An All-Dielectric Metamaterial Terahertz Biosensor for Cytokine Detection
Abstract
:1. Introduction
2. Material and Methods
2.1. Design and Fabrication of the THz Biosensor
2.2. Surface Modification
2.3. Measurement and Simulation Method
3. Results and Discussion
3.1. The Microstructure of the Device and the Certification of Modification
3.2. The Simulation and Experimental Results of the Device
3.3. The Transmission Spectra and Sensitivity Analysis
3.4. Specificity of THz Biosensors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet. Resp. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Younan, P.; Iampietro, M.; Nishida, A.; Ramanathan, P.; Santos, R.I.; Dutta, M. Ebola virus binding to tim-1 on t lymphocytes induces a cytokine storm. MBIO 2017, 8, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Cao, X. COVID-19: Immunopathology and its implications for therapy. Nat. Rev. Immunol. 2020, 20, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Yu, Z.; Fan, S.; Brongersma, M.L. Optical Fano resonance of an individual semiconductor nanostructure. Nat. Mater. 2014, 13, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; MacDonald, K.F.; Zheludev, N.I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt. Express. 2013, 21, 26721–26728. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, T.; Tan, Q.; Hu, Z.; Sun, Y.; Fan, H.; Zhang, Z.; Jin, Y.; He, S. Phase Interrogation Sensor Based on All-Dielectric BIC Metasurface. Nano. Lett. 2023, 23, 10441–10448. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. High quality factor fano-resonant all-dielectric metamaterials. Nat. Commun. 2014, 5, 5753. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, Z.; Lin, S.; Jiang, S.; Liu, X.; Guo, S. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens. Bioelectron. 2020, 150, 111905. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Ouyang, A.; Zhong, J.; Belov, P.A.; Sinha, R.K.; Qian, W.; Li, Q. All-dielectric metasurface for sensing microcystin-LR. Electronics 2021, 10, 1363. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, W.; Lin, S.; Chen, Z.; Zeng, L.; Hu, F. Aptamer HB5 modified terahertz metasurface biosensor used for specific detection of HER2. Sens. Actuators B-Chem. 2022, 355, 131337. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Z.; Zhang, Q.; Wei, Q.; Zhang, J.; Tang, S.; Tu, H. O2 plasma treated biosensor for enhancing detection sensitivity of sulfadiazine in a high-k HfO2 coated silicon nanowire array. Sens. Actuators B-Chem. 2020, 306, 127464. [Google Scholar] [CrossRef]
- Ginn, J.C.; Brener, I.; Peters, D.W.; Wendt, J.R.; Stevens, J.O.; Hines, P.F.; Sinclair, M.B. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 2012, 108, 097402. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Ran, L.; Chen, H.; Zhang, H.; Kong, J.A.; Grzegorczyk, T.M. Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys. Rev. Lett. 2017, 98, 157403. [Google Scholar] [CrossRef] [PubMed]
- Luk’Yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Tumolo, T.; Angnes, L.; Baptista, M.S. Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance. Anal. Biochem. 2004, 333, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Men, K.; Lian, Z.; Tu, H.; Zhao, H.; Wei, Q.; Jin, Q.; Mao, C.; Wei, F. An All-Dielectric Metamaterial Terahertz Biosensor for Cytokine Detection. Micromachines 2024, 15, 53. https://doi.org/10.3390/mi15010053
Men K, Lian Z, Tu H, Zhao H, Wei Q, Jin Q, Mao C, Wei F. An All-Dielectric Metamaterial Terahertz Biosensor for Cytokine Detection. Micromachines. 2024; 15(1):53. https://doi.org/10.3390/mi15010053
Chicago/Turabian StyleMen, Kuo, Ziwei Lian, Hailing Tu, Hongbin Zhao, Qianhui Wei, Qingxi Jin, Changhui Mao, and Feng Wei. 2024. "An All-Dielectric Metamaterial Terahertz Biosensor for Cytokine Detection" Micromachines 15, no. 1: 53. https://doi.org/10.3390/mi15010053
APA StyleMen, K., Lian, Z., Tu, H., Zhao, H., Wei, Q., Jin, Q., Mao, C., & Wei, F. (2024). An All-Dielectric Metamaterial Terahertz Biosensor for Cytokine Detection. Micromachines, 15(1), 53. https://doi.org/10.3390/mi15010053