Surface Porousization of Hard Carbon Anode Materials for Sodium-Ion Batteries
Abstract
1. Introduction
2. Experimental Section
2.1. Materials Fabrication
2.2. Preparation of HC-HO
2.3. Material Characterizations
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geng, Y.; Xiang, Q.; Gao, J.; Yan, Y.; Li, J. Progress and framework of clean energy production: Bibliometric analysis from 2002 to 2022. J. Energy Strategy Rev. 2024, 52, 101270. [Google Scholar] [CrossRef]
- Tarroja, B.; Schoenung, J.M.; Ogunseitan, O.; Kendall, A.; Qiu, Y.; Malloy, T.; Peters, J.; Cha, J.M.; Mulvaney, D.; Heidrich, O.; et al. Overcoming barriers to improved decision-making for battery deployment in the clean energy transition. iScience 2024, 27, 109898. [Google Scholar] [CrossRef] [PubMed]
- Fichtner, M.; Edström, K.; Ayerbe, E.; Berecibar, M.; Bhowmik, A.; Castelli, I.E.; Clark, S.; Dominko, R.; Erakca, M.; Franco, A.A.; et al. Rechargeable batteries of the future—the state of the art from a battery 2030+ perspective. Adv. Energy Mater. 2022, 12, 2102904. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-energy lithium-ion batteries: Recent progress and a promising future in applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035. [Google Scholar] [CrossRef]
- Goikolea, E.; Palomares, V.; Wang, S.; de Larramendi, I.R.; Guo, X.; Wang, G.; Rojo, T. Na-ion batteries—approaching old and new challenges. Adv. Energy Mater. 2020, 10, 2002055. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H.; Peng, J.; Li, L.; Xiao, Y.; Li, L.; Liu, Y.; Qiao, Y.; Chou, S.-L. A 30-year overview of sodium-ion batteries. Carbon Energy 2024, 6, e464. [Google Scholar] [CrossRef]
- Liu, Y.; Merinov, B.V.; Goddard, W.A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. USA 2016, 113, 3735–3739. [Google Scholar] [CrossRef]
- Subramanyan, K.; Aravindan, V. Towards commercialization of graphite as an anode for Na-ion batteries: Evolution, virtues, and snags of solvent cointercalation. ACS Energy Lett. 2023, 8, 436–446. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, R.; Xu, S.; Zhou, H.; Guo, S. Molecular engineering enabling high initial coulombic efficiency and rubost solid electrolyte interphase for hard carbon in sodium-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202318960. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, Z.; Xie, L.; Mao, Y.; Ji, W.; Liu, Z.; Wei, X.; Su, F.; Chen, C.-M. Releasing free radicals in precursor triggers the formation of closed pores in hard carbon for sodium-ion batteries. Adv. Mater. 2024, 36, 2401249. [Google Scholar] [CrossRef] [PubMed]
- Pendashteh, A.; Orayech, B.; Suhard, H.; Jauregui, M.; Ajuria, J.; Silván, B.; Clarke, S.; Bonilla, F.; Saurel, D. Boosting the performance of soft carbon negative electrode for high power Na-ion batteries and Li-ion capacitors through a rational strategy of structural and morphological manipulation. Energy Storage Mater. 2022, 46, 417–430. [Google Scholar] [CrossRef]
- Wu, W.; Wang, A.; Xu, D.; Huang, C.; Liu, X.; Hu, Z.; Luo, J. A soft carbon materials with engineered composition and microstructure for sodium battery anodes. Nano Energy 2024, 128, 109880. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, P.; Qu, Z.; Yan, Y.; Lai, C.; Liu, T.; Zhang, S. Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery. Nat. Commun. 2019, 10, 3917. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, Y.; Niu, Z.; Chen, J. Graphene-based nanomaterials for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702469. [Google Scholar] [CrossRef]
- Li, C.; Zheng, X.; Sun, M.; Tian, F.; Lei, D.; Wang, C. Regulate the chemical property of the carbon nanospheres layer modified on the surface of sodium metal anode to achieve high-load battery. Nano Res. 2024, 17, 9728–9736. [Google Scholar] [CrossRef]
- Hou, Z.; Jiang, M.; Lei, D.; Zhang, X.; Gao, Y.; Wang, J.-G. Regulation of pseudographitic carbon domain to boost sodium energy storage. Nano Res. 2024, 17, 5188–5196. [Google Scholar] [CrossRef]
- He, X.-X.; Lai, W.-H.; Liang, Y.; Zhao, J.-H.; Yang, Z.; Peng, J.; Liu, X.-H.; Wang, Y.-X.; Qiao, Y.; Li, L.; et al. Achieving all-plateau and high-capacity sodium insertion in topological graphitized carbon. Adv. Mater. 2023, 35, 2302613. [Google Scholar] [CrossRef]
- Zheng, Z.; Hu, S.; Yin, W.; Peng, J.; Wang, R.; Jin, J.; He, B.; Gong, Y.; Wang, H.; Fan, H.J. CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage. Adv. Energy Mater. 2024, 14, 2303064. [Google Scholar] [CrossRef]
- You, S.; Zhang, Q.; Liu, J.; Deng, Q.; Sun, Z.; Cao, D.; Liu, T.; Amine, K.; Yang, C. Hard carbon with an opened pore structure for enhanced sodium storage performance. Energy Environ. Sci. 2024, 17, 8189–8197. [Google Scholar] [CrossRef]
- Iglesias, L.K.; Antonio, E.N.; Martinez, T.D.; Zhang, L.; Zhuo, Z.; Weigand, S.J.; Guo, J.; Toney, M.F. Revealing the sodium storage mechanisms in hard carbon pores. Adv. Energy Mater. 2023, 13, 2302171. [Google Scholar] [CrossRef]
- Zhou, S.; Tang, Z.; Pan, Z.; Huang, Y.; Zhao, L.; Zhang, X.; Sun, D.; Tang, Y.; Dhmees, A.S.; Wang, H. Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature. SusMat 2022, 2, 357–367. [Google Scholar] [CrossRef]
- Eren, E.O.; Senokos, E.; Song, Z.; Mondal, B.; Perju, A.; Horner, T.; Yılmaz, E.B.; Scoppola, E.; Taberna, P.-L.; Simon, P.; et al. Hard carbon from a sugar derivative for next-generation sodium-ion batteries. Mater. Horiz. 2024, 12, 886–898. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Deng, Q.; Zhang, Q.; Huang, K.; Yang, C. Mechanistic insights into the interactions between a new type of hard carbon anode and organic electrolytes in sodium-ion batteries. ACS Sustain. Chem. Eng. 2023, 11, 10590–10597. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, K.; Li, H.; Li, W.; Feng, P.; Zhang, Z.; Wang, W.; Zhou, M.; Jiang, K. Tuning microstructures of hard carbon for high capacity and rate sodium storage. Chem. Eng. J. 2021, 417, 128104. [Google Scholar] [CrossRef]
- Guo, L.; Huang, M.; Liu, W.; Zhu, H.; Cheng, Y.; Wang, M.-S. Pore-size tuning of hard carbon to optimize its wettability for efficient Na+ storage. J. Mater. Chem. A 2024, 12, 13703–13712. [Google Scholar] [CrossRef]
- Xiong, Z.; Yue, L.; Zhang, Y.; Ding, H.; Bai, L.; Zhao, Q.; Mei, T.; Cao, J.; Qi, Y.; Xu, M. Structural regulation of asphalt-based hard carbon microcrystals based on liquid-phase crosslinking to enhance sodium storage. J. Colloid Interface Sci. 2024, 658, 610–616. [Google Scholar] [CrossRef]
- Peng, J.; Tan, H.; Tang, Y.; Yang, J.; Liu, P.; Liu, J.; Zhou, K.; Zeng, P.; He, L.; Wang, X. The induced formation and regulation of closed-pore structure for biomass hard carbon as anode in sodium-ion batteries. J. Energy Storage 2024, 101, 113864. [Google Scholar] [CrossRef]
- Chen, C.; Huang, Y.; Lu, M.; Zhang, J.; Li, T. Tuning morphology, defects and functional group types in hard carbon via phosphorus doped for rapid sodium storage. Carbon 2021, 183, 415–427. [Google Scholar] [CrossRef]
- Wen, C.; Huang, M.; Feng, C.; Kong, N.; Hou, K.; Xie, R.; Shao, Z.; Tan, R.; Han, F. Construction of microporous structure in hard carbon via adjustable Zn salt templates for high-performance sodium-ion batteries. Carbon 2024, 230, 119702. [Google Scholar] [CrossRef]
- Lu, Z.; Geng, C.; Yang, H.; He, P.; Wu, S.; Yang, Q.-H.; Zhou, H. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proc. Natl. Acad. Sci. USA 2022, 119, e2210203119. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, F.; Gong, Y.; Li, Y.; Li, Y.; Feng, X.; Li, Q.; Wu, C.; Bai, Y. Interfacial-Catalysis-Enabled Layered and Inorganic-Rich SEI on Hard Carbon Anodes in Ester Electrolytes for Sodium-Ion Batteries. Adv. Mater. 2023, 35, 2300002. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zheng, L.; Bai, Y.; Ni, Q.; Li, Y.; Wu, F.; Ren, H.; Wu, C. Elucidating the mechanism of fast Na Storage Kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 2021, 33, 2008810. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, Z.; Yuan, H.; Yan, C.; Hao, R.; Zhang, F.; Luo, W.; Wang, H.; Cao, Y.; Gu, S.; et al. Deciphering electrolyte dominated Na+ storage mechanisms in hard carbon anodes for sodium-ion batteries. Adv. Sci. 2023, 10, 2305414. [Google Scholar] [CrossRef]
- Wu, S.; Peng, H.; Xu, J.; Huang, L.; Liu, Y.; Xu, X.; Wu, Y.; Sun, Z. Nitrogen/phosphorus co-doped ultramicropores hard carbon spheres for rapid sodium storage. Carbon 2024, 218, 118756. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Zhao, J.; Yao, H.; He, X.-X.; Zhang, H.; Qiao, Y.; Wu, X.-Q.; Li, L.; Chou, S.-L. P-doped spherical hard carbon with high initial coulombic efficiency and enhanced capacity for sodium ion batteries. Chem. Sci. 2024, 15, 8478–8487. [Google Scholar] [CrossRef]
- Lu, P.; Sun, Y.; Xiang, H.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702434. [Google Scholar] [CrossRef]
- Meng, Q.; Lu, Y.; Ding, F.; Zhang, Q.; Chen, L.; Hu, Y.-S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019, 4, 2608. [Google Scholar] [CrossRef]
- Xiao, L.; Lu, H.; Fang, Y.; Sushko, M.L.; Cao, Y.; Ai, X.; Yang, H.; Liu, J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 2018, 8, 1703238. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, C.; Qi, X.; Qi, Y.; Li, H.; Huang, X.; Chen, L.; Hu, Y.-S. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Adv. Energy Mater. 2018, 8, 1800108. [Google Scholar] [CrossRef]
- Xiao, B.; Soto, F.A.; Gu, M.; Han, K.S.; Song, J.; Wang, H.; Engelhard, M.H.; Murugesan, V.; Mueller, K.T.; Reed, D.; et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes. Adv. Energy Mater. 2018, 8, 1801441. [Google Scholar] [CrossRef]
- He, Y.; Bai, P.; Gao, S.; Xu, Y. Marriage of an ether-based electrolyte with hard carbon anodes creates superior sodium-ion batteries with high mass loading. ACS Appl. Mater. Interfaces 2018, 10, 41380–41388. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Huang, T.; Liu, G.; Wei, Y.; Zhang, Y.; Xue, H.; Zhang, L. Modifying lignite-derived hard carbon with micron carbon tubes to improve sodium-ion storage. Mater. Today Sustain. 2024, 27, 100929. [Google Scholar] [CrossRef]
- Chen, M.; Luo, F.; Liao, Y.; Liu, C.; Xu, D.; Wang, Z.; Liu, Q.; Wang, D.; Ye, Y.; Li, S.; et al. Hard carbon derived for lignin with robust and low-potential sodium ion storage. Electroanal. Chem. 2022, 919, 116526. [Google Scholar] [CrossRef]
- Ghimbeu, C.M.; Zhang, B.; de Yuso, A.M.; Réty, B.; Tarascon, J.-M. Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: Impact of lignin grade. Carbon 2019, 153, 634–647. [Google Scholar] [CrossRef]
- Huang, Z.; Qiu, X.; Wang, C.; Jian, W.; Zhong, L.; Zhu, J.; Zu, X.; Zhang, W. Revealing the effect of hard carbon structure on the sodium storage behavior by using a model hard carbon precursor. J. Energy Storage 2023, 72, 108406. [Google Scholar] [CrossRef]
- Yousaf, M.; Naseer, U.; Li, Y.; Ali, Z.; Mahmood, N.; Wang, L.; Gao, P.; Guo, S. A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. Energy Environ. Sci. 2021, 14, 2670–2707. [Google Scholar] [CrossRef]
- Yousaf, M.; Naseer, U.; Imran, A.; Li, Y.; Aftab, W.; Mahmood, A.; Mahmood, N.; Zhang, X.; Gao, P.; Lu, Y.; et al. Visualization of battery materials and their interfaces/interphases using cryogenic electron microscopy. Mater. Today 2022, 58, 238–274. [Google Scholar] [CrossRef]
Anode | Electrolyte | Average Loading (mg cm−2) | Current Density (mA g−1) | Charge/Discharge Capacity (mAh g−1) | ICE | Ref. |
---|---|---|---|---|---|---|
CPOP | 1 M NaPF6 in EC:DMC (1:1 v:v) | 3~4 | 30 | 300.6/339.3 | 88.6% | [40] |
LPHC | 1 M NaClO4 in TEGDME | - | 50 | 202/220 | 92% | [41] |
HC | 1 M NaPF6 in DEGDME | 1.5 | 20 | 275.4/287.5 | 85.9% | [42] |
3DAC | 1 M NaPF6 in EC:DMC (1:1 v:v) | 2 | 30 | 280/373 | 75% | [37] |
C/MCT | 1 M NaPF6 in DME | 1.4 | 20 | 311.9/416.9 | 74.8% | [43] |
LDHC | 1 M NaPF6 in DEGDME | - | 100 | 303/407 | 74.4% | [44] |
LSW-HC | 1 M NaClO4 in EC:DMC (1:1 v:v) | 2 | 25 | 284/364 | 79.1 | [45] |
HAHC | 1 M NaPF6 in DME | 0.8–1.2 | 50 | 293/490 | 59.7% | [46] |
HC-HO | 1 M NaSO3CF3 in DEGDME | 3~4 | 15 | 314.4/340.6 | 92.3% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; You, S.; Yang, C. Surface Porousization of Hard Carbon Anode Materials for Sodium-Ion Batteries. Micromachines 2025, 16, 771. https://doi.org/10.3390/mi16070771
Huang Q, You S, Yang C. Surface Porousization of Hard Carbon Anode Materials for Sodium-Ion Batteries. Micromachines. 2025; 16(7):771. https://doi.org/10.3390/mi16070771
Chicago/Turabian StyleHuang, Qianhui, Shunzhang You, and Chenghao Yang. 2025. "Surface Porousization of Hard Carbon Anode Materials for Sodium-Ion Batteries" Micromachines 16, no. 7: 771. https://doi.org/10.3390/mi16070771
APA StyleHuang, Q., You, S., & Yang, C. (2025). Surface Porousization of Hard Carbon Anode Materials for Sodium-Ion Batteries. Micromachines, 16(7), 771. https://doi.org/10.3390/mi16070771