Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Epitaxial Characteristics
3.2. Device Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schubert, E.F.; Kim, J.K. Solid-State Light Sources Getting Smart. Science 2005, 308, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Ponce, F.A.; Bour, D.P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 1997, 386, 351–359. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, H.Y.; Chiu, H.C.; Chen, Y.; Li, D.; Huang, C.R.; Kao, H.L.; Kuo, H.C.; Chen, S.W.H. Analysis of the back-barrier effect in AlGaN/GaN high electron mobility transistor on free-standing GaN substrates. J. Alloys Compd. 2020, 814, 152293. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Peng, D.; Yang, Q.; Zhang, D.; Luo, W.; Pan, C. Growth of thin AlN nucleation layer and its impact on GaN-on-SiC heteroepitaxy. J. Alloys Compd. 2020, 838, 155557. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P.; Zou, X.; Jiang, J.; Yuen, S.H.; Tang, C.W.; Lau, K.M. Active Matrix Monolithic LED Micro-Display Using GaN-on-Si Epilayers. IEEE Photonics Technol. Lett. 2019, 31, 865–868. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, K.; Feng, M.; Li, Z.; Zhou, Y.; Sun, Q.; Liu, J.; Zhang, L.; Li, D.; Sun, X.; et al. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light Sci. Appl. 2018, 7, 13. [Google Scholar] [CrossRef]
- Lee, K.H.; Bao, S.; Zhang, L.; Kohen, D.; Fitzgerald, E.; Tan, C.S. Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process. Appl. Phys. Express 2016, 9, 086501. [Google Scholar] [CrossRef]
- Khoury, M.; Tottereau, Q.; Feuillet, G.; Vennegues, P.; Zuniga-Perez, J. Evolution and prevention of meltback etching: Case study of semipolar GaN growth on patterned silicon substrates. J. Appl. Phys. 2017, 122, 105108. [Google Scholar] [CrossRef]
- Tran, C.A.; Osinski, A.; Karlicek, R.F.J. Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 1999, 75, 1494–1496. [Google Scholar] [CrossRef]
- Dadgar, A.; Blasing, J.; Diez, A.; Alam, A.; Heuken, M.; Krost, A. Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 µm in Thickness. Jpn. J. Appl. Phys. 2000, 39, L1183–L1185. [Google Scholar] [CrossRef]
- Kim, B.; Lee, K.; Jang, S.; Jhin, J.; Lee, S.; Baek, J.; Yu, Y.; Lee, J.; Byun, D. Epitaxial Lateral Overgrowth of GaN on Si (111) Substrates Using High-Dose, N+ Ion Implantation. Chem. Vap. Depos. 2010, 16, 80–84. [Google Scholar] [CrossRef]
- Lee, K.J.; Chun, J.; Kim, S.J.; Ha, C.S.; Park, J.W.; Lee, S.J.; Song, J.C.; Baek, J.H.; Park, S.J. Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer. Opt. Express 2016, 24, 4391–4398. [Google Scholar] [CrossRef]
- Able, A.; Wegscheider, W.; Engl, K.; Zweck, J. Growth of crack-free GaN on Si (1 1 1) with graded AlGaN buffer layers. J. Cryst. Growth 2005, 276, 415–418. [Google Scholar] [CrossRef]
- Ni, Y.; He, Z.; Yang, F.; Zhou, D.; Yao, Y.; Zhou, G.; Shen, Z.; Zhong, J.; Zhen, Y.; We, Z.; et al. Effect of AlN/GaN superlattice buffer on the strain state in GaN-on-Si (111) system. Jpn. J. Appl. Phys. 2015, 54, 015505. [Google Scholar] [CrossRef]
- Reiher, A.; Blasing, J.; Dadgar, A.; Diez, A.; Krost, A. Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers. J. Cryst. Growth. 2003, 248, 563–567. [Google Scholar] [CrossRef]
- Lin, P.; Tien, C.; Wang, T.; Chen, C.; Ou, S.; Chung, B.; Wuu, D. On the role of AlN insertion layer in stress control of GaN on 150-mm Si (111) substrate. Crystals 2017, 7, 134. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, M.; Wang, W.; Lin, Z.; Li, G. A low-temperature AlN interlayer to improve the quality of GaN epitaxial films grown on Si substrates. CrystEngComm 2016, 18, 8926. [Google Scholar] [CrossRef]
- Hirayama, H.; Yatabe, T.; Noguchi, N.; Ohashi, T.; Kamata, N. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett. 2007, 91, 071901. [Google Scholar] [CrossRef]
- Kaganer, V.M.; Brandt, O.; Trampert, A.; Ploog, K.H. X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films. Phys. Rev. B. 2005, 72, 045423. [Google Scholar] [CrossRef]
- Vickers, M.E.; Kappers, M.J.; Datta, R.; McAleese, C.; Smeeton, T.M.; Rayment, F.D.; Humphreys, C.J. In-plane imperfections in GaN studied by X-ray diffraction. J. Phys. D Appl. Phys. 2005, 38, A99–A104. [Google Scholar] [CrossRef]
- Jain, R.; Sun, W.; Yang, J.; Shatalov, M.; Hu, X.; Sattu, A.; Lunev, A.; Deng, J.; Shturm, I.; Bilenko, Y.; et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl. Phys. Lett. 2008, 93, 051113. [Google Scholar] [CrossRef]
- Rahman, M.N.A.; Talik, N.A.; Abdul, M.I.M.; Sulaiman, A.F.; Allif, K.; Zahir, N.M.; Shuhaimi, A. Ammonia flux tailoring on the quality of AlN epilayers grown by pulsed atomic-layer epitaxy techniques on (0001)-oriented sapphire substrates via MOCVD. CrystEngComm 2019, 21, 2009–2017. [Google Scholar] [CrossRef]
- Kum, D.; Byun, D. The Effect of Substrate Surface Roughness on GaN Growth Using MOCVD Process. J. Electron. Mater. 1997, 26, 1098–1102. [Google Scholar] [CrossRef]
- Guillaume, G.; Gael, G.; Marc, P.; Eric, F.; Daniel, A.; Yvon, C.; Favrice, S. A detailed study of AlN and GaN grown on Silicon-on-porous Silicon substrate. Phys. Status Solidi A 2017, 214, 1600450. [Google Scholar]
- Wang, K.; Yu, T.; Wei, Y.; Li, M.; Zhang, G.; Fan, S. Coordinated stress management and dislocation control in GaN growth on Si (111) substrates by using a carbon nanotube mask. Nanoscale 2019, 11, 4489–4495. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Li, J.; Chen, Y.; Li, C.; Zhan, J.; Yu, T.; Kang, X.; Jiao, F.; Li, S.; et al. A study of GaN nucleation and coalescence in the initial growth stages on nanoscale patterned sapphire substrates via MOCVD. CrystEngComm 2018, 20, 6811–6820. [Google Scholar] [CrossRef]
- Kisielowski, C.; Kruger, J.; Ruvimov, S.; Suski, T.; Ager, J.W.; Jones, E.; Liliental-Weber, Z.; Rubin, M.; Weber, E.R.; Bremser, M.D.; et al. Strain-related phenomena in GaN thin films. Phys. Rev. B 1996, 54, 17745. [Google Scholar] [CrossRef]
- Chowdhury, S.; Biswas, D. Impact of varying buffer thickness generated strain and threading dislocations on the formation of plasma assisted MBE grown ultra-thin AlGaN/GaN heterostructure on silicon. AIP Adv. 2015, 5, 057149. [Google Scholar] [CrossRef]
- Tanoto, H.; Yoon, S.F.; Loke, W.K.; Chen, K.P.; Fitzgerald, E.A.; Dohrman, C.; Narayanan, B. Heteroepitaxial growth of GaAs on (100) Ge/ Si using migration enhanced epitaxy. J. Appl. Phys. 2008, 103, 104901. [Google Scholar] [CrossRef]
- Tan, B.; Hu, J.; Zhang, J.; Zhang, Y.; Long, H.; Chen, J.; Du, S.; Dai, J.; Chen, C.; Xu, J.; et al. AlN gradient interlayer design for the growth of high-quality AlN epitaxial film on sputtered AlN/sapphire substrate. CrystEngComm 2018, 20, 6557–6564. [Google Scholar] [CrossRef]
- Akyol, F.; Nath, D.; Krishnamoorthy, S.; Park, P.; Rajan, S. Suppression of electron overglow and efficiency droop in N-polar GaN green light emitting diodes. Appl. Phys. Lett. 2012, 100, 111118. [Google Scholar] [CrossRef]
- Piprek, J.; Romer, F.; Witzigmann, B. On the uncertainly of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements. Appl. Phys. Lett. 2015, 106, 101101. [Google Scholar] [CrossRef]





| Sample | t1/t2 | XRD FWHM (arcsec) | Dislocation Density (×109 cm−2) | ||||
|---|---|---|---|---|---|---|---|
| GaN (001) | GaN (102) | AlN (001) | Ds (GaN) | De (GaN) | Ds (AlN) | ||
| Ref. | t1 | 1270 | 1580 | 2970 | 13.8 | 56 | 81.7 |
| Sample A | 3/2 | 714 | 1079 | 2316 | 4.36 | 26.3 | 49.7 |
| Sample B | 5/2 | 563 | 760 | 1255 | 2.71 | 13 | 14.6 |
| Sample C | 7/2 | 389 | 589 | 1225 | 1.29 | 7.85 | 13.9 |
| Sample D | 9/2 | 448 | 581 | 1237 | 1.71 | 7.63 | 14.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Oh, S.; Lee, K.-J.; Kim, S.; Kim, K.-K. Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption. Micromachines 2021, 12, 399. https://doi.org/10.3390/mi12040399
Kim S-J, Oh S, Lee K-J, Kim S, Kim K-K. Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption. Micromachines. 2021; 12(4):399. https://doi.org/10.3390/mi12040399
Chicago/Turabian StyleKim, Sang-Jo, Semi Oh, Kwang-Jae Lee, Sohyeon Kim, and Kyoung-Kook Kim. 2021. "Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption" Micromachines 12, no. 4: 399. https://doi.org/10.3390/mi12040399
APA StyleKim, S.-J., Oh, S., Lee, K.-J., Kim, S., & Kim, K.-K. (2021). Improved Performance of GaN-Based Light-Emitting Diodes Grown on Si (111) Substrates with NH3 Growth Interruption. Micromachines, 12(4), 399. https://doi.org/10.3390/mi12040399

