Zinc Oxide/Molybdenum Disulfide as Nanocomposite for Multifunctional Sensor Prototype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Set-Up
3. Results
3.1. Structure Characterizations
3.2. Visible-Light Detection
3.2.1. Wavelength Response
3.2.2. Intensity Effect on Photocurrent
3.2.3. Bias Effect
3.2.4. Temperature Effect
3.2.5. Time Response
3.3. Ultraviolet Photodetection
3.3.1. Deep UV Photoelectric Properties
3.3.2. UVA Bias Effect
3.3.3. UVA Intensity
3.4. Chemical-Tracing Gas Detection
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Liu, K.; Hu, L.; Fang, X. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493–502. [Google Scholar] [CrossRef]
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116. [Google Scholar]
- Timmer, B.; Othuis, W.; Van der Berg, A. Ammonia sensors and their applications—A review. Sens. Act. B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Xie, X.H.; Zhang, Z.Z.; Shan, C.X.; Chen, H.Y.; Shen, D.Z. Dual-color ultraviolet photodetector based on mixed-phase-MgZnO/i-MgO/p-Si double heterojunction. Appl. Phys. Lett. 2012, 101, 81104. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Liu, K.-W.; Chen, X.; Zhang, Z.-Z.; Fan, M.-M.; Jiang, M.-M.; Xie, X.-H.; Zhao, H.-F.; Shen, D.-Z. Realization of a self-powered ZnO MSM UV photodetector with high responsivity using an asymmetric pair of Au electrodes. J. Mater. Chem. C 2014, 2, 9689–9694. [Google Scholar] [CrossRef]
- Nielander, A.C.; McEnaney, J.M.; Schwalbe, J.A.; Baker, J.G.; Blair, S.J.; Wang, L.; Pelton, J.G.; Andersen, S.Z.; Enemark-Rasmussen, K.; Colic, V.; et al. A versatile method for ammonia detection in a range of relevant electrolytes via direct nuclear magnetic resonance techniques. ACS Catal. 2019, 9, 5797–5802. [Google Scholar] [CrossRef]
- Wang, Z.; Mi, B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 2017, 51, 8229–8244. [Google Scholar] [CrossRef]
- Nalwa, H.S. A review of molybdenum disulfide (MoS2) based photodetectors: From ultrabroadband, self-powered to flexible devices. R. Soc. Chem. Advan. 2020, 10, 30529–30602. [Google Scholar] [CrossRef]
- Lembke, D.; Bertolazzi, S.; Kis, A. Single-layer MoS2 electronics. Acc. Chem. Res. 2015, 48, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Ryou, J.; Kim, Y.-S.; Kc, S.; Cho, K. Monolayer MoS2 bandgap modulation by dielectric environments and tunable bandgap transistors. Sci. Rep. 2016, 6, 29184. [Google Scholar] [CrossRef]
- Liu, B.; Chen, L.; Liu, G.; Abbas, A.N.; Fathi, M.; Zhou, C. High-performance chemical sensing using Shcottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304–5314. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide sensors: A review. Mater. Sci. Eng. B 2017, 229, 206–217. [Google Scholar]
- Son, D.I.; Yang, H.Y.; Kim, T.W.; Park, W.I. Photoresponse mechanism of ultraviolet photodetectors based on colloidad ZnO quantum dot-graphene nanocomposites. Appl. Phys. Lett. 2013, 102, 21105. [Google Scholar] [CrossRef]
- Ni, P.; Shan, C.; Wang, S.; Liu, X.; Shen, D. Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays. J. Mater. Chem. C 2013, 1, 4445–4449. [Google Scholar] [CrossRef]
- de Arquer, F.P.G.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef]
- Gibson, R.F. A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 2010, 92, 2793–2810. [Google Scholar] [CrossRef]
- Kaneti, Y.V.; Septiani, N.L.W.; Saptiama, I.; Jiang, X.; Yuliarto, B.; Shiddiky, M.J.A.; Fukumitsu, N.; Kang, Y.-M.; Golberg, D.; Yamauchi, Y. Self-sacrificial templated synthesis of a three-dimensional hierarchical macroporous honeycomb-life Zn/ZnCo2O4. J. Mater. Chem. A 2019, 7, 3415–3425. [Google Scholar]
- Zhou, A.F.; Flores, S.Y.; Pacheco, E.; Peng, X.; Zhang, S.G.; Feng, P.X. Ternary TiO2/MoS2/ZnO hetero-nanostructure based multifunctional sensing devices. Nat. Discov. Nano 2024, 19, 157. [Google Scholar] [CrossRef]
- Peng, X.; Chen, J.; Wang, S.; Wang, L.; Duan, S.; Feng, P.; Chu, J. High-temperature operation of v-MoS2 nanowalls/TiO2 photodetectors with excellent performances. Appl. Surf. Sci. 2022, 599, 153904. [Google Scholar]
- Ortiz, W.; Malca, C.; Barrionuevo, D.; Aldalbahi, A.; Pacheco, E.; Oli, N.; Feng, P. 2D tungsten disulfide nanosheets and its applications for self-powered photodetectors with ultra-high sensitivity and stability. Vacuum 2022, 201, 111092. [Google Scholar] [CrossRef]
- Yang, C.; Wang, G.; Liu, M.; Yao, F.; Li, H. Mechanism, material, design, and implementation principle of two-dimensional material photodetectors. Nanomaterials 2021, 11, 2688. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Liu, J.; Peng, Z.; Zhou, J.; Zhang, H.; Li, Y. Optoelectronic gas sensor based on few-layered InSe nanosheets for NO2 detection with ultrahigh antihumidity ability. Anal. Chem. 2020, 92, 11277–11287. [Google Scholar] [CrossRef]
- Wu, H.; Jile, H.; Chen, Z.; Xu, D.; Yi, Z.; Chen, X.; Chen, J.; Yao, W.; Wu, P.; Yi, Y. Fabrication of ZnO@MoS2 nanocomposite heterojunction arrays and their photoelectric properties. Micromachines 2020, 11, 189. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, N.; Kumar, M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2017, 2, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Niyitanga, T.; Evans, P.E.; Ekanayake, T.; Dowben, P.A.; Jeong, H.K. Carbon nanotubes-molybdenum disulfide composite for enhanced hydrogen evolution reaction. J. Electroanal. Chem. 2019, 845, 39–47. [Google Scholar] [CrossRef]
- Asgari, M.; Saboor, F.H.; Amouzesh, S.P.; Coull, M.W.; Khodadadi, A.A.; Mortazavi, Y.; Hyodo, T.; Shimizu, Y. Facile ultrasonic-assisted synthesis of SiO2/ZnO core/shell nanostructures: A selective ethanol sensor at low temperature with enhanced recovery. Sens. Act. B Chem. 2022, 368, 132187. [Google Scholar] [CrossRef]
- Mondal, B.; Basumatari, B.; Das, J.; Roychaudhury, C.; Saha, H.; Mukherjee, N. ZnO-SnO2 based composite type gas sensor for selective hydrogen sensing. Sens. Act. B Chem. 2014, 194, 389–396. [Google Scholar] [CrossRef]
- Trajić, J.; Kostić, R.; Romčević, N.; Romčević, M.; Mitrić, M.; Lazović, V.; Balaž, P.; Stojanović, D. Raman spectroscopy of ZnS quantum dots. J. Alloys Compd. 2015, 637, 401–406. [Google Scholar] [CrossRef]
- Lai, Y.; Lan, Y.; Lu, T. Strong light-matter interaction in ZnO microcavities. J. Alloys Compd. 2013, 2, 1363–2370. [Google Scholar] [CrossRef]
- Yang, B.; Kumar, A.; Feng, P.; Katiyar, R.S. Structural degradation and optical property of nanocrystalline ZnO films grown of Si (100). Appl. Phys. Letts. 2008, 92, 233112. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, C. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet-ZnO nanowire heterojunctions at room temperature. J. Mater. Chem. A. 2018, 6, 10286–10296. [Google Scholar] [CrossRef]
- Li, Z.; Gao, W. ZnO thin films with DC and RF reactive sputtering. Mater. Lett. 2004, 58, 1363–1370. [Google Scholar] [CrossRef]
- Liu, K.; Sakurai, M.; Aono, M. ZnO-Based Ultraviolet Photodetectors. Sensors 2010, 10, 8604–8634. [Google Scholar] [CrossRef]
- Zhu, H.; Shan, C.X.; Yao, B.; Li, B.H.; Zhang, J.Y.; Zhao, D.X.; Shen, D.Z.; Fan, X.W. High spectrum selectivity ultraviolet photodetector fabricated from an n-ZnO/p-GaN heterojunction. J. Phys. Chem. C 2008, 112, 20546–20548. [Google Scholar] [CrossRef]
- Lu, L.; Sou, I.; Ge, W. Influence of Mg content on molecular-beam-epitaxy-grown ZnMgS ultraviolet photodetectors. J. Cryst. Growth. 2004, 265, 28–33. [Google Scholar] [CrossRef]
- Shen, H.; Shan, C.X.; Li, B.H.; Xuan, B.; Shen, D.Z. Reliable self-powered highly spectrum selective ZnO ultraviolet photodetectros. Appl. Phys. Letts. 2013, 103, 232112. [Google Scholar] [CrossRef]
- Kufer, D.; Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Letts. 2015, 15, 7307–7313. [Google Scholar] [CrossRef]
- Aldalbahi, A.; Wang, Z.-B.; Ahamad, T.; Alshehri, S.M.; Feng, P.X. Two-step facile preparation of 2D MoS2/ZnO nanocomposite p-n junctions with enhanced photoelectric performance. Int. J. Photoenergy 2021, 2021, 1884293. [Google Scholar] [CrossRef]
- Aldalbahi, A.; Ahamad, T.; Alshehri, S.M.; Wang, Z.; Feng, P. Three-dimensional architectures composed of two-dimensional atomic layer molybdenum disulphide for solar cell and self-powered photodetector. Energy Explor. Exploit. 2021, 40, 528–538. [Google Scholar] [CrossRef]
- Luo, S.; Chen, R.; Wang, J.; Xiang, L. Conductometric methane gas sensor based on ZnO/Pd@ZIF-8: Effect of dual filtering of ZIF-8 to increase the selectivity. Sens. Act. B Chem. 2023, 383, 133600. [Google Scholar]
- Kang, B.S.; Sanger, A.; Jeong, M.H.; Baik, J.M.; Choi, K.J. Heterogeneous stacking of reduced graphene oxide on ZnO nanowires for NO2 gas sensor with dramatically improved response and high sensitivity. Sens. Actuators B Chem. 2023, 379, 133196. [Google Scholar]
- Li, Z.; Liu, X.; Zhou, M.; Zhang, S.; Cao, S.; Lei, G.; Lou, C.; Zhang, J. Plasma-induced oxygen vacancies enabled ultrathin Zno films for highly sensitive detection of triethylamine. J. Hazard. Mater. 2021, 415, 125757. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Kumar, S.; Singh, J.; Kumar, M. Decoration of laser-ablated ZnO nanoparticles over sputtered deposited SnO2 thin film based formaldehye sensor. Sens. Act. B Chem. 2022, 367, 132114. [Google Scholar] [CrossRef]
- Peng, X.; Han, Y.; Zhang, Q.; Feng, P.; Jia, P.; Cui, H.; Wang, L.; Duan, S. Performance Improvement of MoS2 Gas Sensor at Room Temperature. IEEE Trans. Electron Devices 2022, 68, 4644–4650. [Google Scholar]
- Pham, T.; Li, G.; Bekyarova, E.; Itkis, M.E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205. [Google Scholar] [CrossRef]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Chaudhary, D.K.; Maharjan, Y.S.; Shrestha, S.; Maharjan, S.; Shrestha, S.P.; Joshi, L.P. Sensing performance of a ZnO-based ammonia sensor. J. Phys. Sci. 2022, 33, 97–108. [Google Scholar]
- Jian, A.; Wang, J.; Lin, H.; Xu, S.; Han, D.; Yuan, Z.; Zhuo, K. Synthersi of MoS2 Nanochains by electrospinning for Ammonia Detection at romm Temperature. ACS Omega 2022, 7, 11664–11670. [Google Scholar]
- Ma, R.; Gan, W.; Peng, X.; Feng, P.; Chu, J. Study of the ZnO/MoS2 heterostructures-based gas sensor for humidity-independent response. Mater. Res. Bull. 2024, 175, 112775. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomera, N.; Feng, P. Zinc Oxide/Molybdenum Disulfide as Nanocomposite for Multifunctional Sensor Prototype. Micromachines 2025, 16, 358. https://doi.org/10.3390/mi16040358
Palomera N, Feng P. Zinc Oxide/Molybdenum Disulfide as Nanocomposite for Multifunctional Sensor Prototype. Micromachines. 2025; 16(4):358. https://doi.org/10.3390/mi16040358
Chicago/Turabian StylePalomera, Netzahualcóyotl, and Peter Feng. 2025. "Zinc Oxide/Molybdenum Disulfide as Nanocomposite for Multifunctional Sensor Prototype" Micromachines 16, no. 4: 358. https://doi.org/10.3390/mi16040358
APA StylePalomera, N., & Feng, P. (2025). Zinc Oxide/Molybdenum Disulfide as Nanocomposite for Multifunctional Sensor Prototype. Micromachines, 16(4), 358. https://doi.org/10.3390/mi16040358