Performance Optimization of Nitrogen Dioxide Gas Sensor Based on Pd-AlGaN/GaN HEMTs by Gate Bias Modulation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pandey, S. Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review. J. Sci. Adv. Mater. Dev. 2016, 1, 431–453. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Nanda, K.K. Au Nanocomposite Based Chemiresistive Ammonia Sensor for Health Monitoring. ACS Sens. 2016, 1, 55–62. [Google Scholar] [CrossRef]
- Barako, M.T.; Gambin, V.; Tice, J. Integrated nanomaterials for extreme thermal management: A perspective for aerospace applications. Nanotechnology 2018, 29, 154003. [Google Scholar] [CrossRef]
- Hu, L. Nanowire-Assembled Hierarchical ZnCo2O4 Microstructure Integrated with a Low-Power Microheater for Highly Sensitive Formaldehyde Detection. ACS Appl. Mater. Interfaces 2016, 8, 31764–31771. [Google Scholar] [CrossRef]
- Book, S.A. Scaling toxicity from laboratory animals to people: An example with nitrogen dioxide. J. Toxicol. Environ. Health 1982, 9, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Hotovy, I.; Rehacek, V.; Siciliano, P.; Capone, S.; Spiess, L. Sensing characteristics of NiO thin films as NO2 gas sensor. Thin Solid Films 2002, 418, 9–15. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, P.; Majhi, S.M.; Yu, Y.T.; Lee, J.H. Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv. 2015, 5, 76229–76248. [Google Scholar] [CrossRef]
- Watson, J. The tin oxide gas sensor and its applications. Sens. Actuators 1984, 5, 29–42. [Google Scholar] [CrossRef]
- Korotcenkov, G. Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuators B Chem. 2005, 107, 209–232. [Google Scholar] [CrossRef]
- Luther, B.P.; Wolter, S.D.; Mohney, S.E. High temperature Pt Schottky diode gas sensors on n-type GaN. Sens. Actuators B Chem. 1999, 56, 164–168. [Google Scholar] [CrossRef]
- Yun, F.; Chevtchenko, S.; Moon, Y.-T.; Morkoç, H.; Fawcett, T.J.; Wolan, J.T. GaN resistive hydrogen gas sensors. Appl. Phys. Lett. 2005, 87. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.; Ren, F.; Pearton, S.; Kang, B.S.; Wang, H.-T.; Chang, C.-Y.; Lin, J. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices. Sensors 2009, 9, 4669–4694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.-S.; Lee, J.-H.; Lee, Y.-H.; Lee, D.-D. GaN thin films as gas sensors. Sens. Actuators B Chem. 2003, 89, 305–310. [Google Scholar] [CrossRef]
- Kang, B.S.; Ren, F.; Gila, B.P.; Abernathy, C.R.; Pearton, S.J. AlGaN/GaN-based metal-oxide-semiconductor diode-based hydrogen sensor. Appl. Phys. Lett. 2004, 84, 1123–1125. [Google Scholar] [CrossRef]
- Lundstrom, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantz-Rulcker, C.; Lloyd-Spetz, A. Twenty-five years of field effect gas sensor research in Linköping. Sens. Actuators B Chem. 2007, 121, 247–262. [Google Scholar] [CrossRef]
- Choi, J.H.; Park, T.H.; Hur, J.H.; Cha, H.Y. AlGaN/GaN heterojunction hydrogen sensor using ZnO-nanoparticles/Pd dual catalyst layer. Sens. Actuators B Chem. 2020, 325, 128946. [Google Scholar] [CrossRef]
- Vitushinsky, R.; Crego-Calama, M.; Brongersma, S.H.; Offermans, P. Enhanced detection of NO2 with recessed AlGaN/GaN open gate structures. Appl. Phys. Lett. 2013, 102, 172101. [Google Scholar] [CrossRef]
- Schalwig, J.; Muller, G.; Eickhoff, M.; Ambacher, O.; Stutzmann, M. Group III-nitride-based gas sensors for combustion monitoring. Mater. Sci. Eng. B 2002, 93, 207–214. [Google Scholar] [CrossRef]
- Sun, J.; Sokolovskij, R.; Iervolino, E.; Liu, Z.; Sarro, P.M.; Zhang, G. Suspended AlGaN/GaN HEMT NO2 Gas Sensor Integrated with Microheater. J. Microelectromech. Syst. 2019, 28, 997–1004. [Google Scholar] [CrossRef]
- Bishop, C.M.; Halfaya, Y.; Soltani, A.; Sundaram, S.; Li, X.; Streque, J.; Gmili, Y.E.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Experimental Study and Device Design of NO, NO2, and NH3 Gas Detection for a Wide Dynamic and Large Temperature Range Using Pt/AlGaN/GaN HEMT. Sensors 2016, 16, 6828–6838. [Google Scholar] [CrossRef]
- Ranjan, A.; Agrawal, M.; Radhakrishnan, K.; Dharmarasu, N. AlGaN/GaN HEMT-based high-sensitive NO2 gas sensors. Jpn. J. Appl. Phys. 2019, 58, SCCD23. [Google Scholar] [CrossRef]
- Halfaya, Y.; Bishop, C.; Soltani, A.; Sundaram, S.; Aubry, V.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems. Sensors 2016, 16, 273. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Kim, H. High Performance NO2 Gas Sensor Based on Pd-AlGaN/GaN High Electron Mobility Transistors with Thin AlGaN Barrier. J. Semicond. Technol. Sci. 2020, 20. [Google Scholar] [CrossRef]
- Chen, T.Y.; Chen, H.I.; Liu, Y.J.; Huang, C.C.; Hsu, C.S.; Chang, C.F.; Liu, W.C. Ammonia Sensing Properties of a Pt/AlGaN/GaN Schottky Diode. IEEE Trans. Electron. Devices 2011, 58, 1541–1547. [Google Scholar] [CrossRef]
- Chen, C.C.; Chen, H.I.; Liu, I.P.; Liu, H.Y.; Chou, P.C.; Liou, J.K.; Liu, W.C. Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment. Sens. Actuators B Chem. 2015, 211, 303–309. [Google Scholar] [CrossRef]
- Wen, X.; Schuette, M.L.; Gupta, S.K.; Nicholson, T.R.; Lee, S.C.; Lu, W. Improved Sensitivity of AlGaN/GaN Field Effect Transistor Biosensors by Optimized Surface Functionalization. IEEE Sens. J. 2011, 11, 1726–1735. [Google Scholar] [CrossRef]
- Arafat, M.M.; Dinan, B.; Akbar, S.A.; Haseeb, A.S.M.A. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review. Sensors 2012, 12, 7207–7258. [Google Scholar] [CrossRef]
- Wickham, D.T.; Banse, B.A.; Koel, B.E. Adsorption of nitrogen dioxide and nitric oxide on Pd(111). Surf. Sci. 1991, 243, 83–95. [Google Scholar] [CrossRef]
- Zheng, G.; Altman, E.I. The oxidation of Pd(111). Surf. Sci. 2000, 462, 151–168. [Google Scholar] [CrossRef]
- Sokolovskij, R.; Zhang, J.; Zheng, H.; Li, W.; Jiang, Y.; Yang, G.; Yu, H.; Sarro, P.M.; Zhang, G. The Impact of Gate Recess on the H2 Detection Properties of Pt-AlGaN/GaN HEMT Sensors. IEEE Sens. J. 2020, 20, 8947–8955. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Ding, H.; Wei, Y.; Huang, W.; Yang, X.; Li, Z.; Qiu, L.; Wang, X. Flexible, 3D SnS2/Reduced graphene oxide heterostructured NO2 sensor. Sens. Actuators B Chem. 2020, 305, 127445. [Google Scholar] [CrossRef]
- Kumar, S.; Pavelyev, V.; Mishra, P.; Tripathi, N. Thin film chemiresistive gas sensor on single-walled carbon nanotubes-functionalized with polyethylenimine (PEI) for NO2 gas sensing. Bull. Mater. Sci. 2020, 43, 61. [Google Scholar] [CrossRef]
- Zheng, W.; Xu, Y.S.; Zheng, L.L.; Yang, C.; Pinna, N.; Liu, X.H.; Zhang, J. MoS2 Van der Waals p–n Junctions Enabling Highly Selective Room-Temperature NO2 Sensor. Adv. Funct. Mater. 2020, 30, 2000435. [Google Scholar] [CrossRef]
- Radhakrishnan, K.; Ranjan, A.; Lingaparthi, R.; Dharmarasu, N. Enhanced NO2 Gas Sensing Performance of Multigate Pt/AlGaN/GaN High Electron Mobility Transistors. J. Electrochem. Soc. 2021. accepted manuscript. [Google Scholar] [CrossRef]
Sensing Materials | Structure | NO2 (ppm) | T (°C) | I0 (mA) | Sensitivity (S)/ Response (R) | Response Time (s) | Recovery Time (s) | References |
---|---|---|---|---|---|---|---|---|
Pt | HEMT (VG = 0 V) | 10 | 300 | 35 | S = 1% | ~4 min | ~4 min | [21] |
Pt | HEMT (floating gate) | 10 | 300 | 33 | S = 5.5% | ~2 min | ~5 min | [22] |
Pt | HEMT (VG = 0 V) | 100 | 300 | 43.8 | S = 7% | ~3 min | ~2 min | [23] |
SnS2/RGO | 3D | 8 | RT | - | R = 49.8% | 153 | 76 | [32] |
F-SWCNTs | Thin film | 50 | RT | - | S = 37% | 4 min | ~8 min | [33] |
MoS2 p-n junction | Thin film | 20 | RT | - | R ≈ 90 | 150 | 30 | [34] |
Pt | HEMT (floating gate) | 10 | 275 | 33.9 | S = 5.1% | 56 | 285 | [35] |
Pd | HEMT (VG = 0 V) | 10 | 300 | 0.74 | S = 6% | 32 | 36 | This work |
Pd | HEMT (VG = −1 V) | 10 | 300 | 26 μA | S = 45.4% | 9 | 48 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.C.; Kim, K.; Kim, H. Performance Optimization of Nitrogen Dioxide Gas Sensor Based on Pd-AlGaN/GaN HEMTs by Gate Bias Modulation. Micromachines 2021, 12, 400. https://doi.org/10.3390/mi12040400
Nguyen VC, Kim K, Kim H. Performance Optimization of Nitrogen Dioxide Gas Sensor Based on Pd-AlGaN/GaN HEMTs by Gate Bias Modulation. Micromachines. 2021; 12(4):400. https://doi.org/10.3390/mi12040400
Chicago/Turabian StyleNguyen, Van Cuong, Kwangeun Kim, and Hyungtak Kim. 2021. "Performance Optimization of Nitrogen Dioxide Gas Sensor Based on Pd-AlGaN/GaN HEMTs by Gate Bias Modulation" Micromachines 12, no. 4: 400. https://doi.org/10.3390/mi12040400
APA StyleNguyen, V. C., Kim, K., & Kim, H. (2021). Performance Optimization of Nitrogen Dioxide Gas Sensor Based on Pd-AlGaN/GaN HEMTs by Gate Bias Modulation. Micromachines, 12(4), 400. https://doi.org/10.3390/mi12040400