Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Malik, R.; Tomer, V.K.; Mishra, Y.K.; Lin, L. Functional Gas Sensing Nanomaterials: A Panoramic View. Appl. Phys. Rev. 2020, 7, 021301. [Google Scholar] [CrossRef]
- Singh, A.; Ranjan, R.; Ranjan, S.; Singh, A.; Garg, A.; Gupta, R.K. Effect of NIO Precursor Solution Ageing on the per-Ovskite Film Formation and Their Integration as Hole Transport Material for Perovskite Solar Cells. J. Nanosci. Nanotechnol. 2020, 20, 3710–3717. [Google Scholar] [CrossRef] [PubMed]
- Saki, Z.; Sveinbjörnsson, K.; Boschloo, G.; Taghavinia, N. The Effect of Lithium Doping in Solution-Processed Nickel Oxide Films for Perovskite Solar Cells. ChemPhysChem 2019, 20, 3322–3327. [Google Scholar] [CrossRef]
- Sato, H.; Minami, T.; Takata, S.; Yamada, T. Transparent Conducting P-Type NiO Thin Films Prepared by Magnetron Sputtering. Thin Solid Films 1993, 236, 27–31. [Google Scholar] [CrossRef]
- Nishiyama, H.; Saito, N.; Chou, H.; Sato, K.; Inoue, Y. Effects of Surface Acoustic Waves on Adsorptive Properties of ZnO and NiO Thin Films Deposited on Ferroelectric Substrates. Surf. Sci. 1999, 433, 525–528. [Google Scholar] [CrossRef]
- Amirzhanova, A.; Karakaya, I.; Uzundal, C.B.; Karaoğlu, G.; Karadas, F.; Ulgut, B.; Dag, Ö. Synthesis and Water Oxidation Electrocatalytic and Electrochromic Behaviours of Mesoporous Nickel Oxide Thin Film Electrodes. J. Mater. Chem. A 2019, 7, 22012–22020. [Google Scholar] [CrossRef]
- Atak, G.; Coşkun, Ö.D. Effects of Anodic Layer Thickness on Overall Performance of All-Solid-State Electrochromic Device. Solid State Ionics 2019, 341, 115045. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, L.; Chang, T.; Bell, J.; Huang, A.; Jin, P.; Bao, S. High Performance All-Solid-State Electrochromic Device Based on LixNiOy Layer with Gradient LI Distribution. Electrochim. Acta 2019, 317, 10–16. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromic Devices. J. Eur. Ceram. Soc. 2005, 25, 2907–2912. [Google Scholar] [CrossRef]
- Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Danine, A.; Manceriu, L.M.; Faure, C.; Labrugère, C.; Penin, N.; Delattre, A.; Eymin-Petot-Tourtollet, G.; Rougier, A. Toward Simplified Electrochromic Devices Using Silver as Counter Electrode Material. ACS Appl. Mater. Interfaces 2019, 11, 34030–34038. [Google Scholar] [CrossRef]
- Oukassi, S.; Giroud-Garampon, C.; Dubarry, C.; Ducros, C.; Salot, R. All Inorganic Thin Film Electrochromic Device Using LiPON as the Ion Conductor. Sol. Energy Mater. Sol. Cells 2016, 145, 2–7. [Google Scholar] [CrossRef]
- Cai, G.; Darmawan, P.; Cui, M.; Chen, J.; Wang, X.; Eh, A.L.-S.; Magdassi, S.; Lee, P.S. Inkjet-Printed All Solid-State Electrochromic Devices Based on NiO/WO3 Nanoparticle Complementary Electrodes. Nanoscale 2016, 8, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, V.; Haritha, L.; Anis, M.; Shkir, M.; Yahia, I.; Singh, A.; AlFaify, S. Structural, Morphological, Optical and Third Order Nonlinear Optical Response of Spin-Coated NiO Thin Films: An Effect of N Doping. Solid State Sci. 2018, 86, 98–106. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, Q.; Zhang, Q.; Lu, B.; Zhai, J.; Diao, X. Fast-Switching Quasi-Solid State Electrochromic Full Device Based on Mesoporous WO3 and NiO Thin Films. Sol. Energy Mater. Sol. Cells 2019, 200, 110017. [Google Scholar] [CrossRef]
- Huang, Q.; Dong, G.; Xiao, Y.; Diao, X. Electrochemical Studies of Silicon Nitride Electron Blocking Layer for All-Solid-State Inorganic Electrochromic Device. Electrochim. Acta 2017, 252, 331–337. [Google Scholar] [CrossRef]
- Huang, Q.J.; Zhang, Q.Q.; Xiao, Y.; He, Y.C.; Diao, X.G. Improved Electrochromic Performance of NiO-Based Thin Films by Lithium and Tantalum Co-doping. J. Alloy. Compd. 2018, 747, 416–422. [Google Scholar] [CrossRef]
- Choi, D.S.; Han, S.H.; Kim, H.; Kang, S.H.; Kim, Y.; Yang, C.M.; Kim, T.Y.; Yoon, D.H.; Yang, W.S. Flexible Electro-Chromic Films Based on Cvd-Graphene Electrodes. Nanotechnology 2014, 25, 7. [Google Scholar]
- Jaing, C.C.; Tang, C.J.; Chan, C.C.; Lee, K.H.; Kuo, C.C.; Chen, H.C.; Lee, C.C. Optical Constants of Electrochromic Films and Contrast Ratio of Reflective Electrochromic Devices. Appl. Opt. 2014, 53, A154–A158. [Google Scholar] [CrossRef]
- Azevedo, C.F.; Balboni, R.D.; Cholant, C.M.; Moura, E.; Lemos, R.M.; Pawlicka, A.; Gündel, A.; Flores, W.H.; Pereira, M.; Avellaneda, C.O. New Thin Films of NiO Doped with V2O5 for Electrochromic Applications. J. Phys. Chem. Solids 2017, 110, 30–35. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, K.; Zhang, X.; Yuan, W.; Shi, M.; Ning, H.; Tao, R.; Liu, X.; Yao, R.; Peng, J. Effects of Annealing Temperature on Optical Band Gap of Sol-gel Tungsten Trioxide Films. Micromachines 2018, 9, 377. [Google Scholar] [CrossRef]
- Korošec, R.C.; Bukovec, P. The Role of Thermal Analysis in Optimization of the Electrochromic Effect of Nickel Oxide Thin Films, Prepared by the Sol–Gel Method: Part II. Thermochim. Acta 2004, 410, 65–71. [Google Scholar] [CrossRef]
- Patra, A.; Auddy, K.; Ganguli, D.; Livage, J.; Biswas, P.K. Sol–Gel Electrochromic WO3 Coatings on Glass. Mater. Lett. 2004, 58, 1059–1063. [Google Scholar] [CrossRef]
- Ren, Y.; Chim, W.K.; Guo, L.; Tanoto, H.; Pan, J.; Chiam, S.Y. The Coloration and Degradation Mechanisms of Electrochromic Nickel Oxide. Sol. Energy Mater. Sol. Cells 2013, 116, 83–88. [Google Scholar] [CrossRef]
- Noh, S.; Lee, E.; Seo, J.; Mehregany, M. Electrical Properties of Nickel Oxide Thin Films for Flow Sensor Application. Sens. Actuators A Phys. 2006, 125, 363–366. [Google Scholar] [CrossRef]
- Atak, G.; Coşkun, Ö.D. Annealing Effects of NiO Thin Films for All-Solid-State Electrochromic Devices. Solid State Ionics 2017, 305, 43–51. [Google Scholar] [CrossRef]
- Chem, A. Joint Committee on Powder Diffraction Standards. Anal. Chem. 1973, 45, 944A. [Google Scholar]
- Zou, Y.; Zhang, Y.; Lou, D.; Wang, H.; Gu, L.; Dong, Y.; Dou, K.; Song, X.; Zeng, H. Structural and Optical Properties of WO3 Films Deposited by Pulsed Laser Deposition. J. Alloy. Compd. 2014, 583, 465–470. [Google Scholar] [CrossRef]
- Carpenter, M.K.; Conell, R.S.; Corrigan, D.A. The Electrochromic Properties of Hydrous Nickel Oxide. Sol. Energy Mater. 1987, 16, 333–346. [Google Scholar] [CrossRef]
- Dalavi, D.S.; Devan, R.S.; Patil, R.S.; Ma, Y.-R.; Patil, P.S. Electrochromic Performance of Sol–Gel Deposited NiO thin Film. Mater. Lett. 2013, 90, 60–63. [Google Scholar] [CrossRef]
- Agrawal, A.; Habibi, H.R.; Agrawal, R.K.; Cronin, J.P.; Roberts, D.M.; Caron-Popowich, R.; Lampert, C.M. Effect of Deposition Pressure on the Microstructure and Electrochromic Properties of Electron-Beam-Evaporated Nickel Oxide Films. Thin Solid Film. 1992, 221, 239–253. [Google Scholar] [CrossRef]
- Yoshimura, K.; Miki, T.; Tanemura, S. Nickel Oxide Electrochromic Thin Films Prepared by Reactive DC Magnetron Sputtering. Jpn. J. Appl. Phys. 1995, 34, 2440–2446. [Google Scholar] [CrossRef]
- Granqvist, C. Window Coatings for the Future. Thin Solid Film. 1990, 193, 730–741. [Google Scholar] [CrossRef]
Annealing Temperature (°C) | (111) (nm) | (200) (nm) | (220) (nm) |
---|---|---|---|
300 | 0.4170 | 0.4166 | 0.4178 |
400 | 0.4164 | 0.4168 | 0.4171 |
500 | 0.4162 | 0.4167 | 0.4169 |
Annealing Temperature (°C) | D (111) (nm) | D (200) (nm) | D (220) (nm) |
---|---|---|---|
300 | 5.40 | 6.30 | 7.72 |
400 | 10.12 | 11.34 | 13.01 |
500 | 13.11 | 16.21 | 14.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Qiu, T.; Tang, B.; Zhang, G.; Yao, R.; Xu, W.; Chen, J.; Fu, X.; Ning, H.; Peng, J. Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism. Micromachines 2021, 12, 80. https://doi.org/10.3390/mi12010080
Shi M, Qiu T, Tang B, Zhang G, Yao R, Xu W, Chen J, Fu X, Ning H, Peng J. Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism. Micromachines. 2021; 12(1):80. https://doi.org/10.3390/mi12010080
Chicago/Turabian StyleShi, Muyang, Tian Qiu, Biao Tang, Guanguang Zhang, Rihui Yao, Wei Xu, Junlong Chen, Xiao Fu, Honglong Ning, and Junbiao Peng. 2021. "Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism" Micromachines 12, no. 1: 80. https://doi.org/10.3390/mi12010080
APA StyleShi, M., Qiu, T., Tang, B., Zhang, G., Yao, R., Xu, W., Chen, J., Fu, X., Ning, H., & Peng, J. (2021). Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism. Micromachines, 12(1), 80. https://doi.org/10.3390/mi12010080