Material Design of Ultra-Thin InN/GaN Superlattices for a Long-Wavelength Light Emission
Abstract
:1. Introduction
2. Model and Simulation Method
2.1. Model Establishment and Parameter Setup
2.2. Structure Optimization and Band Simulation
2.3. Data Processing
3. Results and Discussion
3.1. Crystallographic Analysis
3.2. Electronic Properties Analysis
3.3. Band Structure Analysis after the Bandgap Regulation
3.4. External Forces Analysis
3.5. Charge Injection Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walukiewicz, W. Narrow band gap group III-nitride alloys. Phys. E Low Dimens. Syst. Nanostruct. 2004, 20, 300–307. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef]
- Zhan, T.; Yin, K.; Xiong, J.; He, Z.; Wu, S.T. Augmented Reality and Virtual Reality Displays: Perspectives and Challenges. iScience 2020, 23, 101397. [Google Scholar] [CrossRef]
- Park, J.; Choi, J.H.; Kong, K.; Han, J.H.; Park, J.H.; Kim, N.; Lee, E.; Kim, D.; Kim, J.; Chung, D.; et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photonics 2021, 15, 449–455. [Google Scholar] [CrossRef]
- Martinez de Arriba, G.; Feng, P.; Xu, C.; Zhu, C.; Bai, J.; Wang, T. Simple Approach to Mitigate the Emission Wavelength Instability of III-Nitride μLED Arrays. ACS Photonics 2022, 9, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, X.; Qi, L.; Lau, K.M. Full-color micro-display by heterogeneous integration of InGaN blue/green dual-wavelength and AlGaInP red LEDs. Opt. Express 2022, 30, 23499–23510. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wan, Z.; Lei, Y.; Tang, B.; Tao, G.; Du, P.; Zhao, X. InGaN quantum well with gradually varying indium content for high-efficiency GaN-based green light-emitting diodes. Opt. Lett. 2022, 47, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Ben, Y.; Liang, F.; Zhao, D.; Yang, J.; Liu, Z.; Chen, P. The role of InGaN quantum barriers in improving the performance of GaN-based laser diodes. Opt. Laser Technol. 2022, 145, 107523. [Google Scholar] [CrossRef]
- Karpov, S. Suppression of phase separation in InGaN due to elastic strain. Internet J. Nitride Semicond. Res. 1998, 3, 16. [Google Scholar] [CrossRef]
- Lin, W.; Benjamin, D.; Li, S.; Sekiguchi, T.; Ito, S.; Kang, J. Band Engineering in Strained GaN/ultrathin InN/GaN Quantum Wells. Cryst. Growth Des. 2009, 9, 1698–1701. [Google Scholar] [CrossRef]
- Lin, W.; Li, S.; Kang, J. Near-ultraviolet light emitting diodes using strained ultrathin InN/GaN quantum well grown by metal organic vapor phase epitaxy. Appl. Phys. Lett. 2010, 96, 101115. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Che, S.B.; Yamaguchi, W.; Saito, H.; Wang, X.; Ishitani, Y.; Hwang, E.S. Proposal and achievement of novel structure InN/GaN multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix. Appl. Phys. Lett. 2007, 90, 073101. [Google Scholar] [CrossRef]
- Zhou, J.; Li, J.; Lu, S.; Kang, J.; Lin, W. Characteristics of InN epilayers grown with H2-assistance. AIP Adv. 2017, 7, 115207. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Yue, W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B 1986, 33, 8800–8802. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef]
- Gorczyca, I.; Suski, T.; Christensen, N.E.; Svane, A. Theoretical study of nitride short period superlattices. J. Phys. Condens. Matter 2018, 30, 063001. [Google Scholar] [CrossRef]
- Yan, J.; Chen, X.; Kang, W.; Li, S.; Kang, J.; Lin, W. Orbital and electronic responses in the GaN/AlN quantum structures constructed on different crystal planes. Appl. Phys. Express 2022, 15, 071002. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Mattila, T.; Zunger, A. Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys. J. Appl. Phys. 1999, 85, 160–167. [Google Scholar] [CrossRef]
- Sheng, S.; Wang, T.; Liu, S.; Liu, F.; Sheng, B.; Yuan, Y.; Li, D.; Chen, Z.; Tao, R.; Chen, L.; et al. Atomic-Scale Investigation of the Lattice-Asymmetry-Driven Anisotropic Sublimation in GaN. Adv. Sci. 2022, 9, 2106028. [Google Scholar] [CrossRef] [PubMed]
- Chèze, C.; Feix, F.; Anikeeva, M.; Schulz, T.; Albrecht, M.; Riechert, H.; Brandt, O.; Calarco, R. In/GaN(0001)-(×)R30° adsorbate structure as a template for embedded (In, Ga)N/GaN monolayers and short-period superlattices. Appl. Phys. Lett. 2017, 110, 072104. [Google Scholar] [CrossRef]
- Mathieu, L.; Nicolas, G.; Jean, M. Barrier-width dependence of group-III nitrides quantum-well transition energies. Phys. Rev. B 1999, 60, 1496–1499. [Google Scholar] [CrossRef]
- Schulz, S.; Caro, M.A.; Coughlan, C.; O’Reilly, E.P. Atomistic analysis of the impact of alloy and well-width fluctuations on the electronic and optical properties of InGaN/GaN quantum wells. Phys. Rev. B 2015, 91, 035439. [Google Scholar] [CrossRef]
- Lin, W.; Jiang, W.; Gao, N.; Cai, D.; Li, S.; Kang, J. Optical isotropization of anisotropic wurtzite Al-rich AlGaN via asymmetric modulation with ultrathin (GaN)m/(AlN)n superlattices. Laser Photonics Rev. 2013, 7, 572–579. [Google Scholar] [CrossRef]
- Vaitkevičius, A.; Mickevičius, J.; Dobrovolskas, D.; Tuna, Ö.; Giesen, C.; Heuken, M.; Tamulaitis, G. Influence of quantum-confined Stark effect on optical properties within trench defects in InGaN quantum wells with different indium content. J. Appl. Phys. 2014, 115, 213512. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M. Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices. Appl. Phys. Lett. 2011, 99, 251112. [Google Scholar] [CrossRef]
- Jiang, X.; Shi, J.; Zhang, M.; Zhong, H.; Huang, P.; Ding, Y.; Yu, T.; Shen, B.; Lu, J.; Wang, X. Enhancement of TE polarized light extraction efficiency in nanoscale (AlN)(m)/(GaN)(n) (m > n) superlattice substitution for Al-rich AlGaN disorder alloy: Ultra-thin GaN layer modulation. New J. Phys. 2014, 16, 113065. [Google Scholar] [CrossRef]
- Chen, L.; Lin, W.; Wang, H.; Li, J.; Kang, J. Reversing abnormal hole localization in high-Al-content AlGaN quantum well to enhance deep ultraviolet emission by regulating the orbital state coupling. Light Sci. Appl. 2020, 9, 104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, L.; Zhang, E.; Kang, W.; Lin, W.; Kang, J. Material Design of Ultra-Thin InN/GaN Superlattices for a Long-Wavelength Light Emission. Micromachines 2024, 15, 361. https://doi.org/10.3390/mi15030361
Xiang L, Zhang E, Kang W, Lin W, Kang J. Material Design of Ultra-Thin InN/GaN Superlattices for a Long-Wavelength Light Emission. Micromachines. 2024; 15(3):361. https://doi.org/10.3390/mi15030361
Chicago/Turabian StyleXiang, Leilei, Enming Zhang, Wenyu Kang, Wei Lin, and Junyong Kang. 2024. "Material Design of Ultra-Thin InN/GaN Superlattices for a Long-Wavelength Light Emission" Micromachines 15, no. 3: 361. https://doi.org/10.3390/mi15030361
APA StyleXiang, L., Zhang, E., Kang, W., Lin, W., & Kang, J. (2024). Material Design of Ultra-Thin InN/GaN Superlattices for a Long-Wavelength Light Emission. Micromachines, 15(3), 361. https://doi.org/10.3390/mi15030361