Fabrication Process Development for Optical Channel Waveguides in Sputtered Aluminum Nitride
Abstract
1. Introduction
2. Fabrication Process Flow
2.1. Aluminum Nitride Film Sputter Deposition and Annealing
2.2. Effect of Oxidative Media on the Depth Composition of AlN Thin Films
2.3. Final Process Flow for the Fabrication of Channel Waveguides in AlN
2.4. Fabricated Waveguide Inspection
3. Optical Propagation Loss Characterization Using Micro-Ring Resonators
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pernice, W.H.P.; Xiong, C.; Tang, H.X. High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics. Opt. Express 2012, 20, 12261–12269. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.H.P.; Tang, H.X. Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing. Nano Lett. 2012, 12, 3562–3568. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.J.; Wang, P.; Sun, Y. Enhanced Pockels Effect in AlN Microring Resonator Modulators Based on AlGaN/AlN Multiple Quantum Wells. ACS Photonics 2023, 10, 34–42. [Google Scholar] [CrossRef]
- Boger, R.; Fiederle, M.; Kirste, L. Molecular beam epitaxy and doping of AlN at high growth temperatures. J. Phys. D Appl. Phys. 2006, 39, 4616. [Google Scholar] [CrossRef]
- Benaissa, M.; Vennéguès, P.; Tottereau, O. Investigation of AlN films grown by molecular beam epitaxy on vicinal Si(111) as templates for GaN quantum dots. Appl. Phys. Lett. 2006, 89, 231903. [Google Scholar] [CrossRef]
- Matloubian, M.; Gershenzon, M. MOCVD epitaxial growth of single crystal GaN, AlN and AlxGa1-xN. J. Electron. Mater. 1985, 14, 633–644. [Google Scholar] [CrossRef]
- Bertolet, D.C.; Liu, H.; Rogers, J.W., Jr. Initial stages of AlN thin-film growth on alumina using trimethylamine alane and ammonia precursors. J. Appl. Phys. 1994, 75, 5385–5390. [Google Scholar] [CrossRef]
- He, M.; Cheng, N.; Zhou, P. Preparation of nearly oxygen-free AlN thin films by pulsed laser deposition. J. Vac. Sci. Technol. A 1998, 16, 2372–2375. [Google Scholar] [CrossRef]
- Belkerk, B.E.; Soussou, A.; Carette, M. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering. Appl. Phys. Lett. 2012, 101, 151908. [Google Scholar] [CrossRef]
- Duquenne, C.; Djouadi, M.A.; Tessier, P.Y. Epitaxial growth of aluminum nitride on AlGaN by reactive sputtering at low temperature. Appl. Phys. Lett. 2008, 93, 052905. [Google Scholar] [CrossRef]
- Meng, W.J.; Heremans, J.; Cheng, Y.T. Epitaxial growth of aluminum nitride on Si(111) by reactive sputtering. Appl. Phys. Lett. 1991, 59, 2097–2099. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.H.P.; Sun, X. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 2012, 14, 095014. [Google Scholar] [CrossRef]
- Singh, R.; Raghuwanshi, M.; Sundarapandian, B. Sputtered aluminum nitride waveguides for the telecommunication spectrum with less than 0.16 dB/cm propagation loss. Opt. Express 2024, 32, 46522–46528. [Google Scholar] [CrossRef]
- Mardani, S.; Hendriks, W.A.P.M.; Dijkstra, M.; Nguyen, M.; Garcia-Blanco, S.M. Impact of Annealing on Low-Loss Sputtered Aluminum Nitride: Insights from Optic to Advanced Material Characterization. Opt. Contin. 2025. [Google Scholar] [CrossRef]
- Hendriks, W.; Bonneville, D.; Mardani, S. UV integrated photonics in sputter deposited aluminum oxide. Opt. Open 2024, Preprint. [Google Scholar] [CrossRef]
- West, G.N.; Loh, W.; Kharas, D. Low-loss integrated photonics for the blue and ultraviolet regime. APL Photonics 2019, 4, 026101. [Google Scholar] [CrossRef]
- Neutens, P.; Mafakheri, E.; Zheng, X. A 200 mm Wafer-Scale Al2O3 Photonics Waveguide Technology for UV and Visible Applications. IEEE Photonics J. 2025, 17, 2200706. [Google Scholar] [CrossRef]
- Mardani, S.; Hendriks, W.; Dijkstra, M. Low-loss chemical mechanically polished Al2O3 thin films for UV integrated photonics. In Proceedings of the 23rd European Conference on Integrated Optics, Politecnico di Milano, Milan, Italy, 4–6 May 2022; pp. 390–392. [Google Scholar]
- Ji, X.; Roberts, S.; Corato-Zanarella, M.; Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics 2021, 6, 071101. [Google Scholar] [CrossRef]
- Ji, X.; Okawachi, Y.; Gil-Molina, A. Ultra-Low-Loss Silicon Nitride Photonics Based on Deposited Films Compatible with Foundries. Laser Photonics Rev. 2023, 17, 2200544. [Google Scholar] [CrossRef]
- Pinto, R.M.R.; Gund, V.; Calaza, C. Piezoelectric aluminum nitride thin-films: A review of wet and dry etching techniques. Microelectron. Eng. 2022, 257, 111753. [Google Scholar] [CrossRef]
- Youngman, R.A.; Harris, J.H. Luminescence Studies of Oxygen-Related Defects In Aluminum Nitride. J. Am. Ceram. Soc. 1990, 73, 3238–3246. [Google Scholar] [CrossRef]
- Sun, L.; Lu, H.L.; Chen, H.Y. Effects of Post Annealing Treatments on the Interfacial Chemical Properties and Band Alignment of AlN/Si Structure Prepared by Atomic Layer Deposition. Nanoscale Res. Lett. 2017, 12, 102. [Google Scholar] [CrossRef]
- Brien, V.; Pigeat, P. Correlation between the oxygen content and the morphology of AlN films grown by r.f. magnetron sputtering. J. Cryst. Growth 2008, 310, 3890–3895. [Google Scholar] [CrossRef]
- Little, B.E.; Chu, S.T.; Haus, H.A. Microring resonator channel dropping filters. J. Light. Technol. 1997, 15, 998–1005. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- McKinnon, W.R.; Xu, D.-X.; Storey, C. Extracting coupling and loss coefficients from a ring resonator. Opt. Express 2009, 17, 18971–18982. [Google Scholar] [CrossRef]
- Bahadori, M.; Nikdast, M.; Rumley, S. Design Space Exploration of Microring Resonators in Silicon Photonic Interconnects: Impact of the Ring Curvature. J. Lightwave Technol. 2018, 36, 2767–2782. [Google Scholar] [CrossRef]
- Amrar, R.; Soltani, A.; Beaudin, G. Towards a low-loss aluminum nitride on insulator (AlNOI) platform for integrated photonics. Opt. Mater. Express 2025, 15, 752–765. [Google Scholar] [CrossRef]
- Zhu, S.; Zhong, Q.; Hu, T. Aluminum Nitride Ultralow Loss Waveguides and Push-Pull Electro-Optic Modulators for Near Infrared and Visible Integrated Photonics. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. Available online: https://ieeexplore.ieee.org/abstract/document/8696788 (accessed on 29 August 2025).
- Osornio-Martinez, C.E.; Bonneville, D.B.; Dijkstra, M. Scalable erbium-doped waveguide amplifier with external fiber-to-fiber gain using reactively sputtered polycrystalline aluminium oxide. Opt. Express 2025, 33, 22458–22468. [Google Scholar] [CrossRef]








| Step | O2 (sccm) | N2 (sccm) | Pressure (mbar) | Power (W) | Time (h:mm:ss) |
|---|---|---|---|---|---|
| Preheating | 0 | 500 | 1.0 | 800 | 0:10:00 |
| Stripping of resist | 500 | 0 | 1.0 | 800 | 0:30:00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mardani, S.; Jongebloed, B.; Hendriks, W.A.P.M.; Dijkstra, M.; Garcia-Blanco, S.M. Fabrication Process Development for Optical Channel Waveguides in Sputtered Aluminum Nitride. Micromachines 2025, 16, 1259. https://doi.org/10.3390/mi16111259
Mardani S, Jongebloed B, Hendriks WAPM, Dijkstra M, Garcia-Blanco SM. Fabrication Process Development for Optical Channel Waveguides in Sputtered Aluminum Nitride. Micromachines. 2025; 16(11):1259. https://doi.org/10.3390/mi16111259
Chicago/Turabian StyleMardani, Soheila, Bjorn Jongebloed, Ward A. P. M. Hendriks, Meindert Dijkstra, and Sonia M. Garcia-Blanco. 2025. "Fabrication Process Development for Optical Channel Waveguides in Sputtered Aluminum Nitride" Micromachines 16, no. 11: 1259. https://doi.org/10.3390/mi16111259
APA StyleMardani, S., Jongebloed, B., Hendriks, W. A. P. M., Dijkstra, M., & Garcia-Blanco, S. M. (2025). Fabrication Process Development for Optical Channel Waveguides in Sputtered Aluminum Nitride. Micromachines, 16(11), 1259. https://doi.org/10.3390/mi16111259

