Hybrid Energy Harvesting Applications of ZnO Nanorods for Future Implantable and Wearable Devices
Abstract
:1. Introduction
2. Oxide Materials for Wearable Nanogenerators
3. Advantages of ZnO as a Best Alternative Material for Hybrid Energy Harvesting Applications
Properties of ZnO Thin Films
4. ZnO for Solar Energy Conversion
4.1. Dye-Sensitized Solar Cells
4.2. Operational Principles of DSSCs
4.3. Advantages of DSSCs
4.4. ZnO-Based DSSCs
4.5. One-Dimensional ZnO NW Films
4.6. Nanowire and Nanoparticle Composite Structure
5. ZnO Nanowire Piezoelectric Nanogenerator
5.1. Concept of ZnO Nanowire Piezoelectric Nanogenerator
5.2. Horizontally Aligned Nanowires for Piezoelectric Nanogenerator
5.3. Vertically Aligned Nanowires for Piezoelectric Nanogenerator
6. Piezoelectric- and Photoelectric-Effect-Coupled Nanogenerator
7. Polymer-Incorporated ZnO Nanowires for Nanogenerators
8. ZnO Nanostructures for Thermoelectric Nanogenerators
9. Triboelectric Nanogenerators
Triboelectric and Piezoelectric Hybrid Nanogenerators
10. Light, Sound, and Thermal Hybrid Harvesting Nanogenerators
11. Summary and Conclusions
Funding
Conflicts of Interest
References
- Lemine, A.S.; Bhadra, J.; Maurya, M.R.; Sadasivuni, K.K.; Ahmad, Z.; Al-Thani, N.J.; Hasan, A. Scalable fabrication of flexible thermoelectric generator with non-toxic Ga:ZnO and PEDOT:PSS thermoelements for wearable energy harvesting. Mater. Today Commun. 2025, 42, 111225. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, J.; Yang, H.; Wang, J.; Li, B.; Zhang, H.; Yi, Y. TiN-Only Metasurface Absorber for Solar Energy Harvesting. Photonics 2025, 12, 443. [Google Scholar] [CrossRef]
- Xiao, T.; Tu, S.; Liang, S.; Guo, R.; Tian, T.; Müller-Buschbaum, P. Solar cell-based hybrid energy harvesters towards sustainability. Opto-Electron. Sci. 2023, 2, 230011. [Google Scholar] [CrossRef]
- Zhao, K.; Gao, Z.; Zhang, J.; Zhou, J.; Zhan, F.; Qiang, L.; Liu, M.-J.; Cyu, R.-H.; Chueh, Y.-L. Design of strong-performance, high-heat dissipation rate, and long-lifetime triboelectric nanogenerator based on robust hexagonal boron nitride (hBN) nanosheets/polyvinyl chloride (PVC) composite films for rotational energy harvesting. J. Power Sources 2024, 614, 234997. [Google Scholar] [CrossRef]
- Sigallon, M.C.; Baillard, A.; Consonni, V.; Aubrit, F.; Potrzebowska, N.; Grasset, R.; Tabellout, M.; Gogneau, N.; Sarrey, E.; Wegrowe, J.-E.; et al. Flexible piezoelectric energy harvester made of vertically-aligned ZnO nanowires hydrothermally-grown by template-assisted synthesis in poled PVDF. Nano Trends 2025, 10, 100112. [Google Scholar] [CrossRef]
- Yatim, H.M.; Ismail, F.M.; Kosnan, S.E.; Mohammad, Z.; Januddi, F.S.; Bakri, A. A development of piezoelectric model as an energy harvester from mechanical vibration. Chem. Eng. Trans. 2018, 63, 775–780. [Google Scholar]
- Kim, Y.-G.; Song, J.-H.; Hong, S.; Ahn, S.-H. Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting. npj Flex. Electron. 2022, 6, 52. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Zheng, Y.; Li, Z.; Fan, J.; Wang, L.; Liu, X.; Liu, J.; Shou, W. Enhanced Energy Harvesting Ability of ZnO/PAN Hybrid Piezoelectric Nanogenerators. ACS Appl. Mater. Interfaces 2020, 12, 54936–54945. [Google Scholar] [CrossRef]
- McDonald, A.; Nussbaumer, M.; Rathnayake, N.; Steeds, R.; Agarwal, A. A flexible multi-sensor device enabling handheld sensing of heart sounds by untrained users. IEEE J. Biomed. Health Inform. 2025, 1–11, Online ahead of print. [Google Scholar] [CrossRef]
- Cha, S.N.; Seo, J.-S.; Kim, S.M.; Kim, H.J.; Park, Y.J.; Kim, S.-W.; Kim, J.M. Sound-Driven Piezoelectric Nanowire-Based Nanogenerators. Adv. Mater. 2010, 22, 4726–4730. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, B.; Zhang, L.; Yang, W. Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy 2019, 66, 104086. [Google Scholar] [CrossRef]
- Zhao, Z.; Dai, Y.; Dou, S.X.; Liang, J. Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Mater. Today Energy 2021, 20, 100690. [Google Scholar] [CrossRef]
- Chander, S.; Tripathi, S.K. Recent advancement in efficient metal oxide-based flexible perovskite solar cells: A short review. Mater. Adv. 2022, 3, 7198–7211. [Google Scholar] [CrossRef]
- Kumaravelu, T.A.; Nga, T.T.T.; J, R.R.; J, G.; M, K.; Chou, W.-C.; Chen, J.-L.; Chen, C.-L.; Lin, B.-H.; Du, C.-H.; et al. Bifunctional NiCo-CuO Nanostructures: A Promising Catalyst for Energy Conversion and Storage. Small Methods 2025, 2401463, in press. [Google Scholar] [CrossRef]
- Ferrara, M.C.; Montecchi, M.; Mittiga, A.; Schioppa, M.; Mazzarelli, S.; Tapfer, L.; Lovergine, N.; Prete, P. Synthesis and annealing effects on microstructure and optical properties of wide-bandgap polycrystalline ferro-pseudobrookite FeTi2O5 sol-gel layers. Ceram. Int. 2025, 51, 9669–9676. [Google Scholar] [CrossRef]
- Navarro-Gázquez, P.J.; Muñoz-Portero, M.J.; Blasco-Tamarit, E.; Sánchez-Tovar, R.; García-Antón, J. Synthesis and applications of TiO2/ZnO hybrid nanostructures by ZnO deposition on TiO2 nanotubes using electrochemical processes. Rev. Chem. Eng. 2023, 39, 1153–1186. [Google Scholar] [CrossRef]
- Johansson, W.; Peralta, A.; Jonson, B.; Anand, S.; Osterlund, L.; Karlsson, S. Transparent TiO2 and ZnO thin films on glass for UV protection of PV modules. Front. Mater. 2019, 6, 259. [Google Scholar] [CrossRef]
- Priyadharshini, S.; Ali, S.; Ramana Ramya, J. Synergistic effects of TiO2-ZnO/Poly(methyl methacrylate) nanocomposite films: Enhanced wettability, antimicrobial activity, and biocompatibility. Mater. Lett. 2024, 364, 136327. [Google Scholar] [CrossRef]
- Kathalingam, A.; Chae, Y.-S.; Rhee, J.K. Synthesis of multi-linked ZnO rods by microwave heating. Cryst. Res. Technol. 2011, 46, 517–522. [Google Scholar] [CrossRef]
- Kathalingam, A.; Senthilkumar, V.; Valanarasu, S.; Rhee, J.-K. Shape-dependent electrical property of solution synthesized ZnO nanorods. Semicond. Sci. Technol. 2012, 27, 105006. [Google Scholar] [CrossRef]
- Kathalingam, A.; Rhee, J.-K. Hysteretic I–V nature of ethanol adsorbed ZnO nanorods. Mater. Lett. 2013, 106, 122–124. [Google Scholar] [CrossRef]
- Volkova, M.; Sondors, R.; Bugovecka, L.; Kons, A.; Avotina, L.; Andzane, J. Enhanced thermoelectric properties of self-assembling ZnO nanowire networks encapsulated in nonconductive polymers. Sci. Rep. 2023, 13, 21061. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Kim, S.-W. Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 2012, 1, 342–355. [Google Scholar] [CrossRef]
- Anang, F.E.B.; Refino, A.D.; Harm, G.; Li, D.; Xu, J.; Cain, M.; Brand, U.; Li, Z.; Görke, M.; Garnweitner, G.; et al. Thermo-Convective Solution Growth of Vertically Aligned Zinc Oxide Nanowire Arrays for Piezoelectric Energy Harvesting. Micromachines 2024, 15, 1179. [Google Scholar] [CrossRef]
- Branker, K.; Pathak, M.J.M.; Pearce, J.M. A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 2011, 15, 4470–4482. [Google Scholar] [CrossRef]
- Aitola, K.; Gava Sonai, G.; Markkanen, M.; Jaqueline Kaschuk, J.; Hou, X.; Miettunen, K.; Lund, P.D. Encapsulation of commercial and emerging solar cells with focus on perovskite solar cells. Sol. Energy 2022, 237, 264–283. [Google Scholar] [CrossRef]
- Calnan, S. Applications of Oxide Coatings in Photovoltaic Devices. Coatings 2014, 4, 162–202. [Google Scholar] [CrossRef]
- Raha, S.; Ahmaruzzaman, M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef]
- Borysiewicz, M.A. ZnO as a Functional Material, a Review. Crystals 2019, 9, 505. [Google Scholar] [CrossRef]
- Machkih, K.; Oubaki, R.; Makha, M. A Review of CIGS Thin Film Semiconductor Deposition via Sputtering and Thermal Evaporation for Solar Cell Applications. Coatings 2024, 14, 1088. [Google Scholar] [CrossRef]
- Badgujar, A.C.; Dusane, R.O.; Dhage, S.R. Pulsed laser annealing of spray casted Cu (In, Ga)Se2 nanocrystal thin films for solar cell application. Sol. Energy 2020, 199, 47–54. [Google Scholar] [CrossRef]
- Garnett, E.C.; Ehrler, B.; Polman, A.; Alarcon-Llado, E. Photonics for Photovoltaics: Advances and Opportunities. ACS Photonics 2021, 8, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Jošt, M.; Kegelmann, L.; Korte, L.; Albrecht, S. Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency. Adv. Energy Mater. 2020, 10, 1904102. [Google Scholar] [CrossRef]
- Shalini, S.; Balasundara Prabhu, R.; Prasanna, S.; Mallick, T.K.; Senthilarasu, S. Review on natural dye sensitized solar cells: Operation, materials and methods. Renew. Sustain. Energy Rev. 2015, 51, 1306–1325. [Google Scholar] [CrossRef]
- Mariotti, N.; Bonomo, M.; Fagiolari, L.; Barbero, N.; Gerbaldi, C.; Bella, F.; Barolo, C. Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 2020, 22, 7168–7218. [Google Scholar] [CrossRef]
- Sugathan, V.; John, E.; Sudhakar, K. Recent improvements in dye sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2015, 52, 54–64. [Google Scholar] [CrossRef]
- Ramya, M.; Nideep, T.K.; Nampoori, V.P.N.; Kailasnath, M. Solvent assisted evolution and growth mechanism of zero to three dimensional ZnO nanostructures for dye sensitized solar cell applications. Sci. Rep. 2021, 11, 6159. [Google Scholar] [CrossRef]
- Albiss, B.; Abu-Elrub, A. Performance of Dye-Sensitized Solar Cells Based on Zinc Oxide Nanostructures. In Proceedings of the 2022 11th International Conference on Renewable Energy Research and Application (ICRERA), Istanbul, Turkey, 18–21 September 2022; pp. 418–423. [Google Scholar]
- Kathalingam, A.; Rhee, J.-K.; Han, S.-H. Effects of graphene counter electrode and CdSe quantum dots in TiO2 and ZnO on dye-sensitized solar cell performance. Int. J. Energy Res. 2014, 38, 674–682. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, D.-J.; Karthick, S.N.; Hemalatha, K.V.; Raj, C.J.; Ok, S.; Choe, Y. Curcumin Dye Extracted from Curcuma longa L. Used as Sensitizers for Efficient Dye-Sensitized Solar Cells. Int. J. Electrochem. Sci. 2013, 8, 8320–8328. [Google Scholar] [CrossRef]
- Javed, A.H.; Shahzad, N.; Khan, M.A.; Ayub, M.; Iqbal, N.; Hassan, M.; Hussain, N.; Rameel, M.I.; Shahzad, M.I. Effect of ZnO nanostructures on the performance of dye sensitized solar cells. Sol. Energy 2021, 230, 492–500. [Google Scholar] [CrossRef]
- Amiri, O.; Salavati-Niasari, M.; Bagheri, S.; Yousefi, A.T. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP). Sci. Rep. 2016, 6, 25227. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Haleem, A.; Siddiq, M.; Hussain, M.K.; Qamar, S.; Hameed, S.; Waris, M. Research on dye sensitized solar cells: Recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Adv. 2023, 13, 19508–19529. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Chang, D.W.; Park, S.-M.; Zakeeruddin, S.M.; Grätzel, M.; Nazeeruddin, M.K. CdSe quantum dot (QD) and molecular dye hybrid sensitizers for TiO2 mesoporous solar cells: Working together with a common hole carrier of cobalt complexes. Chem. Commun. 2010, 46, 8788–8790. [Google Scholar] [CrossRef]
- Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical Applications of TiO(2) Nanostructures: Recent Advances. Int. J. Nanomed. 2020, 15, 3447–3470. [Google Scholar] [CrossRef]
- Lee, K.M.; Lee, E.S.; Yoo, B.; Shin, D.H. Synthesis of ZnO-decorated TiO2 nanotubes for dye-sensitized solar cells. Electrochim. Acta 2013, 109, 181–186. [Google Scholar] [CrossRef]
- Marimuthu, T.; Anandhan, N. Growth and characterization of ZnO nanostructure on TiO2-ZnO films as a light scattering layer for dye sensitized solar cells. Mater. Res. Bull. 2017, 95, 616–624. [Google Scholar] [CrossRef]
- Cavallo, C.; Di Pascasio, F.; Latini, A.; Bonomo, M.; Dini, D. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells. J. Nanomater. 2017, 2017, 5323164. [Google Scholar] [CrossRef]
- Katoh, R.; Yaguchi, K.; Murai, M.; Watanabe, S.; Furube, A. Differences in adsorption behavior of N3 dye on flat and nanoporous TiO2 surfaces. Chem. Phys. Lett. 2010, 497, 48–51. [Google Scholar] [CrossRef]
- Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459. [Google Scholar] [CrossRef]
- Wang, X.; Ahmad, M.; Sun, H. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications. Materials 2017, 10, 1304. [Google Scholar] [CrossRef] [PubMed]
- Sizov, F.; Tsybrii, Z.; Rudenko, E.; Svavil’nyi, M.; Kyrychok, T.; Kolomys, O.; Vuichyk, M.; Svezhentsova, K.; Skoryk, M.; Strelchuk, V.; et al. ZnO nanorods on conductive substrates. Technology and features. Nano-Struct. Nano-Objects 2023, 35, 101013. [Google Scholar] [CrossRef]
- Ding, M.; Guo, Z.; Zhou, L.; Fang, X.; Zhang, L.; Zeng, L.; Xie, L.; Zhao, H. One-Dimensional Zinc Oxide Nanomaterials for Application in High-Performance Advanced Optoelectronic Devices. Crystals 2018, 8, 223. [Google Scholar] [CrossRef]
- Kathalingam, A.; Rhee, J.K. Fabrication and characterization of solution processed n-ZnO nanowire/p-Si heterojunction device. J. Nanosci. Nanotechnol. 2012, 12, 6948–6954. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, C.; Cao, L.; Chi, B.; Pu, J.; Jian, L. A novel TiO2 nanowires/nanoparticles composite photoanode with SrO shell coating for high performance dye-sensitized solar cell. J. Power Sources 2013, 226, 8–15. [Google Scholar] [CrossRef]
- Yang, X.; Daoud, W.A. Triboelectric and Piezoelectric Effects in a Combined Tribo-Piezoelectric Nanogenerator Based on an Interfacial ZnO Nanostructure. Adv. Funct. Mater. 2016, 26, 8194–8201. [Google Scholar] [CrossRef]
- Wang, H.; Fu, J.; Wang, J.; Su, L.; Zi, Y. Tribophotonics: An emerging self-powered wireless solution toward smart city. Nano Energy 2022, 97, 107196. [Google Scholar] [CrossRef]
- Kathalingam, A.; Valanarasu, S.; Senthilkumar, V.; Rhee, J.-K. Piezo and photoelectric coupled nanogenerator using CdSe quantum dots incorporated ZnO nanowires in ITO/ZnO NW/Si structure. Mater. Chem. Phys. 2013, 138, 262–269. [Google Scholar] [CrossRef]
- Mustaffa, M.A.; Arith, F.; Noorasid, N.S.; Zin, M.S.I.M.; Leong, K.S.; Ali, F.A.; Mustafa, A.N.M.; Ismail, M.M. Towards a Highly Efficient ZnO Based Nanogenerator. Micromachines 2022, 13, 2200. [Google Scholar] [CrossRef]
- Sinitskiy, R.E.; Dragunov, V.P.; Ostertak, D.I.; Dragunova, E.V. Kinetic vibration microgenerator with low output voltage for hydrogen production. Int. J. Hydrogen Energy 2024, 67, 553–565. [Google Scholar] [CrossRef]
- Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z.L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Slimani Tlemcani, T.; Justeau, C.; Nadaud, K.; Alquier, D.; Poulin-Vittrant, G. Fabrication of Piezoelectric ZnO Nanowires Energy Harvester on Flexible Substrate Coated with Various Seed Layer Structures. Nanomaterials 2021, 11, 1433. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Liu, Y. Piezoelectric Effect at Nanoscale. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 3213–3230. [Google Scholar]
- Yang, Y.; Kim, K. Simultaneous acquisition of current and lateral force signals during AFM for characterising the piezoelectric and triboelectric effects of ZnO nanorods. Sci. Rep. 2021, 11, 2904. [Google Scholar] [CrossRef]
- Shao, Z.; Wen, L.; Wu, D.; Zhang, X.; Chang, S.; Qin, S. Pt/ZnO Schottky nano-contact for piezoelectric nanogenerator. Phys. E Low-Dimens. Syst. Nanostructures 2010, 43, 173–175. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
- Garratt, E.; Prete, P.; Lovergine, N.; Nikoobakht, B. Observation and Impact of a “Surface Skin Effect” on Lateral Growth of Nanocrystals. J. Phys. Chem. C 2017, 121, 14845–14853. [Google Scholar] [CrossRef]
- Zhu, G.; Yang, R.; Wang, S.; Wang, Z.L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155. [Google Scholar] [CrossRef]
- Mishra, S.; Supraja, P.; Jaiswal, V.V.; Sankar, P.R.; Kumar, R.R.; Prakash, K.; Kumar, K.U.; Haranath, D. Enhanced output of ZnO nanosheet-based piezoelectric nanogenerator with a novel device structure. Eng. Res. Express 2021, 3, 045022. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Z.L. Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy. Adv. Mater. 2011, 23, 873–877. [Google Scholar] [CrossRef]
- Monika, S.; Mahalakshmi, M.; Pandian, M.S. TiO2/CdS/CdSe quantum dots co-sensitized solar cell with the staggered-gap (type-II) heterojunctions for the enhanced photovoltaic performance. Ceram. Int. 2023, 49, 8820–8826. [Google Scholar] [CrossRef]
- Mahapatra, A.; Ajimsha, R.S.; Deepak, D.; Misra, P. Tuning ZnO-based piezoelectric nanogenerator efficiency through n-ZnO/p-NiO bulk interfacing. Sci. Rep. 2024, 14, 11871. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Park, J.; Yim, M.; Kim, Y.; Yoon, G. Characteristics of piezoelectric ZnO/AlN-stacked flexible nanogenerators for energy harvesting applications. Appl. Phys. Lett. 2015, 106, 023901. [Google Scholar] [CrossRef]
- Shin, S.-H.; Lee, M.H.; Jung, J.-Y.; Seol, J.H.; Nah, J. Piezoelectric performance enhancement of ZnO flexible nanogenerator by a CuO–ZnO p–n junction formation. J. Mater. Chem. C 2013, 1, 8103–8107. [Google Scholar] [CrossRef]
- Xu, C.; Wang, X.; Wang, Z.L. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies. J. Am. Chem. Soc. 2009, 131, 5866–5872. [Google Scholar] [CrossRef]
- Song, X.; Zhuo, B.; Cao, S.; Huang, L.; Zhu, Q.; Zhang, J.; Yuan, Q. High performance and flexible piezoelectric composite incorporating zinc oxide grown on the oxidized nanocellulose by two-step hydrothermal process. Appl. Surf. Sci. 2024, 649, 158996. [Google Scholar] [CrossRef]
- Chang, G.; Pan, X.; Hao, Y.; Du, W.; Wang, S.; Zhou, Y.; Yang, J.; He, Y. PVDF/ZnO piezoelectric nanofibers designed for monitoring of internal micro-pressure. RSC Adv. 2024, 14, 11775–11783. [Google Scholar] [CrossRef]
- Manrique, M.; Consonni, V.; Ardila, G.; Ghouma, A.; Le Rhun, G.; Salem, B. Performance optimization of ZnO nanowire/parylene-C composite-based piezoelectric nanogenerators. Nano Trends 2025, 9, 100066. [Google Scholar] [CrossRef]
- Kim, H.G.; Kim, E.H.; Kim, S.S. Growth of ZnO Nanorods on ITO Film for Piezoelectric Nanogenerators. Materials 2021, 14, 1461. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Chen, K.-C. Improving Piezoelectric Nanogenerator Comprises ZnO Nanowires by Bending the Flexible PET Substrate at Low Vibration Frequency. J. Phys. Chem. C 2012, 116, 9351–9355. [Google Scholar] [CrossRef]
- Adaikalam, K.; Marimuthu, K.P.; Lee, S.-W.; Lee, J.-S.; Kim, H.S. A novel ZnO NRs/PVDF hybrid nanogenerator for wearable energy-harvesting and sensing applications. J. Alloys Compd. 2025, 1030, 180829. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Liu, W.; Fu, R.; Tu, S.; Zhao, Y.; Dong, L.; Yan, B.; Gu, Y. High Performance Piezoelectric Nanogenerators Based on Electrospun ZnO Nanorods/Poly(vinylidene fluoride) Composite Membranes. J. Phys. Chem. C 2019, 123, 11378–11387. [Google Scholar] [CrossRef]
- Sulaiman, S.; Sudin, I.; Al-Naib, U.M.B.; Omar, M.F. Review of the Nanostructuring and Doping Strategies for High-Performance ZnO Thermoelectric Materials. Crystals 2022, 12, 1076. [Google Scholar] [CrossRef]
- Al-Fartoos, M.M.R.; Roy, A.; Mallick, T.K.; Tahir, A.A. A semi-transparent thermoelectric glazing nanogenerator with aluminium doped zinc oxide and copper iodide thin films. Commun. Eng. 2024, 3, 145. [Google Scholar] [CrossRef]
- Kim, D.H.; Dudem, B.; Yu, J.S. High-Performance Flexible Piezoelectric-Assisted Triboelectric Hybrid Nanogenerator via Polydimethylsiloxane-Encapsulated Nanoflower-like ZnO Composite Films for Scavenging Energy from Daily Human Activities. ACS Sustain. Chem. Eng. 2018, 6, 8525–8535. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, M.; Cui, X.; Shao, Y.; Li, L.; Zhang, Y. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 2021, 84, 105887. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Z.L. Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat 2020, 2, e12059. [Google Scholar] [CrossRef]
- Zhao, L.; Duan, J.; Liu, L.; Wang, J.; Duan, Y.; Vaillant-Roca, L.; Yang, X.; Tang, Q. Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting. Nano Energy 2021, 82, 105773. [Google Scholar] [CrossRef]
- Maya Gopakumar, G.; Rajeev, S.P. Hybrid Triboelectric and Piezoelectric Energy Harvester Based on Zinc Oxide/Titanium Dioxide/PDMS Nanocomposites. ACS Appl. Nano Mater. 2025, 8, 5037–5050. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Mohan, R.; Thiyagarajan, K.; Kim, S.-J. Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv. 2013, 3, 16646–16656. [Google Scholar] [CrossRef]
- Zhao, S.; Han, G.; Deng, H.; Ma, M.; Zhong, X. Polydimethylsiloxane-Zinc Oxide Nanorod-Based Triboelectric Nanogenerator for Compression Applications. Materials 2025, 18, 1392. [Google Scholar] [CrossRef] [PubMed]
- Dorri Sedeh, A.; Karimzadeh, F.; Kharaziha, M. A high-performance single-electrode triboelectric nanogenerator based on polydimethylsiloxane surface modified using zinc oxide nanotubes: Fabrication and simulation. Sustain. Energy Technol. Assess. 2023, 56, 103058. [Google Scholar] [CrossRef]
- Liu, H.; Fu, H.; Sun, L.; Lee, C.; Yeatman, E.M. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew. Sustain. Energy Rev. 2021, 137, 110473. [Google Scholar] [CrossRef]
- Jood, P.; Mehta, R.J.; Zhang, Y.; Peleckis, G.; Wang, X.; Siegel, R.W.; Borca-Tasciuc, T.; Dou, S.X.; Ramanath, G. Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties. Nano Lett. 2011, 11, 4337–4342. [Google Scholar] [CrossRef]
- Qian, W.; Guo, C.; Dan, H.; Zhao, H.; Wang, J.; Bowen, C.R.; Yang, Y. Temperature-Enhanced Flexo-Photovoltaic Coupled Nanogenerator for Harvesting Vibration and Light Energies. ACS Energy Lett. 2024, 9, 1907–1914. [Google Scholar] [CrossRef]
- Xue, M.; Li, F.; Peng, W.; Zhu, Q.; He, Y. Pyro-Phototronic Effect Enhanced MXene/ZnO Heterojunction Nanogenerator for Light Energy Harvesting. Nanoenergy Adv. 2023, 3, 401–420. [Google Scholar] [CrossRef]
- Sadaf, M.U.K.; Abdullah, A.M.; Majumder, H.; Abir, S.S.H.; Torres, M.; Lozano, K.; Rahman, M.W.; Uddin, M.J. Neodymium doped zinc oxide based advanced flexible piezoelectric energy harvester and self-powered biomotion sensor. Nano Trends 2024, 8, 100063. [Google Scholar] [CrossRef]
- Bairagi, S.; Ali, S.W. A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs. Int. J. Energy Res. 2020, 44, 5545–5563. [Google Scholar] [CrossRef]
- Hajara, P.; Shijeesh, M.R.; Vijoy, K.V.; Rose, T.P.; Saji, K.J. Harnessing Energy Through ZnO-Based Triboelectric Nanogenerator: A Comparative Analysis of Polymer Materials, with Emphasis on PVDF Nanofibers. J. Electron. Mater. 2024, 53, 5617–5628. [Google Scholar] [CrossRef]
- Du, L.; Zhang, B.; Liu, N.; Zhang, Y.; Zhao, W. A hybrid ZnO/BaTiO3 nano-network for the enhancement of the energy harvesting. Next Energy 2024, 2, 100094. [Google Scholar] [CrossRef]
- Li, X.; Lin, Z.-H.; Cheng, G.; Wen, X.; Liu, Y.; Niu, S.; Wang, Z.L. 3D Fiber-Based Hybrid Nanogenerator for Energy Harvesting and as a Self-Powered Pressure Sensor. ACS Nano 2014, 8, 10674–10681. [Google Scholar] [CrossRef]
Serial No. | Topic |
---|---|
1 | Introduction |
2 | Oxide materials for wearable nanogenerators |
3 | Advantages of ZnO as a best alternative material for hybrid energy harvesting applications |
3.1 | Properties of ZnO thin films |
4 | ZnO for solar energy conversion |
4.1 | Dye-sensitized solar cells |
4.2 | Operational principles of DSSCs |
4.3 | Advantages of DSSCs |
4.4 | ZnO-based DSSCs |
4.5 | One-dimensional ZnO NW films |
4.6 | Nanowire and nanoparticle composite structure |
5 | ZnO nanowire piezoelectric nanogenerator |
5.1 | Concept of ZnO nanowire piezoelectric nanogenerator |
5.2 | Horizontally aligned nanowires for piezoelectric nanogenerator |
5.3 | Vertically aligned nanowires for piezoelectric nanogenerator |
6 | Piezoelectric- and photoelectric-effect-coupled nanogenerator |
7 | Polymer-incorporated ZnO nanowires for nanogenerators |
8 | ZnO nanostructures for thermoelectric nanogenerators |
9 | Triboelectric nanogeneratores |
9.1 | Triboelectric and Piezoelectric hybrid nanogenerators |
10 | Light, sound, and thermal hybrid harvesting nanogenerators |
11 | Summary and Conclusions |
S. No | Material and Structure | Device Structure and Type | Performance | Ref |
---|---|---|---|---|
1 | ZnO nanosheets | ITO/PET/ZnO/Al/ZnO/PET/ITO piezoelectric generator | ∼285 mV ∼1.7 times greater than single side growth | [71] |
2 | ZnO and AlN nanoparticles composite | Ag/AlN/ZnO/ITO/PEN piezoelectric generator | AlN insulating layer increased output 200 times more | [75] |
3 | Nd-doped ZnO | Nd-ZnO/PVDF/MWCNT Piezoelectric generator | 75.8 V as Voc with 28.8 µA | [100] |
4 | Doped ZnO and polymer structure | PVDF/KNN/ZnO piezoelectric nanogenerator | 25 V and 1.81 μA | [101] |
5 | ZnO/Polymer | ZnO/PVDF Piezoelectric generator | 85 V of Voc at 2.2 µA | [84] |
6 | ZnO with different polymers | ZnO-PVDF Triboelectric nanogenerator | 42 V of Voc, 62 µW/cm2 | [102] |
7 | CuO-ZnO heterostructure | PET/CuO/ZnO/Au/Cu Piezoelectric generator | 7.5 V with 4.5 µA/cm2 | [76] |
8 | ZnO/BaTiO3 composite | ITO/PET/ZnO/BaTiO3/PET/ITO Piezo and pyroelectric generator | 7.2 V, 2.0 µA | [103] |
9 | ZnO/PDMS | 3D tubular structure Piezo and triboelectric combined generator | 42.6 mW/m2 | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adaikalam, K.; Kim, H.-S. Hybrid Energy Harvesting Applications of ZnO Nanorods for Future Implantable and Wearable Devices. Micromachines 2025, 16, 605. https://doi.org/10.3390/mi16060605
Adaikalam K, Kim H-S. Hybrid Energy Harvesting Applications of ZnO Nanorods for Future Implantable and Wearable Devices. Micromachines. 2025; 16(6):605. https://doi.org/10.3390/mi16060605
Chicago/Turabian StyleAdaikalam, Kathalingam, and Hyun-Seok Kim. 2025. "Hybrid Energy Harvesting Applications of ZnO Nanorods for Future Implantable and Wearable Devices" Micromachines 16, no. 6: 605. https://doi.org/10.3390/mi16060605
APA StyleAdaikalam, K., & Kim, H.-S. (2025). Hybrid Energy Harvesting Applications of ZnO Nanorods for Future Implantable and Wearable Devices. Micromachines, 16(6), 605. https://doi.org/10.3390/mi16060605