A High-Temperature Stable Ohmic Contact Process on Lightly Doped n-Type 4H-SiC Based on a W/C Multilayer Structure
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zetterling, C.M.; Lanni, L.; Ghandi, R.; Malm, B.G.; Östling, M. Future high temperature applications for SiC integratedcircuits. Physica Status Solidi C 2012, 9, 1647–1650. [Google Scholar] [CrossRef]
- Robichaud, J.L. SiC optics for EUV, UV, and visible space missions. In Proceedings of the Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation, Waikoloa, HI, USA, 22–28 August 2002; Volume 4854, pp. 39–49. [Google Scholar]
- Song, Q.; Yang, S.; Tang, G.; Han, C.; Zhang, Y.; Tang, X.; Zhang, Y.; Zhang, Y. 4H-SiC trench MOSFET with L-shaped gate. IEEE Electron Device Lett. 2016, 37, 463–466. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Todi, R.M.; Sundaram, K.B. Amorphous-SiCBN-based metal–semiconductor–metal photodetector for high-temperature applications. IEEE Electron Device Lett. 2007, 28, 713–715. [Google Scholar] [CrossRef]
- Omprakash, A.P.; Dao, H.; Raghunathan, U.S.; Ying, H.B.; Chakraborty, P.S.; Babcock, J.A.; Mukhopadhyay, R.; Cressler, J.D. An Investigation of High-Temperature (to 300 °C) Safe-Operating-Area in a High-Voltage Complementary SiGe on SOI Technology. IEEE Trans. Electron Devices 2017, 64, 3748–3755. [Google Scholar] [CrossRef]
- Hou, S.; Hellström, P.E.; Zetterling, C.M.; Östling, M. 550° C 4H-SiC pin photodiode array with two-layer metallization. IEEE Electron Device Lett. 2016, 37, 1594–1596. [Google Scholar] [CrossRef]
- Han, S.Y.; Lee, J.L. Effect of interfacial reactions on electrical properties of Ni contacts on lightly doped n-type 4H-SiC. J. Electrochem. Soc. 2002, 149, G189–G192. [Google Scholar] [CrossRef]
- Crofton, J.; Porter, L.M.; Williams, J.R. The physics of ohmic contacts to SiC. Phys. Status Solidi B 1997, 202, 581–603. [Google Scholar] [CrossRef]
- Kakanakov, R.; Kassamakova-Kolaklieva, L.; Hristeva, N.; Lepoeva, G.; Zekentes, K. Thermally stable low resistivity ohmic contacts for high power and high temperature SiC device applications. In Proceedings of the 23rd International Conference on Microelectronics (MIEL 2002), Niš, Serbia, 12–15 May 2002; Volume 1, pp. 205–208. [Google Scholar]
- Lee, H.S.; Domeij, M.; Zetterling, C.M.; Östling, M. Investigation of TiW contacts to 4H-SiC bipolar junction devices. Mater. Sci. Forum 2006, 527, 887–890. [Google Scholar] [CrossRef]
- Kim, B.K.; Burm, J.; An, C. The thermal stability of Ni and Ni/Au ohmic contacts to n-type 4H-SiC. In Proceedings of the 12th International Conference on Semiconducting and Insulating Materials (SIMC-XII), Chicago, IL, USA, 30 September–5 October 2002; pp. 97–101. [Google Scholar]
- Liu, S.B.; He, Z.; Zheng, L.; Zhang, F.; Dong, L.; Tian, L.X.; Shen, Z.W.; Wang, J.Z.; Huang, Y.J.; Fan, Z.C.; et al. The thermal stability study and improvement of 4H-SiC ohmic contact. Appl. Phys. Lett. 2014, 105, 122106. [Google Scholar]
- Lee, S.K.; Zetterling, C.M.; Östling, M. Microscopic mapping of specific contact resistances and long-term reliability tests on 4H-silicon carbide using sputtered titanium tungsten contacts for high temperature device applications. J. Appl. Phys. 2002, 92, 253–260. [Google Scholar] [CrossRef]
- Jang, T.; Odekirk, B.; Madsen, L.D.; Porter, L.M. Thermal stability and contact degradation mechanisms of TaC ohmic contacts with W/WC overlayers to n-type 6H SiC. J. Appl. Phys. 2001, 90, 4555–4559. [Google Scholar] [CrossRef]
- Chu, X.; Liu, J.; Xun, T.; Wang, L.; Yang, H.; Zhang, J. MHz repetition frequency, hundreds kilowatt, and sub-nanosecond agile pulse generation based on linear 4H-SiC photoconductive semiconductor. IEEE Trans. Electron Devices 2022, 69, 597–603. [Google Scholar] [CrossRef]
- Karanth, S.P.; Sumesh, M.A.; Shobha, V.; Sirisha, J.; Yadav, D.; Vijay, S.B.; Sriram, K.V. Electro-optical performance study of 4H-SiC/Pd Schottky UV photodetector array for space applications. IEEE Trans. Electron Devices 2020, 67, 3242–3249. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Li, X.Y.; Chen, Z.Z. Role of W in W/Ni bilayer ohmic contact to n-type 4H-SiC from the perspective of device applications. IEEE Trans. Electron Devices 2018, 65, 641–647. [Google Scholar] [CrossRef]
- Dong, S.X.; Bai, Y.; Tang, Y.D.; Chen, H.; Tian, X.L.; Yang, C.Y.; Liu, X.Y. Analysis of the inhomogeneous barrier and phase composition of W/4H-SiC Schottky contacts formed at different annealing temperatures. Chin. Phys. B 2018, 27, 097305. [Google Scholar] [CrossRef]
- Rogowski, J.; Kubiak, A. Effects of annealing temperature on the structure and electrical properties of tungsten contacts to n-type silicon carbide. Mater. Sci. Eng. B 2015, 191, 57–65. [Google Scholar] [CrossRef]
- Mohney, S.E.; Hull, B.A.; Lin, J.Y.; Crofton, J. Morphological study of the Al–Ti ohmic contact to p-type SiC. Solid-State Electron. 2002, 46, 689–693. [Google Scholar] [CrossRef]
- Braslau, N. Alloyed ohmic contacts to GaAs. J. Vac. Sci. Technol. 1981, 19, 803–807. [Google Scholar] [CrossRef]
- Gottfried, K.; Kriz, J.; Leibelt, J.; Kaufmann, C.; Gessner, T. High temperature stable metallization schemes for SiC-technology operating in air. In Proceedings of the High-Temperature Electronic Materials, Devices and Sensors Conference, Albuquerque, NM, USA, 22–27 February 1998; pp. 153–158. [Google Scholar]
- Liu, S.; Scofield, J. Thermally stable ohmic contacts to 6H-and 4H-p-type SiC. In Proceedings of the 4th International High Temperature Electronics Conference (HITEC), Albuquerque, NM, USA, 14–18 June 1998; pp. 88–92. [Google Scholar]





| Metal | Doping Concentration (×1015 cm−3) | Aging Conditions | ρc (×10−5 Ω·cm2) Before/After | Ref. |
|---|---|---|---|---|
| Ni | 5000 * | 400 °C/20 h/N2 | 6.0/failed | [12] |
| TiW/Ni | 5000 * | 400 °C/100 h/N2 | 4.2/76 | [12] |
| Au/Ni | 10,000 * | 500 °C/100 h/N2 | 50/500 | [11] |
| Pt/Ti/TiW | 11,000 * | 500 °C/520 h/N2 | 1.5/50 | [13] |
| W/Ni/Al | 100 * | 600 °C/300 h/V | N/A | [23] |
| W/WC/TaC | 7800 * | 1000 °C/600 h/V | 3.0/3.8 | [14] |
| W/C stacked | 2.5 | 500 °C/100 h/Air | 25/57 | our |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Du, F.; Song, Q.; Tang, X.; Yuan, H.; Han, C.; Zhang, C.; Zhang, Y. A High-Temperature Stable Ohmic Contact Process on Lightly Doped n-Type 4H-SiC Based on a W/C Multilayer Structure. Micromachines 2025, 16, 1408. https://doi.org/10.3390/mi16121408
Zhou Y, Du F, Song Q, Tang X, Yuan H, Han C, Zhang C, Zhang Y. A High-Temperature Stable Ohmic Contact Process on Lightly Doped n-Type 4H-SiC Based on a W/C Multilayer Structure. Micromachines. 2025; 16(12):1408. https://doi.org/10.3390/mi16121408
Chicago/Turabian StyleZhou, Yu, Fengyu Du, Qingwen Song, Xiaoyan Tang, Hao Yuan, Chao Han, Chunfu Zhang, and Yuming Zhang. 2025. "A High-Temperature Stable Ohmic Contact Process on Lightly Doped n-Type 4H-SiC Based on a W/C Multilayer Structure" Micromachines 16, no. 12: 1408. https://doi.org/10.3390/mi16121408
APA StyleZhou, Y., Du, F., Song, Q., Tang, X., Yuan, H., Han, C., Zhang, C., & Zhang, Y. (2025). A High-Temperature Stable Ohmic Contact Process on Lightly Doped n-Type 4H-SiC Based on a W/C Multilayer Structure. Micromachines, 16(12), 1408. https://doi.org/10.3390/mi16121408

