.; Parkhurst, J.R.; et al. Ketogenic Diet with Concurrent Chemoradiation in Head and Neck Squamous Cell Carcinoma: Preclinical and Phase 1 Trial Results. Radiat. Res. 2021, 196, 213–224. [Google Scholar] [CrossRef]
- Klement, R.J. Beneficial effects of ketogenic diets for cancer patients: A realist review with focus on evidence and confirmation. Med Oncol. 2017, 34, 132. [Google Scholar] [CrossRef]
- Hagihara, K.; Kajimoto, K.; Osaga, S.; Nagai, N.; Shimosegawa, E.; Nakata, H.; Saito, H.; Nakano, M.; Takeuchi, M.; Kanki, H.; et al. Promising Effect of a New Ketogenic Diet Regimen in Patients with Advanced Cancer. Nutrients 2020, 12, 1473. [Google Scholar] [CrossRef]
- Römer, M.; Dörfler, J.; Huebner, J. The use of ketogenic diets in cancer patients: A systematic review. Clin. Exp. Med. 2021, 21, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Jemal, M.; Molla, T.S.; Dejenie, T.A. Ketogenic Diets and their Therapeutic Potential on Breast Cancer: A Systemic Review. Cancer Manag. Res. 2021, 13, 9147–9155. [Google Scholar] [CrossRef] [PubMed]
- Deligiorgi, M.V.; Liapi, C.; Trafalis, D.T. How Far Are We from Prescribing Fasting as Anticancer Medicine? Int. J. Mol. Sci. 2020, 21, 9175. [Google Scholar] [CrossRef]
- De Groot, S.; Pijl, H.; Van Der Hoeven, J.J.M.; Kroep, J.R. Effects of short-term fasting on cancer treatment. J. Exp. Clin. Cancer Res. 2019, 38, 209. [Google Scholar] [CrossRef] [Green Version]
- Zorn, S.; Ehret, J.; Schäuble, R.; Rautenberg, B.; Ihorst, G.; Bertz, H.; Urbain, P.; Raynor, A. Impact of modified short-term fasting and its combination with a fasting supportive diet during chemotherapy on the incidence and severity of chemotherapy-induced toxicities in cancer patients—A controlled cross-over pilot study. BMC Cancer 2020, 20, 578. [Google Scholar] [CrossRef]
- Dorff, T.B.; Groshen, S.; Garcia, A.; Shah, M.; Tsao-Wei, D.; Pham, H.; Cheng, C.-W.; Brandhorst, S.; Cohen, P.; Wei, M.; et al. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer 2016, 16, 360. [Google Scholar] [CrossRef]
- Lee, C.; Raffaghello, L.; Brandhorst, S.; Safdie, F.M.; Bianchi, G.; Martin-Montalvo, A.; Pistoia, V.; Wei, M.; Hwang, S.; Merlino, A.; et al. Fasting Cycles Retard Growth of Tumors and Sensitize a Range of Cancer Cell Types to Chemotherapy. Sci. Transl. Med. 2012, 4, 124ra27. [Google Scholar] [CrossRef]
- Gabel, K.; Cares, K.; Varady, K.; Gadi, V.; Tussing-Humphreys, L. Current Evidence and Directions for Intermittent Fasting During Cancer Chemotherapy. Adv. Nutr. Int. Rev. J. 2021, 13, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Marinac, C.R.; Nelson, S.H.; Breen, C.I.; Hartman, S.J.; Natarajan, L.; Pierce, J.P.; Flatt, S.W.; Sears, D.D.; Patterson, R.E. Prolonged nightly fasting and breast cancer prognosis. JAMA Oncol. 2016, 2, 1049–1055. [Google Scholar] [CrossRef]
- Miron, O.; Turcanu, A.M.; Ciuntu, B.M.; Poroch, V.; Timofte, D. The Biochemical Effect of Smoking on the Response to Chemotherapy. Rev. Chim. 2019, 70, 2879–2882. [Google Scholar] [CrossRef]
- Sheikh, M.; Mukeriya, A.; Shangina, O.; Brennan, P.; Zaridze, D. Postdiagnosis Smoking Cessation and Reduced Risk for Lung Cancer Progression and Mortality: A prospective cohort study. Ann. Intern. Med. 2021, 174, 1232–1239. [Google Scholar] [CrossRef]
- Shiels, M.S.; Gibson, T.; Sampson, J.; Albanes, D.; Andreotti, G.; Freeman, L.B.; de Gonzalez, A.B.; Caporaso, N.; Curtis, R.E.; Elena, J.; et al. Cigarette Smoking Prior to First Cancer and Risk of Second Smoking-Associated Cancers Among Survivors of Bladder, Kidney, Head and Neck, and Stage I Lung Cancers. J. Clin. Oncol. 2014, 32, 3989–3995. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, R.R.S.R.R.; Pateriya, P.P.P.; Singh, M.S.M. Green tea—A short review. Int. J. Indig. Herbs Drugs 2018, 3, 12–21. [Google Scholar]
- Sinija, V.R.; Mishra, H.N. Green tea: Health benefits. J. Nutr. Environ. Med. 2008, 17, 232–242. [Google Scholar] [CrossRef]
- Eisenstein, M. Tea for tumors. Nature 2019, 566, 56–57. [Google Scholar]
- Hu, J.; Webster, D.; Cao, J.; Shao, A. The safety of green tea and green tea extract consumption in adults—Results of a systematic review. Regul. Toxicol. Pharmacol. 2018, 95, 412–433. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, H. Encylopedia of Cancer, 4th ed.; Schwab, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1960–1965. [Google Scholar]
- Suganuma, M.; Takahashi, A.; Watanabe, T.; Iida, K.; Matsuzaki, T.; Yoshikawa, H.Y.; Fujiki, H. Biophysical Approach to Mechanisms of Cancer Prevention and Treatment with Green Tea Catechins. Molecules 2016, 21, 1566. [Google Scholar] [CrossRef]
- Fujiki, H.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate. J. Cancer Res. Clin. Oncol. 2017, 143, 2401–2412. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, Z.; Han, Y.; Wang, J.; Wang, Y.; Chen, X.; Shao, Y.; Cheng, Y.; Zhou, W.; Lu, X.; et al. A review on anti-cancer effect of green tea catechins. J. Funct. Foods 2020, 74, 104172. [Google Scholar] [CrossRef]
- Rawangkan, A.; Wongsirisin, P.; Namiki, K.; Iida, K.; Kobayashi, Y.; Shimizu, Y.; Fujiki, H.; Suganuma, M. Green Tea Catechin Is an Alternative Immune Checkpoint Inhibitor that Inhibits PD-L1 Expression and Lung Tumor Growth. Molecules 2018, 23, 2071. [Google Scholar] [CrossRef]
- El-Rahman, S.S.A.; Shehab, G.; Nashaat, H. Epigallocatechin-3-Gallate: The Prospective Targeting of Cancer Stem Cells and Preventing Metastasis of Chemically-Induced Mammary Cancer in Rats. Am. J. Med Sci. 2017, 354, 54–63. [Google Scholar] [CrossRef]
- Cabrera, C.; Artacho, R.; Giménez, R. Beneficial Effects of Green Tea—A Review. J. Am. Coll. Nutr. 2006, 25, 79–99. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.R.; Wang, D.; Nannapaneni, S.; Lamichhane, R.; Chen, Z.G.; Shin, D.M. Combination of resveratrol and green tea epigallocatechin gallate induces synergistic apoptosis and inhibits tumor growth in vivo in head and neck cancer models. Oncol. Rep. 2021, 45, 87. [Google Scholar] [CrossRef]
- Nakachi, K.; Suemasu, K.; Suga, K.; Takeo, T.; Imai, K.; Higashi, Y. Influence of Drinking Green Tea on Breast Cancer Malignancy among Japanese Patients. Jpn. J. Cancer Res. 1998, 89, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Trudel, D.; Labbé, D.P.; Bairati, I.; Fradet, V.; Bazinet, L.; Têtu, B. Green tea for ovarian cancer prevention and treatment: A systematic review of the in vitro, in vivo and epidemiological studies. Gynecol. Oncol. 2012, 126, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Bettuzzi, S.; Brausi, M.; Rizzi, F.; Castagnetti, G.; Peracchia, G.; Corti, A. Chemoprevention of Human Prostate Cancer by Oral Administration of Green Tea Catechins in Volunteers with High-Grade Prostate Intraepithelial Neoplasia: A Preliminary Report from a One-Year Proof-of-Principle Study. Cancer Res. 2006, 66, 1234–1240. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.M.; Nannapaneni, S.; Patel, M.R.; Shi, Q.; Liu, Y.; Chen, Z.; Chen, A.Y.; El-Deiry, M.W.; Beitler, J.J.; Steuer, C.E.; et al. Phase Ib Study of Chemoprevention with Green Tea Polyphenon E and Erlotinib in Patients with Advanced Premalignant Lesions (APL) of the Head and Neck. Clin. Cancer Res. 2020, 26, 5860–5868. [Google Scholar] [CrossRef] [PubMed]
- Oketch-Rabah, H.A.; Roe, A.L.; Rider, C.V.; Bonkovsky, H.L.; Giancaspro, G.I.; Navarro, V.; Paine, M.F.; Betz, J.M.; Marles, R.J.; Casper, S.; et al. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol. Rep. 2020, 7, 386–402. [Google Scholar] [CrossRef] [PubMed]
- Shamekhi, Z.; Amani, R.; Habibagahi, Z.; Namjoyan, F.; Ghadiri, A.; Malehi, A.S.; Ghadiri, A. A Randomized, Double-blind, Placebo-controlled Clinical Trial Examining the Effects of Green Tea Extract on Systemic Lupus Erythematosus Disease Activity and Quality of Life. Phytother. Res. 2017, 31, 1063–1071. [Google Scholar] [CrossRef]
- Park, J.-E.; Kim, T.-E.; Shin, K.H. Quantitative Analysis of Four Catechins from Green Tea Extract in Human Plasma Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry for Pharmacokinetic Studies. Molecules 2018, 23, 984. [Google Scholar] [CrossRef]
- Fujiki, H.; Sueoka, E.; Watanabe, T.; Suganuma, M. Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds. J. Cancer Res. Clin. Oncol. 2015, 141, 1511–1522. [Google Scholar] [CrossRef]
- Beliveau, R.; Gingras, D. Foods to Fight Cancer: Essential Foods to Help Prevent Cancer, 1st ed.; Fahey, K., Latham, J., Sadler, P., Warren, P., Markham, M., Eds.; Dorling Kindersley Publishing, Incorporated: New York, NY, USA, 2007. [Google Scholar]
- Saklar, S.; Ertas, E.; Ozdemir, I.S.; Karadeniz, B. Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. J. Food Sci. Technol. 2015, 52, 6639–6646. [Google Scholar] [CrossRef]
- Hutchins-Wolfbrandt, A.; Mistry, A.M. Dietary turmeric potentially reduces the risk of cancer. Asian Pac. J. Cancer Prev. 2011, 12, 3169–3173. [Google Scholar]
- Gupta, N.; Verma, K.; Nalla, S.; Kulshreshtha, A.; Lall, R.; Prasad, S. Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin. Molecules 2020, 25, 5390. [Google Scholar] [CrossRef]
- Calibasi-Kocal, G.; Pakdemirli, A.; Bayrak, S.; Ozupek, N.M.; Sever, T.; Basbinar, Y.; Ellidokuz, H.; Yigitbasi, T. Curcumin effects on cell proliferation, angiogenesis and metastasis in colorectal cancer. J. BU ON 2019, 24, 1482–1487. [Google Scholar]
- Golonko, A.; Lewandowska, H.; Świsłocka, R.; Jasińska, U.; Priebe, W.; Lewandowski, W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur. J. Med. Chem. 2019, 181, 111512. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, M.K.; Rane, G.; Kanchi, M.M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Tan, B.K.H.; Kumar, A.P.; Sethi, G. The Multifaceted Role of Curcumin in Cancer Prevention and Treatment. Molecules 2015, 20, 2728–2769. [Google Scholar] [CrossRef] [PubMed]
- Kabir, T.; Rahman, H.; Akter, R.; Behl, T.; Kaushik, D.; Mittal, V.; Pandey, P.; Akhtar, M.; Saleem, A.; Albadrani, G.; et al. Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules 2021, 11, 392. [Google Scholar] [CrossRef]
- Zaman, M.S.; Chauhan, N.; Yallapu, M.M.; Gara, R.K.; Maher, D.M.; Kumari, S.; Sikander, M.; Khan, S.; Zafar, N.; Jaggi, M.; et al. Curcumin Nanoformulation for Cervical Cancer Treatment. Sci. Rep. 2016, 6, 20051. [Google Scholar] [CrossRef]
- Varshosaz, J.; Jajanian-Najafabadi, A.; Soleymani, A.; Khajavinia, A. Poly (butylene adipate-co-terephthalate) electrospun nanofibers loaded with 5-fluorouracil and curcumin in treatment of colorectal cancer cells. Polym. Test. 2018, 65, 217–230. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, X.; Yu, Z.; Li, Y.; Qin, L.; Liu, Z.; Feng, L.; Guo, R.; Zheng, Y. Novel T7-Modified pH-Responsive Targeted Nanosystem for Co-Delivery of Docetaxel and Curcumin in the Treatment of Esophageal Cancer. Int. J. Nanomed. 2020, 15, 7745–7762. [Google Scholar] [CrossRef]
- Farghadani, R.; Naidu, R. Curcumin: Modulator of Key Molecular Signaling Pathways in Hormone-Independent Breast Cancer. Cancers 2021, 13, 3427. [Google Scholar] [CrossRef]
- Chen, C.; Hsieh, M.; Ju, P.; Hsieh, Y.; Su, C.; Chen, Y.; Yang, S.; Lin, C. Curcumin analog HO-3867 triggers apoptotic pathways through activating JNK1/2 signalling in human oral squamous cell carcinoma cells. J. Cell. Mol. Med. 2022, 26, 2273–2284. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, G.; Wei, Z. Prophylactic and Therapeutic Effects of Curcumin on Treatment-Induced Oral Mucositis in Patients with Head and Neck Cancer: A Meta-Analysis of Randomized Controlled Trials. Nutr. Cancer 2021, 73, 740–749. [Google Scholar] [CrossRef]
- Dharman, S.; Maragathavalli, G.; Shanmugasundaram, K.; Shanmugam, R.K. A Systematic Review and Meta-Analysis on the Efficacy of Curcumin/Turmeric for the Prevention and Amelioration of Radiotherapy/Radiochemotherapy Induced Oral Mucositis in Head and Neck Cancer Patients. Asian Pac. J. Cancer Prev. 2021, 22, 1671–1684. [Google Scholar] [CrossRef] [PubMed]
- Soni, T.P.; Gupta, A.K.; Sharma, L.M.; Singhal, H.; Sharma, S.; Gothwal, R.S. A Randomized, Placebo-Controlled Study to Evaluate the Effect of Bio-Enhanced Turmeric Formulation on Radiation-Induced Oral Mucositis. ORL 2022, 84, 103–113. [Google Scholar] [CrossRef]
- Ahmad, R.S.; Hussain, M.B.; Sultan, M.T.; Arshad, M.S.; Waheed, M.; Shariati, M.A.; Plygun, S.; Hashempur, M.H. Biochemistry, Safety, Pharmacological Activities, and Clinical Applications of Turmeric: A Mechanistic Review. Evid.-Based Complement. Altern. Med. 2020, 2020, 7656919. [Google Scholar] [CrossRef]
- Gasic, G.; Gasic, T.; Murphy, S. Anti-Metastatic Effect of Aspirin. Lancet 1972, 300, 932–933. [Google Scholar] [CrossRef]
- Patrono, C.; Rocca, B. Aspirin at 120: Retiring, recombining, or repurposing? Res. Pract. Thromb. Haemost. 2021, 5, e12516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, Y.; Liu, X.; Ma, J.; Li, Y.; Wang, T.; Li, X. Beyond a chemopreventive reagent, aspirin is a master regulator of the hallmarks of cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 1387–1403. [Google Scholar] [CrossRef]
- Elwood, P.C.; Morgan, G.; Delon, C.; Protty, M.; Galante, J.; Pickering, J.; Watkins, J.; Weightman, A.; Morris, D. Aspirin and cancer survival: A systematic review and meta-analyses of 118 observational studies of aspirin and 18 cancers. ecancermedicalscience 2021, 15, 1258. [Google Scholar] [CrossRef]
- de la Cour, C.D.; von Buchwald, C.; Dehlendorff, C.; Garset-Zamani, M.; Grønhøj, C.; Carlander, A.F.; Friis, S.; Kjaer, S.K. Low-dose aspirin use and mortality risk in patients with head and neck cancer: A nationwide cohort study of 10 770 patients. Int. J. Cancer 2022, 150, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Crist, M.; Lehn, M.; Wise-Draper, T. Abstract 1775: Metformin-mediated natural killer cell cytotoxicity in head and neck squamous cell carcinoma. Cancer Res. 2021, 81, 1775. [Google Scholar] [CrossRef]
- Coleman, N.; Naing, A.; Zhang, S.; Piha-Paul, S.A.A.; Tsimberidou, A.M.; Janku, F.; Rodon, J.; Pant, S.; Dumbrava, E.E.; Fu, S.; et al. Phase I study of mTORC1/2 inhibitor sapanisertib (TAK-228) in combination with metformin in patients (pts) with mTOR/AKT/PI3K pathway alterations and advanced solid malignancies. J. Clin. Oncol. 2021, 39, 3017. [Google Scholar] [CrossRef]
- Wilkie, M.D.; Anaam, E.A.; Lau, A.S.; Rubbi, C.P.; Vlatkovic, N.; Jones, T.M.; Boyd, M.T. Metabolic Plasticity and Combinatorial Radiosensitisation Strategies in Human Papillomavirus-Positive Squamous Cell Carcinoma of the Head and Neck Cell Lines. Cancers 2021, 13, 4836. [Google Scholar] [CrossRef]
- Jungbauer, W.N.; Ali, M.M.; Wuertz, B.R.; Ondrey, F.G. Use of kinase inhibitors in Fanconi anemia oral cancercell lines. Cancer Res. 2021, 81, 2568. [Google Scholar] [CrossRef]
- Veeramachaneni, R.; Yu, W.; Newton, J.M.; O Kemnade, J.; Skinner, H.D.; Sikora, A.G.; Sandulache, V.C. Metformin generates profound alterations in systemic and tumor immunity with associated antitumor effects. J. Immunother. Cancer 2021, 9, e002773. [Google Scholar] [CrossRef]
- Buczyńska, A.; Sidorkiewicz, I.; Krętowski, A.J.; Zbucka-Krętowska, M.; Adamska, A. Metformin Intervention—A Panacea for Cancer Treatment? Cancers 2022, 14, 1336. [Google Scholar] [CrossRef] [PubMed]
- Saraei, P.; Asadi, I.; Kakar, M.A.; Moradi-Kor, N. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances. Cancer Manag. Res. 2019, 11, 3295–3313. [Google Scholar] [CrossRef] [PubMed]
- Alhowail, A.; Chigurupati, S. Research advances on how metformin improves memory impairment in “chemobrain”. Neural Regen. Res. 2022, 17, 15–19. [Google Scholar] [CrossRef] [PubMed]
- A Al-Ghalib, H.; Al-Otaibi, A.D.; Al Tulaihi, B.; Al-Ghaleb, S. The anti-proliferative role of metformin in non-diabetic female patients with breast cancer: Systematic review and meta-analysis of randomized control trials. Clin. Diabetol. 2021, 10, 252–260. [Google Scholar] [CrossRef]
- Tsakiridis, T.; Pond, G.R.; Wright, J.; Ellis, P.M.; Ahmed, N.; Abdulkarim, B.; Roa, W.; Robinson, A.; Swaminath, A.; Okawara, G.; et al. Metformin in Combination With Chemoradiotherapy in Locally Advanced Non–Small Cell Lung Cancer. JAMA Oncol. 2021, 7, 1333. [Google Scholar] [CrossRef]
- Bae-Jump, V.; Sill, M.; Gehrig, P.; Moxley, K.; Hagemann, A.; Waggoner, S.; O’Cearbhaill, R.; McDonald, M.; DiSilvestro, P.; Sperduto, P.; et al. A randomized phase II/III study of paclitaxel/carboplatin/metformin versus paclitaxel/carboplatin/placebo as initial therapy for measurable stage III or IVA, stage IVB, or recurrent endometrial cancer: An NRG Oncology/GOG study. Gynecol. Oncol. 2020, 159, 7. [Google Scholar] [CrossRef]
- Masarwa, R.; Brunetti, V.C.; Aloe, S.; Henderson, M.; Platt, R.W.; Filion, K.B. Efficacy and Safety of Metformin for Obesity: A Systematic Review. Pediatrics 2021, 147, e20201610. [Google Scholar] [CrossRef]
- Gharib, M.; Elbaz, W.; Darweesh, E.; Sabri, N.A.; Shawki, M.A. Efficacy and Safety of Metformin Use in Rheumatoid Arthritis: A Randomized Controlled Study. Front. Pharmacol. 2021, 12, 726490. [Google Scholar] [CrossRef] [PubMed]
- Lusica, P.M.M.; Eugenio, K.P.Y.; Sacdalan, D.B.L.; Jimeno, C.A. A systematic review and meta-analysis on the efficacy and safety of metformin as adjunctive therapy among women with metastatic breast cancer. Cancer Treat. Res. Commun. 2021, 29, 100457. [Google Scholar] [CrossRef] [PubMed]
- Kao, L.-T.; Hung, S.-H.; Kao, P.-F.; Liu, J.-C.; Lin, H.-C. Inverse association between statin use and head and neck cancer: Population-based case-control study in Han population. Head Neck 2019, 41, 1193–1198. [Google Scholar] [CrossRef]
- Bourguillon, R.O.; Stokes, W.A.; Dorth, J.; Schmitt, N.C. Repurposing Statin Drugs to Decrease Toxicity and Improve Survival Outcomes in Head and Neck Cancer. OTO Open 2021, 5, 2473974X211065715. [Google Scholar] [CrossRef] [PubMed]
- Matusewicz, L.; Czogalla, A.; Sikorski, A.F. Attempts to use statins in cancer therapy: An update. Tumor Biol. 2020, 42, 1010428320941760. [Google Scholar] [CrossRef]
- Tricarico, P.M.; Crovella, S.; Celsi, F. Mevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link. Int. J. Mol. Sci. 2015, 16, 16067–16084. [Google Scholar] [CrossRef]
- Carroll, R.G.; Zasłona, Z.; Galván-Peña, S.; Koppe, E.L.; Sévin, D.C.; Angiari, S.; Triantafilou, M.; Triantafilou, K.; Modis, L.K.; O’Neill, L.A. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. J. Biol. Chem. 2018, 293, 5509–5521. [Google Scholar] [CrossRef]
- Seckl, M.J.; Ottensmeier, C.; Cullen, M.; Schmid, P.; Ngai, Y.; Muthukumar, D.; Thompson, J.; Harden, S.V.; Middleton, G.; Fife, K.M.; et al. Multicenter, Phase III, Randomized, Double-Blind, Placebo-Controlled Trial of Pravastatin Added to First-Line Standard Chemotherapy in Small-Cell Lung Cancer (LUNGSTAR). J. Clin. Oncol. 2017, 35, 1506–1514. [Google Scholar] [CrossRef]
- Marti, J.L.G.; Beckwitt, C.H.; Clark, A.M.; Wells, A. Atorvastatin facilitates chemotherapy effects in metastatic triple-negative breast cancer. Br. J. Cancer 2021, 125, 1285–1298. [Google Scholar] [CrossRef]
- Pun, N.T.; Jeong, C.-H. Statin as a Potential Chemotherapeutic Agent: Current Updates as a Monotherapy, Combination Therapy, and Treatment for Anti-Cancer Drug Resistance. Pharmaceuticals 2021, 14, 470. [Google Scholar] [CrossRef]
- Gilman, K.A.K.; Han, S.; Won, Y.-W.; Putnam, C.W. Complex interactions of lovastatin with 10 chemotherapeutic drugs: A rigorous evaluation of synergism and antagonism. BMC Cancer 2021, 21, 356. [Google Scholar] [CrossRef]
- Jiménez-Vacas, J.M.; Herrero-Aguayo, V.; Montero-Hidalgo, A.J.; Sáez-Martínez, P.; Gómez-Gómez, E.; León-González, A.J.; Fuentes-Fayos, A.C.; Yubero-Serrano, E.M.; Requena-Tapia, M.J.; López, M.; et al. Clinical, Cellular, and Molecular Evidence of the Additive Antitumor Effects of Biguanides and Statins in Prostate Cancer. J. Clin. Endocrinol. Metab. 2021, 106, e696–e710. [Google Scholar] [CrossRef] [PubMed]
Increase: | Whole grains, fruits, vegetables, beans, nuts (goal is to exceed 30 gm fiber per day and 5 portions of fresh fruits/vegetables daily) |
Reduce: | Fast foods and processed foods which may be high in simple carbohydrates and fat; sugary drinks, red meat (to maximum 3 portions/week) and avoid processed meats |
Limit: | Consumption of alcohol |
Overall goal | Reduce weight to normal BMI and avoid weight gain |
Induces: | Cellular apoptosis Cellular necrosis Cell cycle arrest |
Impacts: | Cell morphology Protein synthesis |
Inhibits: | Metastasis Angiogenesis Proliferation DNA methylation Immune checkpoint proteins Transcription and translation of genes that encode stemness markers Spheroid formation in stem cells Glutamine dehydrogenase and other enzyme pathways |
Other effects | Anti-inflammatory Anti-oxidative and pro-oxidative effects |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Money, M.E.; Matthews, C.M.; Tan-Shalaby, J. Review of Under-Recognized Adjunctive Therapies for Cancer. Cancers 2022, 14, 4780. https://doi.org/10.3390/cancers14194780
Money ME, Matthews CM, Tan-Shalaby J. Review of Under-Recognized Adjunctive Therapies for Cancer. Cancers. 2022; 14(19):4780. https://doi.org/10.3390/cancers14194780
Chicago/Turabian StyleMoney, Mary E., Carolyn M. Matthews, and Jocelyn Tan-Shalaby. 2022. "Review of Under-Recognized Adjunctive Therapies for Cancer" Cancers 14, no. 19: 4780. https://doi.org/10.3390/cancers14194780
APA StyleMoney, M. E., Matthews, C. M., & Tan-Shalaby, J. (2022). Review of Under-Recognized Adjunctive Therapies for Cancer. Cancers, 14(19), 4780. https://doi.org/10.3390/cancers14194780