Incorporation of Temperature Impact on Hot-Carrier Degradation into Compact Physics Model
Abstract
1. Introduction
2. Experimental
3. The Model
3.1. Carrier Transport Modeling
3.2. Modeling of Defect Generation
3.3. Modeling of Degraded FETs
3.4. Model Limitations
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BTE | Boltzmann transport equation |
| BTI | Bias temperature instability |
| CPM | Compact Physics Model |
| DD | Drift–diffusion (appear to carrier transport modeling) |
| DF | Distribution function |
| DoS | Density-of-states |
| DTCO | Design technology co-optimization |
| EKV | Enz–Krummenacher–Vittoz (model) |
| FD | Fermi–Dirac (statistics) |
| HCD | Hot-Carrier Degradation |
| MB | Maxwell–Boltzmann (statistics) |
| MC | Multiple-carrier (mechanism of bond dissociation) |
| MFP | mean free path (of carriers) |
| MOSFET | Metal–Oxide–Semiconductor Field-Effect Transistor |
| PPA | Power, performance, area |
| SC | Single-carrier (mechanism of bond dissociation) |
| TCAD | Technology computer-aided design |
| WCC | Worst-Case Conditions (of hot-carrier degradation) |
References
- Grasser, T. Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities. Microelectron. Reliab. 2012, 52, 39–70. [Google Scholar] [CrossRef]
- Padovani, A.; Gao, D.Z.; Shluger, A.L.; Larcher, L. A Microscopic Mechanism of Dielectric Breakdown in SiO2 Films: An Insight from Multi-scale Modeling. J. Appl. Phys. 2017, 121, 155101. [Google Scholar] [CrossRef]
- Reggiani, S.; Barone, G.; Poli, S.; Gnani, E.; Gnudi, A.; Baccarani, G.; Chuang, M.Y.; Tian, W.; Wise, R. TCAD Simulation of Hot-Carrier and Thermal Degradation in STI-LDMOS Transistors. IEEE Trans. Electron Devices 2013, 60, 691–698. [Google Scholar] [CrossRef]
- Rzepa, G.; Franco, J.; O’Sullivan, B.; Subirats, A.; Simicic, M.; Hellings, G.; Weckx, P.; Jech, M.; Knobloch, T.; Waltl, M.; et al. Comphy—A compact-physics framework for unified modeling of BTI. Microelectron. Reliab. 2018, 85, 49–65. [Google Scholar] [CrossRef]
- Waldhoer, D.; Schleich, C.; Michl, J.; Grill, A.; Claes, D.; Karl, A.; Knobloch, T.; Rzepa, G.; Franco, J.; Kaczer, B.; et al. Comphy v3.0—A Compact-Physics Framework for Modeling Charge Trapping Related Reliability Phenomena in MOS Devices. Microelectron. Reliab. 2023, 146, 115004. [Google Scholar] [CrossRef]
- Ramey, S.; Ashutosh, A.; Auth, C.; Clifford, J.; Hattendorf, M.; Hicks, J.; James, R.; Rahman, A.; Sharma, V.; Amour, A.S.; et al. Intrinsic transistor reliability improvements from 22 nm tri-gate technology. In Proceedings of the 2013 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 14–18 April 2013; pp. 4C.5.1–4C.5.5. [Google Scholar] [CrossRef]
- Rahman, A.; Dacuna, J.; Nayak, P.; Leatherman, G.; Ramey, S. Reliability Studies of a 10nm High-performance and Low-power CMOS Technology Featuring 3rd Generation FinFET and 5th Generation HK/MG. In Proceedings of the 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 11–15 March 2018; pp. 6F.4-1–6F.4-6. [Google Scholar] [CrossRef]
- Zaka, A.; Rafhay, Q.; Iellina, M.; Palestri, P.; Clerc, R.; Rideau, D.; Garetto, D.; Singer, J.; Pananakakis, G.; Tavernier, C.; et al. On the accuracy of current TCAD hot carrier injection models in nanoscale devices. Solid-State Electron. 2010, 54, 1669–1674. [Google Scholar] [CrossRef]
- Zaka, A.; Palestri, P.; Rafhay, Q.; Clerc, R.; Iellina, M.; Rideau, D.; Tavernier, C.; Pananakakis, G.; Jaouen, H.; Selmi, L. An Efficient Nonlocal Hot Electron Model Accounting for Electron-Electron Scattering. IEEE Trans. Electron Devices 2012, 59, 983–993. [Google Scholar] [CrossRef]
- Tyaginov, S.; Bina, M.; Franco, J.; Wimmer, Y.; Osintsev, D.; Kaczer, B.; Grasser, T. A Predictive Physical Model for Hot-Carrier Degradation in Ultra-Scaled MOSFETs. In Proceedings of the Simulation of Semiconductor Processes and Devices (SISPAD), Yokohama, Japan, 9–11 September 2014; pp. 89–92. [Google Scholar]
- Tyaginov, S.; Jech, M.; Franco, J.; Sharma, P.; Kaczer, B.; Grasser, T. Understanding and Modeling the Temperature Behavior of Hot-Carrier Degradation in SiON nMOSFETs. IEEE Electron Device Lett. 2016, 37, 84–87. [Google Scholar] [CrossRef]
- Vandemaele, M.; Kaczer, B.; Tyaginov, S.; Stanojević, Z.; Makarov, A.; Chasin, A.; Bury, E.; Mertens, H.; Linten, D.; Groeseneken, G. Full (Vg,Vd) Bias Space Modeling of Hot-Carrier Degradation in Nanowire FETs. In Proceedings of the 2019 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 31 March–4 April 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Vandemaele, M.; Kaczer, B.; Tyaginov, S.; Bury, E.; Chasin, A.; Franco, J.; Makarov, A.; Mertens, H.; Hellings, G.; Groeseneken, G. Simulation Comparison of Hot-Carrier Degradation in Nanowire, Nanosheet and Forksheet FETs. In Proceedings of the 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 27–31 March 2022; pp. 6A.2-1–6A.2-9. [Google Scholar] [CrossRef]
- Tallarico, A.; Reggiani, S.; Magnone, P.; Croce, G.; Depetro, R.; Gattari, P.; Sangiorgi, E.; Fiegna, C. Investigation of the hot carrier degradation in power LDMOS transistors with customized thick oxide. Microelectron. Reliab. 2017, 76–77, 475–479. [Google Scholar] [CrossRef]
- Kamrani, H.; Jabs, D.; d’Alessandro, V.; Rinaldi, N.; Jungemann, C. Physics-based hot-carrier degradation model for SiGe HBTs. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, 6–8 September 2016; pp. 341–344. [Google Scholar] [CrossRef]
- Kamrani, H.; Jabs, D.; d’Alessandro, V.; Rinaldi, N.; Jacquet, T.; Maneux, C.; Zimmer, T.; Aufinger, K.; Jungemann, C. Microscopic Hot-Carrier Degradation Modeling of SiGe HBTs Under Stress Conditions Close to the SOA Limit. IEEE Trans. Electron Devices 2017, 64, 923–929. [Google Scholar] [CrossRef]
- McMahon, W.; Matsuda, K.; Lee, J.; Hess, K.; Lyding, J. The Effects of a Multiple Carrier Model of Interface States Generation of Lifetime Extraction for MOSFETs. In Proceedings of the International Conference on Modeling and Simulation of Microsystem, San Juan, Puerto Rico, 22–25 April 2002; Volume 1, pp. 576–579. [Google Scholar]
- McMahon, W.; Hess, K. A Multi-Carrier Model for Interface Trap Generation. J. Comput. Electron. 2002, 1, 395–398. [Google Scholar] [CrossRef]
- Bravaix, A.; Guerin, C.; Huard, V.; Roy, D.; Roux, J.; Vincent, E. Hot-carrier Acceleration Factors for Low Power Management in DC-AC Stressed 40 nm NMOS Node at High Temperature. In Proceedings of the International Reliability Physics Symposium (IRPS), Montreal, QC, Canada, 26–30 April 2009; pp. 531–546. [Google Scholar] [CrossRef]
- Randriamihaja, Y.; Federspiel, X.; Huard, V.; Bravaix, A.; Palestri, P. New Hot Carrier Degradation Modeling Reconsidering the Role of EES in Ultra Short n-channel MOSFETs. In Proceedings of the International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 14–18 April 2013; pp. 1–5. [Google Scholar]
- Rauch, S.E.; Rosa, G.L. The energy-driven paradigm of NMOSFET hot-carrier effects. IEEE Trans. Device Mater. Reliab. 2005, 5, 701–705. [Google Scholar] [CrossRef]
- Jungemann, C.; Meinerzhagen, B. Hierarchical Device Simulation; Springer: New York, NY, USA, 2003. [Google Scholar]
- Rupp, K.; Jungemann, C.; Hong, S.M.; Bina, M.; Grasser, T.; Jüngel, A. A Review of Recent Advances in the Spherical Harmonics Expansion Method for Semiconductor Device Simulation. J. Comput. Electron. 2016, 15, 939–958. [Google Scholar] [CrossRef]
- Afzalian, A.; Pourtois, G. ATOMOS: An ATomistic MOdelling Solver for dissipative DFT transport in ultra-scaled HfS 2 and Black phosphorus MOSFETs. In Proceedings of the 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Udine, Italy, 4–6 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Afzalian Aryan. Ab Initio Perspective of Ultra-Scaled CMOS from 2D-material Fundamentals to Dynamically Doped Transistors. npj 2D Mater. Appl. 2021, 5, 5. [Google Scholar] [CrossRef]
- Tyaginov, S.; Bury, E.; Grill, A.; Yu, Z.; Makarov, A.; De Keersgieter, A.; Vexler, M.; Vandemaele, M.; Wang, R.; Spessot, A.; et al. Compact Physics Hot-Carrier Degradation Model Valid over a Wide Bias Range. Micromachines 2023, 14, 2018. [Google Scholar] [CrossRef]
- Sangani, D.; Vandemaele, M.; Tyaginov, S.; Bury, E.; Kaczer, B.; Gielen, G. A Carrier-Energy-Based Compact Model for Hot-Carrier Degradation Implemented in Verilog-A. In Proceedings of the 2025 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 30 March–3 April 2025; pp. 1–8. [Google Scholar] [CrossRef]
- Messaris, I.; Karatsori, T.; Fasarakis, N.; Theodorou, C.; Nikolaidis, S.; Ghibaudo, G.; Dimitriadis, C. Hot Carrier Degradation Modeling of Short-Channel n-FinFETs Suitable for Circuit Simulators. Microelectron. Reliab. 2016, 56, 10–16. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, J.; Wang, R.; Guo, S.; Liu, C.; Huang, R. New insights into the hot carrier degradation (HCD) in FinFET: New observations, unified compact model, and impacts on circuit reliability. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 7.2.1–7.2.4. [Google Scholar] [CrossRef]
- Meric, I.; Ramey, S.; Novak, S.; Gupta, S.; Mudanai, S.P.; Hicks, J. Modeling Framework for Transistor Aging Playback in Advanced Technology Nodes. In Proceedings of the 2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 28 April–30 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Asenov, A. Random Dopant Induced Threshold Voltage Lowering and Fluctuations in sub-0.1 µm MOSFET’s: A 3-D Atomistic Simulation Study. IEEE Trans. Electron Devices 1998, 45, 2505–2513. [Google Scholar] [CrossRef]
- Asenov, A.; Kaya, S.; Davies, J.H. Intrinsic Threshold Voltage fluctuations in Decanano MOSFETs due to Local Oxide Thickness Variations. IEEE Trans. Electron Devices 2002, 49, 112–119. [Google Scholar] [CrossRef]
- Tyaginov, S.; Vexler, M.; Shulekin, A.; Grekhov, I. Statistical Analysis of Tunnel Currents in Scaled MOS Structures with a Non-uniform Oxide Thickness Distribution. Solid-State Electron. 2005, 49, 1192–1197. [Google Scholar] [CrossRef]
- Nam, H.; Shin, C. Study of High-k/Metal-Gate Work-Function Variation Using Rayleigh Distribution. IEEE Electron Device Lett. 2013, 34, 532–534. [Google Scholar] [CrossRef]
- Brown, A.R.; Watling, J.R.; Asenov, A.; Bersuker, G.; Zeitzoff, P. Intrinsic Parameter Fluctuations in MOSFETs due to Structural Non-uniformity of High-κ Gate Stack Materials. In Proceedings of the 2005 International Conference On Simulation of Semiconductor Processes and Devices, Tokyo, Japan, 1–3 September 2005; pp. 27–30. [Google Scholar] [CrossRef]
- Magnone, P.; Crupi, F.; Wils, N.; Tuinhout, H.P.; Fiegna, C. Characterization and Modeling of Hot Carrier-Induced Variability in Subthreshold Region. IEEE Trans. Electron Devices 2012, 59, 2093–2099. [Google Scholar] [CrossRef]
- Hsieh, E.R.; Chung, S.S.; Tsai, C.H.; Huang, R.M.; Tsai, C.T.; Liang, C.W. New Observations on the Physical Mechanism of Vth-variation in Nanoscale CMOS Devices after Long Term Stress. In Proceedings of the 2011 International Reliability Physics Symposium, Monterey, CA, USA, 10–14 April 2011; pp. XT.9.1–XT.9.2. [Google Scholar] [CrossRef]
- Chung, S.S. The Process and Stress-induced Variability Issues of Trigate CMOS Devices. In Proceedings of the 2013 IEEE International Conference of Electron Devices and Solid-state Circuits, Hong Kong, China, 3–5 June 2013; pp. 1–2. [Google Scholar] [CrossRef]
- Kaczer, B.; Franco, J.; Cho, M.; Grasser, T.; Roussel, P.J.; Tyaginov, S.; Bina, M.; Wimmer, Y.; Procel, L.M.; Trojman, L.; et al. Origins and Implications of Increased Channel hot Carrier Variability in nFinFETs. In Proceedings of the 2015 IEEE International Reliability Physics Symposium, Monterey, CA, USA, 19–23 April 2015; pp. 3B.5.1–3B.5.6. [Google Scholar] [CrossRef]
- Grill, A.; Bury, E.; Michl, J.; Tyaginov, S.; Linten, D.; Grasser, T.; Parvais, B.; Kaczer, B.; Waltl, M.; Radu, I. Reliability and Variability of Advanced CMOS Devices at Cryogenic Temperatures. In Proceedings of the International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 28 April–30 May 2020; 2020; pp. 5C.3.1–5C.3.1.6. [Google Scholar]
- Makarov, A.; Kaczer, B.; Roussel, P.; Chasin, A.; Grill, A.; Vandemaele, M.; Hellings, G.; El-Sayed, A.; Grasser, T.; Linten, D.; et al. Stochastic Modeling of the Impact of Random Dopants on Hot-Carrier Degradation in n-FinFETs. IEEE Electron Device Lett. 2019, 40, 870–873. [Google Scholar] [CrossRef]
- Makarov, A.; Kaczer, B.; Chasin, A.; Vandemaele, M.; Bury, E.; Jech, M.; Grill, A.; Hellings, G.; El-Sayed, A.; Grasser, T.; et al. Bi-Modal Variability of nFinFET Characteristics During Hot-Carrier Stress: A Modeling Approach. IEEE Electron Device Lett. 2019, 40, 1579–1582. [Google Scholar] [CrossRef]
- Bottini, R.; Ghetti, A.; Vigano, S.; Valentini, M.G.; Murali, P.; Mouli, C. Non-Poissonian Behavior of Hot Carrier Degradation Induced Variability in MOSFETs. In Proceedings of the 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 11–15 March 2018; pp. 6E.7-1–6E.7-6. [Google Scholar] [CrossRef]
- Bury, E.; Kaczer, B.; Chuang, K.; Franco, J.; Weckx, P.; Chasin, A.; Simicic, M.; Linten, D.; Groeseneken, G. Statistical assessment of the full VG/VD degradation space using dedicated device arrays. In Proceedings of the 2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2–6 April 2017; pp. 2D-5.1–2D-5.6. [Google Scholar] [CrossRef]
- Grasser, T. Bias Temperature Instability for Devices and Circuits; Springer: New York, NY, USA, 2013; pp. 1–810. [Google Scholar]
- Cristoloveanu, S.; Haddara, H.; Revil, N. Defect Localization Induced by Hot Carrier Injection in Short-Channel MOSFETs: Concept, Modeling and Characterization. Microel. Reliab. 1993, 33, 1365–1385. [Google Scholar] [CrossRef]
- Acovic, A.; Rosa, G.L.; Sun, Y. A Review of Hot Carrier Degradation Mechanism in MOSFETs. Microel. Reliab. 1996, 36, 845–869. [Google Scholar] [CrossRef]
- Leblebici, Y.; Kang, S.M. Modeling of nMOS Transistors for Simulation of Hot-Carrier Induced Device and Circuit Degradation. IEEE Trans. Comput.-Aided Des. 1992, 11, 235–246. [Google Scholar] [CrossRef]
- Kao, E.; Jungemann, C.; Houssa, M.; Tyaginov, S. Deterministic Boltzmann Transport Equation Solver: Validation and Heat Generation Modeling. In Proceedings of the 2025 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Grenoble, France, 24–26 September 2025; pp. 1–4. [Google Scholar] [CrossRef]
- Rupp, K.; Grasser, T.; Jüngel, A. On the Feasibility of Spherical Harmonics Expansions of the Boltzmann Transport Equation for Three-Dimensional Device Geometries. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 34.1.1–34.1.4. [Google Scholar] [CrossRef]
- Rupp, K.; Jungemann, C.; Bina, M.; Jüngel, A.; Grasser, T. Bipolar Spherical Harmonics Expansions of the Boltzmann Transport Equation. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Denver, CO, USA, 5–7 September 2012; pp. 19–22. [Google Scholar]
- Tyaginov, S.; Makarov, A.; Chasin, A.; Bury, E.; Vandemaele, M.; Jech, M.; Grill, A.; De Keersgieter, A.; Linten, D.; Kaczer, B. The Impact of Self-Heating and its Implications on Hot-Carrier Degradation–A Modeling Study. Microelectron. Reliab. 2021, 122, 114156. [Google Scholar] [CrossRef]
- Qiu, B.; Tian, Z.; Vallabhaneni, A.; Liao, B.; Mendoza, J.M.; Restrepo, O.D.; Ruan, X.; Chen, G. First-Principles Simulation of Electron Mean-Free-Path Spectra and Thermoelectric Properties in Silicon. Europhys. Lett. 2015, 109, 57006. [Google Scholar] [CrossRef]
- Andrianov, I.; Saalfrank, P. Theoretical Study of Vibration-Phonon Coupling of H Adsorbed on a Si(100) Surface. J. Chem. Phys. 2006, 124, 034710-1–034710-10. [Google Scholar] [CrossRef] [PubMed]
- Rupp, K. Deterministic Numerical Solution of the Boltzmann Transport Equation. Ph.D. Thesis, Technische Universität Wien, Wien, Austria, 2011. [Google Scholar]
- Tyaginov, S.; Grill, A.; Vandemaele, M.; Grasser, T.; Hellings, G.; Makarov, A.; Jech, M.; Linten, D.; Kaczer, B. A Compact Physics Analytical Model for Hot-Carrier Degradation. In Proceedings of the 2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 28 April–30 May 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Grasser, T.; Kosina, H.; Heitzinger, C.; Selberherr, S. Accurate Impact Ionization Model which Accounts for Hot and Cold Carrier Populations. Appl. Phys. Lett. 2002, 80, 613–615. [Google Scholar] [CrossRef]
- Schenk, A. Advanced Physical Models for Silicon Device Simulations; Springer: New York, NY, USA, 1998. [Google Scholar]
- Lundstrom, M. Drift-diffusion and computational electronics-still going strong after 40 years! In Proceedings of the 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington, DC, USA, 9–11 September 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Gritsch, M. Numerical Modeling of Silicon-on-Insulator MOSFETs. Ph.D. Thesis, Technische Universität Wien, Wien, Austria, 2002. [Google Scholar]
- Tyaginov, S.; Starkov, I.; Jungemann, C.; Enichlmair, H.; Park, J.; Grasser, T. Impact of the Carrier Distribution Function on Hot-Carrier Degradation Modeling. In Proceedings of the European Solid-State Device Research Conference (ESSDERC), Helsinki, Finland, 12–16 September 2011; pp. 151–154. [Google Scholar] [CrossRef]
- Selmi, L.; Sangiorgi, E.; Bez, R.; Ricco, B. Measurement of the hot hole injection probability from Si into SiO2 in p-MOSFETs. In Proceedings of the Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 5–8 December 1993; pp. 333–336. [Google Scholar] [CrossRef]
- Tandon, N.; Albrecht, J.D.; Ram-Mohan, L.R. Electron-Phonon Interaction and Scattering in Si and Ge: Implications for Phonon Engineering. J. Appl. Phys. 2015, 118, 045713. [Google Scholar] [CrossRef]
- Vecchi, M.C.; Rudan, M. Modeling electron and hole transport with full-band structure effects by means of the Spherical-Harmonics Expansion of the BTE. IEEE Trans. Electron Devices 1998, 45, 230–238. [Google Scholar] [CrossRef]
- Fischetti, M.V.; Laux, S.E. Monte Carlo Analysis of Electron Transport in Small Semiconductor Devices Including Band-Structure and Space-Charge Effects. Phys. Rev. B 1988, 38, 9721–9745. [Google Scholar] [CrossRef]
- Ancona, M.G.; Saks, N.S.; McCarthy, D. Lateral distribution of hot-carrier-induced interface traps in MOSFETs. IEEE Trans. Electron Devices 1988, 35, 2221–2228. [Google Scholar] [CrossRef]
- Helms, C.R.; Poindexter, E.H. The Silicon-Silicon Dioxide System: Its Microstructure and Imperfections. Rep. Prog. Phys. 1994, 57, 791. [Google Scholar] [CrossRef]
- Jech, M.; El-Sayed, A.M.; Tyaginov, S.; Shluger, A.L.; Grasser, T. Ab initio treatment of silicon-hydrogen bond rupture at Si/SiO2 interfaces. Phys. Rev. B 2019, 100, 195302. [Google Scholar] [CrossRef]
- Campbell, J.P.; Lenahan, P.M.; Cochrane, C.J.; Krishnan, A.T.; Krishnan, S. Atomic-Scale Defects Involved in the Negative-Bias Temperature Instability. IEEE Trans. Device Mater. Reliab. 2007, 7, 540–557. [Google Scholar] [CrossRef]
- Stathis, J.H.; DiMaria, D.J. Identification of an Interface Defect Generated by Hot Electrons in SiO2. Appl. Phys. Lett. 1992, 61, 2887–2889. [Google Scholar] [CrossRef]
- Cartier, E.; Stathis, J.H. Hot-Electron Induced Passivation of Silicon Dangling Bonds at the Si(111)/SiO2 Interface. Appl. Phys. Lett. 1996, 69, 103–105. [Google Scholar] [CrossRef]
- Lenahan, P. Atomic Scale Defects Involved in MOS Reliability Problems. Microelectron. Eng. 2003, 69, 173–181. [Google Scholar] [CrossRef]
- Tyaginov, S.; Grasser, T. Modeling of hot-carrier degradation: Physics and controversial issues. In Proceedings of the 2012 IEEE International Integrated Reliability Workshop Final Report, South Lake Tahoe, CA, USA, 14–18 October 2012; pp. 206–215. [Google Scholar] [CrossRef]
- Hess, K.; Register, L.; Tuttle, B.; Lyding, J.; Kizilyalli, I. Impact of Nanostructure Research on Conventional Solid-State Electronics: The Giant Isotope Effect in Hydrogen Desorption and CMOS Lifetime. Phys. E 1998, 3, 1–7. [Google Scholar] [CrossRef]
- Hess, K.; Haggag, A.; McMahon, W.; Cheng, K.; Lee, J.; Lyding, J. The Physics of Determining Chip Reliability. IEEE Circuits Devices Mag. 2001, 17, 33–38. [Google Scholar] [CrossRef]
- Bravaix, A.; Huard, V.; Goguenheim, D.; Vincent, E. Hot-Carrier to Cold-Carrier Device Lifetime Modeling with Temperature for Low power 40nm Si-Bulk NMOS and PMOS FETs. In Proceedings of the International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 622–625. [Google Scholar]
- Grasser, T. Hot Carrier Degradation in Semiconductor Devices; Springer: New York, NY, USA, 2015. [Google Scholar]
- Edwards, A.H. Interaction of H and H2 with the silicon dangling orbital at the (111) Si/SiO2. Phys. Rev. B 1991, 44, 1832–1838. [Google Scholar] [CrossRef]
- Edwards, A.H.; Pickard, J.A.; Stahlbush, R.E. Interaction of hydrogen with defects in a-SiO2. J. Non-Cryst. Solids 1994, 179, 148–161. [Google Scholar] [CrossRef]
- Tuttle, B.; Adams, J.B. Structure, dissociation, and the vibrational signatures of hydrogen clusters in amorphous silicon. Phys. Rev. B 1997, 56, 4565–4572. [Google Scholar] [CrossRef]
- Tuttle, B.; de Walle, C.V. Structure, Energetics, and Vibrational Properties of Si-H Bond Dissociation in Silicon. Phys. Rev. B 1999, 59, 12884–12889. [Google Scholar] [CrossRef]
- Biswas, R.; Li, Y.P.; Pan, B.C. Enhanced stability of deuterium in silicon. Appl. Phys. Lett. 1998, 72, 3500–3503. [Google Scholar] [CrossRef]
- Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y. Mechanism for hydrogen diffusion in amorphous silicon. Phys. Rev. B 1998, 57, 2253–2256. [Google Scholar] [CrossRef]
- Guyot-Sionnest, P.; Lin, P.H.; Hiller, E.M. Vibrational dynamics of the Si–H stretching modes of the Si(100)/H:2x1 surface. J. Chem. Phys. 1995, 102, 4269–4278. [Google Scholar] [CrossRef]
- Andrianov, I.; Saalfrank, P. Vibrational Relaxation Rates for H on a Si(1 0 0):(2x1) Surface: A Two-Dimensional Model. Chem. Phys. Lett. 2001, 350, 191–197. [Google Scholar] [CrossRef]
- Brower, K. Dissociation Kinetics of Hydrogen-Passivated (111)Si-Si02 Interface Defects. Phys. Rev. B 1990, 42, 3444–3454. [Google Scholar] [CrossRef]
- Lynn, K.; Nielsen, B.; Welch, D. Hydrogen interaction with oxidized Si(111) probed with positrons. Can. J. Phys. 1989, 67, 818–820. [Google Scholar] [CrossRef]
- Stesmans, A. Dissociation kinetics of hydrogen-passivated Pb defects at the (111)Si/SiO2 interface. Phys. Rev. B 2000, 61, 8393–8403. [Google Scholar] [CrossRef]
- Stesmans, A. Revision of H2 Passivation of P2 Interface Defects in Standard (111)Si/SiO2. Appl. Phys. Lett. 1996, 68, 2723–2725. [Google Scholar] [CrossRef]
- Stesmans, A. Passivation of Pb0 and Pb1 Interface Defects in Thermal (100) Si/SiO2 with Molecular Hydrogen. Appl. Phys. Lett. 1996, 68, 2076–2078. [Google Scholar] [CrossRef]
- de Jong, M.J.; Salm, C.; Schmitz, J. Towards Understanding Recovery of Hot-Carrier Induced Degradation. Microelectron. Reliab. 2018, 88–90, 147–151. [Google Scholar] [CrossRef]
- de Jong, M.J.; Salm, C.; Schmitz, J. Effect of Ambient on the Recovery of Hot-Carrier Degraded Devices. In Proceedings of the 2020 IEEE International Reliability Physics Symposium (IRPS), Grapevine, TX, USA, 28 April–30 May 2020; pp. 1–6. [Google Scholar]
- Vandemaele, M.; Chuang, K.H.; Bury, E.; Tyaginov, S.; Groeseneken, G.; Kaczer, B. The Influence of Gate Bias on the Anneal of Hot-Carrier Degradation. In Proceedings of the International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 28 April–30 May 2020; pp. 5A.3.1–5A.3.7. [Google Scholar] [CrossRef]
- Tyaginov, S.; Makarov, A.; El-Sayed, A.M.B.; Chasin, A.; Bury, E.; Jech, M.; Vandemaele, M.; Grill, A.; Keersgieter, A.D.; Vexler, M.; et al. Understanding and Modeling Opposite Impacts of Self-Heating on Hot-Carrier Degradation in n- and p-Channel Transistors. In Proceedings of the 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 27–31 March 2022; pp. 6A.3-1–6A.3-8. [Google Scholar] [CrossRef]
- Prégaldiny, F.; Lallement, C.; Mathiot, D. Accounting for quantum mechanical effects from accumulation to inversion, in a fully analytical surface-potential-based MOSFET model. Solid-State Electron. 2004, 48, 781–787. [Google Scholar] [CrossRef]
- Prégaldiny, F.; Lallement, C.; van Langevelde, R.; Mathiot, D. An advanced explicit surface potential model physically accounting for the quantization effects in deep-submicron MOSFETs. Solid-State Electron. 2004, 48, 427–435. [Google Scholar] [CrossRef]
- Wong, H.S.; White, M.; Krutsick, J.; Booth, R. Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET’s. Solid-State Electron. 1987, 30, 953–958. [Google Scholar] [CrossRef]
- Prakash, A.G.; Ke, S.; Siddappa, K. High-energy radiation effects on subthreshold characteristics, transconductance and mobility of n-channel MOSFETs. Semicond. Sci. Technol. 2003, 18, 1037–1042. [Google Scholar] [CrossRef]
- Kaiblinger-Grujin, G.; Grasser, T.; Selberherr, S. A Physically-Based Electron Mobility Model for Silicon Device Simulation. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Leuven, Belgium, 16–18 September 1998; pp. 312–315. [Google Scholar]
- Grasser, T.; Tsuneno, K.; Selberherr, S.; Masuda, H. Mobility Parameter Tuning for Device Simulation. In Proceedings of the 28th European Solid-State Device Research Conference, Bordeaux, France, 8–10 September 1998; pp. 336–339. [Google Scholar]
- Available online: http://www.globaltcad.com/en/products/minimos-nt.html (accessed on 1 January 2025).
- Starkov, I.; Tyaginov, S.; Enichlmair, H.; Cervenka, J.; Jungemann, C.; Carniello, S.; Park, J.; Ceric, H.; Grasser, T. Hot-Carrier degradation caused interface state profile - simulations vs. experiment. J. Vac. Sci. Technol. B 2011, 29, 01AB09-1–01AB09-8. [Google Scholar] [CrossRef]
- Beckers, A.; Michl, J.; Grill, A.; Kaczer, B.; Bardon, M.G.; Parvais, B.; Govoreanu, B.; De Greve, K.; Hiblot, G.; Hellings, G. Physics-Based and Closed-Form Model for Cryo-CMOS Subthreshold Swing. IEEE Trans. Nanotechnol. 2023, 22, 590–596. [Google Scholar] [CrossRef]
- Oka, H.; Asai, H.; Inaba, T.; Shitakata, S.; Yui, H.; Fuketa, H.; Iizuka, S.; Kato, K.; Nakayama, T.; Mori, T. Milli-Kelvin Analysis Revealing the Role of Band-edge States in Cryogenic MOSFETs. In Proceedings of the 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 9–13 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Li, W.F.; Wang, Y.; Sun, Z.; Zhu, A.; Zeng, L.; Liu, Y.Y.; Zhang, L.; Wang, R.; et al. Investigation on the Band Tail States in FinFETs at Cryogenic Temperature. IEEE Trans. Electron Devices 2025, 72, 2670–2676. [Google Scholar] [CrossRef]
- Prasad, C. A review of self-heating effects in advanced CMOS technologies. IEEE Trans. Electron Devices 2019, 66, 4546–4555. [Google Scholar] [CrossRef]
- Paliwoda, P.; Chbili, Z.; Kerber, A.; Nigam, T.; Nagahiro, K.; Cimino, S.; Toledano-Luque, M.; Pantisano, L.; Min, B.W.; Misra, D. Self-Heating Effects on Hot Carrier Degradation and Its Impact on Logic Circuit Reliability. IEEE Trans. Device Mater. Reliab. 2019, 19, 249–254. [Google Scholar] [CrossRef]
- Cassé, M.; Bergamaschi, F.E.; Berlingard, Q. Self-Heating Effects in FDSOI Transistors at Cryogenic Temperature: A Spatial and Temporal Experimental Study (Invited). In Proceedings of the 2025 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 30 March–3 April 2025; pp. 1–7. [Google Scholar] [CrossRef]
- Vermeersch, B.; Mishra, S.; Brunion, M.; Zografos, O.; Lofrano, M.; Oprins, H.; Myers, J.; Tokei, Z.; Hellings, G. Multiscale Thermal Impact of BSPDN: SoC Hotspot Challenges and Partial Mitigation. In Proceedings of the 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Renner, M.; Linn, T.; Jungemann, C. Stabilization of the Drift-Diffusion Model for Arbitrary Carrier Statistics. In Proceedings of the 2025 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Grenoble, France, 24–26 September 2025; pp. 1–4. [Google Scholar] [CrossRef]
- Hsu, F.C.; Chu, K.Y. Temperature Dependence of Hot-Electron Induced Degradation in MOSFET’s. IEEE Electron Device Lett. 1984, 5, 148–150. [Google Scholar] [CrossRef]
- Bravaix, A.; Goguenheim, D.; Revil, N.; Vincent, E.; Varrot, M.; Mortini, P. Analysis of High Temperatures Effects on Performance and Hot-Carrier Degradation in DC/AC Stressed 0.35 µm n-MOSFETs. Microel. Reliab. 1999, 39, 35–44. [Google Scholar] [CrossRef]
- Mizuno, T.; Toriumi, A.; Iwase, M.; Takanashi, M.; Niiyama, H.; Fukmoto, M.; Yoshimi, M. Hot-carrier Effects in 0.1 µm Gate Length CMOS Devices. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 13–16 October 1992; pp. 695–698. [Google Scholar]
- Amat, E.; Kauerauf, T.; Degraeve, R.; Rodriguez, R.; Nafria, M.; Aymerich, X.; Groeseneken, G. Channel Hot-Carrier Degradation in pMOS and nMOS Short Channel Transistors with High-K Dielectric Stack. Microelectron. Eng. 2010, 87, 47–50. [Google Scholar] [CrossRef]
- Sano, N.; Tomizawa, M.; Yoshii, A. Temperature dependence of hot carrier effects in short-channel Si-MOSFETs. IEEE Trans. Electron Devices 1995, 42, 2211–2216. [Google Scholar] [CrossRef]
- Abramo, A.; Fiegna, C.; Venturi, F. Hot Carrier Effects in Short MOSFETs at Low Applied Voltages. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 10–13 December 1995; pp. 301–304. [Google Scholar]
- Ghetti, A.; Selmi, L.; Bez, R. Low-Voltage Hot Electrons and Soft-Programming Lifetime Prediction in Nonvolatile Memory Cells. IEEE Trans. Electron Devices 1999, 46, 696–702. [Google Scholar] [CrossRef]
- Grasser, T.; Kaczer, B.; Gös, W.; Reisinger, H.; Aichinger, T.; Hehenberger, P.; Wagner, P.J.; Franco, J.; Toledano-Luque, M.; Nelhiebel, M. The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction-Diffusion to Switching Oxide Traps. IEEE Trans. Electron Devices 2011, 58, 3652–3666. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, R.; Hao, P.; Guo, S.; Ren, P.; Huang, R. Non-Universal Temperature Dependence of Hot Carrier Degradation (HCD) in FinFET: New Observations and Physical Understandings. In Proceedings of the 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), Kobe, Japan, 13–16 March 2018; pp. 34–36. [Google Scholar] [CrossRef]
- Kerber, A.; Nigam, T.; Paliwoda, P.; Guarin, F. Reliability Characterization of Ring Oscillator Circuits for Advanced CMOS Technologies. IEEE Trans. Device Mater. Reliab. 2020, 20, 230–241. [Google Scholar] [CrossRef]
- Makarov, A.; Tyaginov, S.E.; Kaczer, B.; Jech, M.; Chasin, A.; Grill, A.; Hellings, G.; Vexler, M.I.; Linten, D.; Grasser, T. Hot-Carrier Degradation in FinFETs: Modeling, Peculiarities, and Impact of Device Topology. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 13.1.1–13.1.4. [Google Scholar] [CrossRef]
- Varghese, D.; Alam, M.A.; Weir, B. A generalized, IB-independent, physical HCI lifetime projection methodology based on universality of hot-carrier degradation. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; pp. 1091–1094. [Google Scholar] [CrossRef]
- Wu, Z.; Franco, J.; Roussel, P.J.; Tyaginov, S.; Trujen, B.; Vandemale, M.; Hellings, G.; Collaert, N.; Groeseneken, G.; Linten, D.; et al. A physics-aware compact modeling framework for transistor aging in the entire bias space. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 21.2.1–21.2.4. [Google Scholar] [CrossRef]
- Enz, C.; Chicco, F.; Pezzotta, A. Nanoscale MOSFET Modeling: Part 1: The Simplified EKV Model for the Design of Low-Power Analog Circuits. IEEE-Solid-State Circuits Mag. 2017, 9, 26–35. [Google Scholar] [CrossRef]
- Enz, C.; Chicco, F.; Pezzotta, A. Nanoscale MOSFET Modeling: Part 2: Using the Inversion Coefficient as the Primary Design Parameter. IEEE-Solid-State Circuits Mag. 2017, 9, 73–81. [Google Scholar] [CrossRef]













| Parameter | Value | Description |
|---|---|---|
| 28 nm | gate length | |
| W | 100 nm | transistor width |
| EOT | 1.3 nm | equivalent oxide thickness |
| 1.2 V | operating voltage |
| Parameter | Value | Description |
|---|---|---|
| 28 meV | carrier energy loss | |
| 0.05 cm | doping-free mean free path | |
| 2.75 eV | Si-H bonding energy (mean value) | |
| 0.52 eV | standard deviation of bonding energy | |
| 0.25 eV | energetic distance between vibrational levels of Si-H | |
| 1.75 eV | energy barrier for the passivation reaction | |
| 1.5 × 10−19 cm2 | cross-section of the SC process | |
| 1.5 × 10−20 cm2 | cross-section of the MC process | |
| 1.2 × 1013 cm−3 | density of intact Si-H bonds | |
| 10−13 cm−2 | induced mobility degradation magnitude |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyaginov, S.; Bury, E.; Grill, A.; Kao, E.; Keersgieter, A.D.; Makarov, A.; Vandemaele, M.; Spessot, A.; Chasin, A.; Kaczer, B. Incorporation of Temperature Impact on Hot-Carrier Degradation into Compact Physics Model. Micromachines 2025, 16, 1424. https://doi.org/10.3390/mi16121424
Tyaginov S, Bury E, Grill A, Kao E, Keersgieter AD, Makarov A, Vandemaele M, Spessot A, Chasin A, Kaczer B. Incorporation of Temperature Impact on Hot-Carrier Degradation into Compact Physics Model. Micromachines. 2025; 16(12):1424. https://doi.org/10.3390/mi16121424
Chicago/Turabian StyleTyaginov, Stanislav, Erik Bury, Alexander Grill, Ethan Kao, An De Keersgieter, Alexander Makarov, Michiel Vandemaele, Alessio Spessot, Adrian Chasin, and Ben Kaczer. 2025. "Incorporation of Temperature Impact on Hot-Carrier Degradation into Compact Physics Model" Micromachines 16, no. 12: 1424. https://doi.org/10.3390/mi16121424
APA StyleTyaginov, S., Bury, E., Grill, A., Kao, E., Keersgieter, A. D., Makarov, A., Vandemaele, M., Spessot, A., Chasin, A., & Kaczer, B. (2025). Incorporation of Temperature Impact on Hot-Carrier Degradation into Compact Physics Model. Micromachines, 16(12), 1424. https://doi.org/10.3390/mi16121424

