An Improved Seeker Optimization Algorithm for Phase Sensitivity Enhancement of a Franckeite- and WS2-Based SPR Biosensor for Waterborne Bacteria Detection
Abstract
:1. Introduction
2. Theory and Design Methodology
3. The Improved Seeker Optimization Algorithm
Algorithm 1: ISOA |
Initialization: (1) Population N, dimension D, generation T, inertia weight , degree of membership umin, umax (2) Randomly initialize seeker position x, and , Pi and Pg of seeker (3) Cycle (4) For i = 1:N (5) For j = 1:D (6) (7) (8) (9) % Update the position of seeker (10) (11) % Update pbest and gbest value (12) IF func() > func() then (13) End IF (14) IF func() > func() then (15) End IF (16) End (17) End |
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef]
- Maharana, P.K.; Srivastava, T.; Jha, R. On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics 2014, 9, 1113–1120. [Google Scholar] [CrossRef]
- Bianco, M.; Sonato, A.; Girolamo, A.D.; Pascale, M. An aptamer-based SPR-polarization platform for high sensitive OTA detection. Sens. Actuators B Chem. 2017, 241, 314–320. [Google Scholar] [CrossRef]
- Zakaria, R.; Zainuddin, N.A.M.; Raya, S.A.; Alwi, S.A.K.; Anwar, T.; Sarlan, A.; Ahmed, K.; Amiri, I.S. Sensitivity comparison of refractive index transducer optical fiber based on surface plasmon resonance using Ag, Cu, and bimetallic Ag-Cu Layer. Micromachines 2020, 11, 77. [Google Scholar] [CrossRef]
- Hossain, B.; Paul, A.K.; Islam, M.A.; Rahman, M.M. A highly sensitive surface plasmon resonance biosensor using Snse allotrope and heterostructure of Bluep/MoS2 for cancerous cell detection. Optik 2022, 252, 168506. [Google Scholar] [CrossRef]
- Zhou, J.; Qi, Q.; Wang, C.; Qian, Y.; Liu, G.; Wang, Y.; Fu, L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron. 2019, 142, 111449. [Google Scholar] [CrossRef] [PubMed]
- Prado, A.R.; Diaz, C.A.R.; Lyra, L.G.; Oliveira, J.P. Surface plasmon resonance-based optical fiber sensors for H2S in situ detection. Plasmonics 2021, 16, 787–797. [Google Scholar] [CrossRef]
- Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A.E.; Ayas, S.; Uludag, Y.; Elbuken, C.; Dana, A. A smart phone-based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuator B Chem. 2017, 239, 571–577. [Google Scholar] [CrossRef]
- Rossi, S.; Gazzola, E.; Capaldo, P.; Borile, G.; Romanato, F. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber. Sensors 2018, 18, 1621. [Google Scholar] [CrossRef]
- Kushwaha, A.S.; Kumar, A.; Kumar, R.; Srivastava, S.K. A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photonic. Nanostruct. 2018, 31, 99–106. [Google Scholar] [CrossRef]
- Wu, L.; Jia, Y.; Jiang, L.; Guo, J.; Dai, X.; Xiang, Y.; Fan, D. Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure. J. Light. Technol. 2017, 35, 82–87. [Google Scholar] [CrossRef]
- Mudgal, N.; Saharia, A.; Choure, K.K.; Agarwal, A.; Singh, G. Sensitivity enhancement with anti-reflection coating of siliconnitride (Si3N4) layer in silver-based surface plasmon resonance (SPR) sensor for sensing of DNA hybridization. Appl. Phys. A Mater. Sci. Process. 2020, 126, 94612. [Google Scholar] [CrossRef]
- Yue, C.; Ding, Y.Q.; Tao, L.; Zhou, S.; Guo, Y.C. Differential evolution particle swarm optimization for phase sensitivity enhancement of SPR gas sensor based on MXene and BlueP/TMDCs hybrid structure. Sensors 2023, 23, 8401. [Google Scholar] [CrossRef] [PubMed]
- Aref, S.H. SPR phase sensitivity enhancement in common-path polarization heterodyne interferometer by polarization tuning. Optik 2018, 156, 619–627. [Google Scholar] [CrossRef]
- Wang, R.; Du, L.P.; Zhang, C.L. Plasmonic petal-shaped beam for microscopic phase-sensitive SPR biosensor with ultrahigh sensitivity. Opt. Lett. 2013, 38, 4770–4773. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Qin, Z.R.; Lang, Y.P.; Liu, Q.G. Determination of thin metal film’s thickness and optical constants based on SPR phase detection by simulated annealing particle swarm optimization. Opt. Commun. 2019, 430, 238–245. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Q.; Qin, Z. Determination of the bimetallic layers’ film thicknesses by phase detection of SPR prism coupler. Plasmonics 2017, 12, 1199–1204. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Chen, Q. Surface plasmon resonance effect, nonlinearity and faraday rotation properties of magneto optical glass: Influence of diamagnetic Ag@ZrO2 nanoparticles. J. Non-Cryst. Solids 2020, 553, 120498. [Google Scholar] [CrossRef]
- Hoa, X.D.; Kirk, A.G.; Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 2007, 23, 151–160. [Google Scholar] [CrossRef]
- Vincenzo, A.; Roberto, P.; Marco, F. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter. 2017, 29, 203002. [Google Scholar]
- Verma, R.; Gupta, B.D.; Jha, R. Sensitivity enhancement of a surface plasmon resonance-based biomolecules sensor using graphene and silicon layers. Sens. Actuators B Chem. 2011, 160, 623–631. [Google Scholar] [CrossRef]
- Shukla, S.; Sharma, N.K.; Sajal, V. Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using Zno thin film: A theoretical study. Sens. Actuators B Chem. 2015, 206, 463–470. [Google Scholar] [CrossRef]
- Lin, Z.; Shu, Y.; Chen, W.; Zhao, Y.; Li, J. High sensitivity PtSe2 surface plasmon resonance biosensor based on metal-Si-metal waveguide structure. Biosensors 2022, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, M.; Li, K.; Mao, H.; Liu, K.; Li, H. Tunable fano resonance-enhanced surface plasmon biosensor based on Mxene/MoS2 heterostructure. Opt. Mater. 2022, 133, 112966. [Google Scholar] [CrossRef]
- Deng, Y.; Li, M.; Cao, W.; Wang, M.; Hao, H.; Xia, W. Fiber optic coupled surface plasmon resonance sensor based Ag-TiO2 films for hydrogen detection. Opt. Fiber Technol. 2021, 65, 102616. [Google Scholar] [CrossRef]
- Maurya, J.B.; Prajapati, Y.K. Influence of dielectric coating on performance of surface plasmon resonance sensor. Plasmonics 2017, 12, 1121–1130. [Google Scholar] [CrossRef]
- Nesterenko, D.V.; Sekkat, Z. Resolution estimation of the Au, Ag, Cu, and Al single- and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions. Plasmonics 2013, 8, 1585–1595. [Google Scholar] [CrossRef]
- Gant, P.; Ghasemi, F.; Maeso, D.; Munuera, C. Optical contrast and refractive index of natural van der waals heterostructure nanosheets of franckeite. Beilstein J. Nanotechnol. 2017, 8, 2357–2362. [Google Scholar] [CrossRef] [PubMed]
- Karki, B.; Sharma, S.; Singh, Y.; Pal, A. Sensitivity enhancement of surface plasmon resonance biosensor with 2-D franckeite nanosheets. Plasmonics 2022, 17, 71–78. [Google Scholar] [CrossRef]
- Yesudasu, V.; Pradhan, H.S.; Pandya, R.J.; Thiyaneswaran, B. Numerical investigation of Ag-Franckeite-Barium Titanium-BP based highly performed surface plasmon resonance sensor for virus SARS-CoV-2 detection. Plasmonics 2023, 19, 167–178. [Google Scholar] [CrossRef]
- Srivastava, A.; Prajapati, Y.K. Effect of sulfosalt and polymers on performance parameter of SPR biosensor. Opt. Quantum Electron. 2020, 52, 440. [Google Scholar] [CrossRef]
- Gan, S.; Zhao, Y.; Dai, X.; Xiang, Y. Sensitivity enhancement of surface plasmon resonance sensors with 2d franckeite nanosheets. Res. Phys. 2019, 13, 102320. [Google Scholar] [CrossRef]
- Zakaria, R.; Zainuddin, N.A.A.M.; Leong, T.C.; Rosli, R.; Rusdi, M.F.; Harun, S.W.; Sadegh Amiri, I. Investigation of surface plasmon resonance (SPR) in MoS2-and WS2-protected titanium side-polished optical fiber as a humidity sensor. Micromachines 2019, 10, 465. [Google Scholar] [CrossRef]
- Rahman, M.S.; Anower, M.S.; Abdulrazak, L.F. Utilization of a phosphorene-graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor. Photonic. Nanostruct. 2019, 35, 100711. [Google Scholar] [CrossRef]
- Wu, L.M.; Guo, J.; Wang, Q.K.; Lu, S.B.; Dai, X.Y.; Xiang, Y.J. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuat B Chem. 2017, 249, 542–548. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, S.; Xia, J.; Anderson, T.; Dinh, X.Q.; Meng, X.M. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Han, L.; He, X.J.; Huang, T.Y. Comprehensive study of SPR biosensor performance based on metal-ITO-graphene/TMDCs hybrid multilayer. Plasmonic 2019, 14, 2021–2030. [Google Scholar] [CrossRef]
- Xia, G.; Zhou, C.; Jin, S.; Huang, C.; Xing, J.; Liu, Z. Sensitivity enhancement of two-dimensional materials based on genetic optimization in surface plasmon resonance. Sensors 2019, 19, 1198. [Google Scholar] [CrossRef] [PubMed]
- Amoosoltani, N.; Zarifkar, A.; Farmani, A. Particle swarm optimization and finite-difference time-domain (pso/fdtd) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 2019, 18, 1354–1364. [Google Scholar] [CrossRef]
- Sun, Y.; Cai, H.; Wang, X.; Zhan, S. Optimization methodology for structural multiparameter surface plasmon resonance sensors in different modulation modes based on particle swarm optimization. Opt. Commun. 2018, 431, 142–150. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, S.; Lin, C. Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: A theoretical study. Sensors 2020, 20, 2445. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.H.; Chen, W. Seeker optimization algorithm. International Conference on Computational and Information. Science 2006, 1, 225–229. [Google Scholar]
- Su, H.; Yang, J. Capacitors optimization placement in distribution systems based on improved seeker optimization algorithm. Sens. Transducers 2013, 155, 180–187. [Google Scholar]
- Duan, S.M.; Luo, H.; Liu, H. A complex-valued encoding multichain seeker optimization algorithm for engineering problems. Sci. Program. 2022, 2022, 1–15. [Google Scholar] [CrossRef]
- Sylvester-Hvid, K.O.; Mikkelsen, K.V.; Ratner, M.A. The iterative self-consistent reaction-field method: The refractive index of pure water. Int. J. Quantum Chem. 2011, 111, 904–913. [Google Scholar] [CrossRef]
- Liu, P.Y.; Chin, L.K.; Ser, W.; Ayi, T.C.; Yap, P.H.; Bourouina, T.; Leprince-Wang, Y. Real-time measurement of single bacterium’s refractive index using optofluidic immersion refractometry. In Proceedings of the 28th European Conference on Solid-StateTransducers (Eurosensors 2014), Brescia, Italy, 7–10 September 2014; Volume 87, pp. 356–359. [Google Scholar]
- JWaswa, W.; Debroy, C.; Irudayaraj, J. Rapid detection of Salmonella enteritidis and Escherichia coli using surface plasmon resonance biosensor. J. Food Process Eng. 2006, 29, 373–385. [Google Scholar]
- Singh, M.K.; Pal, S.; Verma, A.; Prajapati, Y.K.; Saini, J.P. Highly sensitive antimonene-coated black phosphorous-based surface plasmon-resonance biosensor for DNA hybridization: Design and numerical analysis. J. Nanophotonics 2020, 14, 046015. [Google Scholar] [CrossRef]
- Kumar, D.; Samantaray, S.R. Implementation of multi-objective seeker-optimization-algorithm for optimal planning of primary distribution systems including dstatcom. Int. J. Electr. Power Energy Syst. 2016, 77, 439–449. [Google Scholar] [CrossRef]
- Tuba, M.; Bacanin, N. Improved seeker optimization algorithm hybridized with firefly algorithm for constrained optimization problems. Neurocomputing 2014, 143, 197–207. [Google Scholar] [CrossRef]
Materials | Monolayer (nm) | RI | Reference |
---|---|---|---|
Franckeite | 1.8 | 3.58 + 0.39i | [30] |
WS2 | 0.8 | 4.9 + 0.3124i | [33] |
Type of Waterborne Bacteria | RI | Reference |
---|---|---|
Pure water | 1.333 | [45] |
V. cholera | 1.365 | [46] |
E. coli | 1.388 | [47] |
Parameters | Algorithm | |
---|---|---|
SOA | ISOA | |
Population size | 100 | 100 |
Maximum iterative times | 100 | 100 |
Maximum degree of membership | 0.95 | 0.95 |
Minimum degree of membership | 0.0111 | 0.0111 |
Inertia weight coefficient range | [0.1, 0.9] | / |
Waterborne Bacteria | Ag (nm) | TiO2 (nm) | Franckeite (N) | WS2 (L) | Minimum Reflectivity | Phase Sensitivity (deg/RIU) | Iterations |
---|---|---|---|---|---|---|---|
Pure water | 26.75 | 10.33 | 1 | 1 | 3.373 × 10−6 | 1.841 × 106 | 79 |
V. cholera | 26.30 | 7.45 | 1 | 1 | 2.307 × 10−7 | 1.909 × 106 | 70 |
E. coli | 18.23 | 7.54 | 1 | 2 | 9.455 × 10−6 | 2.355 × 106 | 74 |
Waterborne Bacteria | Ag (nm) | TiO2 (nm) | Franckeite (N) | WS2 (L) | Minimum Reflectivity | Phase Sensitivity (deg/RIU) | Iterations |
---|---|---|---|---|---|---|---|
Pure water | 28.72 | 9.59 | 1 | 1 | 2.058 × 10−6 | 1.871 × 106 | 27 |
V. cholera | 24.31 | 6.34 | 1 | 2 | 4.957 × 10−6 | 1.950 × 106 | 26 |
E. coli | 20.36 | 6.08 | 1 | 2 | 1.307 × 10−6 | 2.378 × 106 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, C.; Zhao, X.; Tao, L.; Zheng, C.; Ding, Y.; Guo, Y. An Improved Seeker Optimization Algorithm for Phase Sensitivity Enhancement of a Franckeite- and WS2-Based SPR Biosensor for Waterborne Bacteria Detection. Micromachines 2024, 15, 362. https://doi.org/10.3390/mi15030362
Yue C, Zhao X, Tao L, Zheng C, Ding Y, Guo Y. An Improved Seeker Optimization Algorithm for Phase Sensitivity Enhancement of a Franckeite- and WS2-Based SPR Biosensor for Waterborne Bacteria Detection. Micromachines. 2024; 15(3):362. https://doi.org/10.3390/mi15030362
Chicago/Turabian StyleYue, Chong, Xiuting Zhao, Lei Tao, Chuntao Zheng, Yueqing Ding, and Yongcai Guo. 2024. "An Improved Seeker Optimization Algorithm for Phase Sensitivity Enhancement of a Franckeite- and WS2-Based SPR Biosensor for Waterborne Bacteria Detection" Micromachines 15, no. 3: 362. https://doi.org/10.3390/mi15030362
APA StyleYue, C., Zhao, X., Tao, L., Zheng, C., Ding, Y., & Guo, Y. (2024). An Improved Seeker Optimization Algorithm for Phase Sensitivity Enhancement of a Franckeite- and WS2-Based SPR Biosensor for Waterborne Bacteria Detection. Micromachines, 15(3), 362. https://doi.org/10.3390/mi15030362