MEMS-Based Wavelength-Selective Bolometers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Structural Design and Simulated Optical Properties
3.2. Amorphous Silicon and Silicon-Germanium Alloys for Bolometer
3.3. Fabrication of MEMS-Based Wavelength-Selective Bolometers
3.4. Wavelength Tunability
3.5. Wavelength-Selective Responsivity Measurement
3.6. Potential Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gabriel, K.; Jarvis, J.; Trimmer, W. Small Machines, Large Opportunities: A Report on the Emerging Field of Microdynamics: Report of the Workshop on Microelectromechanical Systems Research; Sponsored by the National Science Foundation; AT & T Bell Laboratories: Murray Hill, NJ, USA, 1988. [Google Scholar]
- Bryzek, J. Impact of MEMS technology on society. Sens. Actuators Phys. 1996, 56, 1–9. [Google Scholar] [CrossRef]
- Gardner, J.W.; Varadan, V.K. Microsensors, Mems and Smart Devices; John Wiley & Sons, Inc.: New York, NY, USA, 2001; ISBN 0-471-86109-X. [Google Scholar]
- Judy, J.W. Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart Mater. Struct. 2001, 10, 1115–1134. [Google Scholar] [CrossRef]
- Bell, D.J.; Lu, T.J.; Fleck, N.A.; Spearing, S.M. MEMS actuators and sensors: Observations on their performance and selection for purpose. J. Micromech. Microeng. 2005, 15, S153–S164. [Google Scholar] [CrossRef]
- Liu, C. Foundations of MEMS, 2nd ed.; Prentice Hall Press: Upper Saddle River, NJ, USA, 2011; ISBN 0-13-249736-0. [Google Scholar]
- Motamedi, M.E. Micro-opto-electro-mechanical systems. Opt. Eng. 1994, 33, 3505–3517. [Google Scholar] [CrossRef]
- Scribner, D.A.; Kruer, M.R.; Killiany, J.M. Infrared focal plane array technology. Proc. IEEE 1991, 79, 66–85. [Google Scholar] [CrossRef]
- Cole, B.E.; Higashi, R.E.; Wood, R.A. Monolithic arrays of micromachined pixels for infrared applications. In Proceedings of the International Electron Devices Meeting 1998, Technical Digest (Cat. No.98CH36217), San Francisco, CA, USA, 6–9 December 1998; pp. 459–462. [Google Scholar]
- Rogalski, A. Infrared detectors: An overview. Infrared Phys. Technol. 2002, 43, 187–210. [Google Scholar] [CrossRef]
- Martyniuk, P.; Antoszewski, J.; Martyniuk, M.; Faraone, L.; Rogalski, A. New concepts in infrared photodetector designs. Appl. Phys. Rev. 2014, 1, 041102. [Google Scholar] [CrossRef] [Green Version]
- Kanno, T.; Saga, M.; Matsumoto, S.; Uchida, M.; Tsukamoto, N.; Tanaka, A.; Itoh, S.; Nakazato, A.; Endoh, T.; Tohyama, S.; et al. Uncooled infrared focal plane array having 128 × 128 thermopile detector elements. Proc. SPIE 1994, 2269. [Google Scholar] [CrossRef]
- Oliver, A.D.; Wise, K.D. A 1024-element bulk-micromachined thermopile infrared imaging array. Sens. Actuators Phys. 1999, 73, 222–231. [Google Scholar] [CrossRef]
- Wood, R.A. Uncooled thermal imaging with monolithic silicon focal planes. Proc. SPIE 1993, 2020. [Google Scholar] [CrossRef]
- Jerominek, H.; Picard, F.; Swart, N.R.; Renaud, M.; Levesque, M.; Lehoux, M.; Castonguay, J.S.; Pelletier, M.; Bilodeau, G.; Audet, D.; et al. Micromachined uncooled VO2-based IR bolometer arrays. Proc. SPIE 1996, 2746. [Google Scholar] [CrossRef]
- Wada, H.; Nagashima, M.; Kanzaki, M.; Sasaki, T.; Kawahara, A.; Tsuruta, Y.; Oda, N.; Matsumoto, S. Fabrication process for 256 × 256 bolometer-type uncooled infrared detector. Proc. SPIE 1997, 3224. [Google Scholar] [CrossRef]
- Unewisse, M.H.; Liddiard, K.C.; Craig, B.I.; Passmore, S.J.; Watson, R.J.; Clarke, R.E.; Reinhold, O. Semiconductor film bolometer technology for uncooled IR sensors. Proc. SPIE 1995, 2552. [Google Scholar] [CrossRef]
- Wood, R.A. Chapter 3 Monolithic Silicon Microbolometer Arrays. In Semiconductors and Semimetals; Kruse, P.W., Skatrud, D.D., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 47, pp. 43–121. ISBN 0080-8784. [Google Scholar]
- Tissot, J.-L.; Rothan, F.; Vedel, C.; Vilain, M. Jean-Jacques Yon LETI/LIR’s Amorphous Silicon Uncooled Microbolometer Development. Proc. SPIE 1998, 3379. [Google Scholar] [CrossRef]
- Vedel, C.; Martin, J.L.; Ouvrier-Buffet, J.L.; Tissot, J.L.; Vilain, M.; Yon, J.J. Amorphous-silicon-based uncooled microbolometer IRFPA. Proc. SPIE 1999, 3698. [Google Scholar] [CrossRef]
- Chang, C.-C.; Sharma, Y.D.; Kim, Y.-S.; Bur, J.A.; Shenoi, R.V.; Krishna, S.; Huang, D.; Lin, S.-Y. A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots. Nano Lett. 2010, 10, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Bonakdar, A.; Mohseni, H. Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl. Phys. Lett. 2010, 96, 161107. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Ku, Z.; Barve, A.; Montoya, J.; Jang, W.-Y.; Brueck, S.R.J.; Sundaram, M.; Reisinger, A.; Krishna, S.; Noh, S.K. A monolithically integrated plasmonic infrared quantum dot camera. Nat. Commun. 2011, 2, 286. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, S.; Okada, K.; Fukushima, N.; Kimata, M. Wavelength selective uncooled infrared sensor by plasmonics. Appl. Phys. Lett. 2012, 100, 021111. [Google Scholar] [CrossRef]
- Jing, Y.L.; Li, Z.F.; Li, Q.; Chen, X.S.; Chen, P.P.; Wang, H.; Li, M.Y.; Li, N.; Lu, W. Pixel-level plasmonic microcavity infrared photodetector. Sci. Rep. 2016, 6, 25849. [Google Scholar] [CrossRef]
- Zheng, B.; Zhao, H.; Cerjan, B.; Yazdi, S.; Ringe, E.; Nordlander, P.; Halas, N.J. A room-temperature mid-infrared photodetector for on-chip molecular vibrational spectroscopy. Appl. Phys. Lett. 2018, 113, 101105. [Google Scholar] [CrossRef] [Green Version]
- Maier, T.; Brückl, H. Wavelength-tunable microbolometers with metamaterial absorbers. Opt. Lett. 2009, 34, 3012–3014. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Brueckl, H. Multispectral microbolometers for the midinfrared. Opt. Lett. 2010, 35, 3766–3768. [Google Scholar] [CrossRef] [PubMed]
- Niesler, F.B.P.; Gansel, J.K.; Fischbach, S.; Wegener, M. Metamaterial metal-based bolometers. Appl. Phys. Lett. 2012, 100, 203508. [Google Scholar] [CrossRef] [Green Version]
- Dao, T.D.; Ishii, S.; Yokoyama, T.; Sawada, T.; Sugavaneshwar, R.P.; Chen, K.; Wada, Y.; Nabatame, T.; Nagao, T. Hole Array Perfect Absorbers for Spectrally Selective Mid-Wavelength Infrared Pyroelectric Detectors. ACS Photonics 2016, 3, 1271–1278. [Google Scholar] [CrossRef]
- Suen, J.Y.; Fan, K.; Montoya, J.; Bingham, C.; Stenger, V.; Sriram, S.; Padilla, W.J. Multifunctional metamaterial pyroelectric infrared detectors. Optica 2017, 4, 276–279. [Google Scholar] [CrossRef]
- Ahmed, A.; Kim, H.; Kim, J.; Hwang, K.; Kim, S. Enhancing the Responsivity of Uncooled Infrared Detectors Using Plasmonics for High-Performance Infrared Spectroscopy. Sensors 2017, 17, 908. [Google Scholar] [CrossRef] [PubMed]
- Diem, M.; Koschny, T.; Soukoulis, C.M. Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B 2009, 79, 033101. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Starr, T.; Starr, A.F.; Padilla, W.J. Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance. Phys. Rev. Lett. 2010, 104, 207403. [Google Scholar] [CrossRef] [Green Version]
- Dao, T.D.; Chen, K.; Ishii, S.; Ohi, A.; Nabatame, T.; Kitajima, M.; Nagao, T. Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers. ACS Photonics 2015, 2, 964–970. [Google Scholar] [CrossRef]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef] [PubMed]
- Palik, E.D. Handbook of Optical Constants of Solids, 3rd ed.; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Dao, T.D.; Ishii, S.; Doan, A.T.; Wada, Y.; Ohi, A.; Nabatame, T.; Nagao, T. On-Chip Quad-Wavelength Pyroelectric Sensor for Spectroscopic Infrared Sensing. Adv. Sci. 2019, in press. [Google Scholar] [CrossRef]
- Dao, T.D.; Chen, K.; Nagao, T. Dual-band in situ molecular spectroscopy using single-sized Al-disk perfect absorbers. Nanoscale 2019, 11, 9508–9517. [Google Scholar] [CrossRef] [PubMed]
- Poynting, J.H. XV. On the transfer of energy in the electromagnetic field. Philos. Trans. R. Soc. Lond. 1884, 175, 343–361. [Google Scholar]
- García, M.; Ambrosio, R.; Torres, A.; Kosarev, A. IR bolometers based on amorphous silicon germanium alloys. J. Non-Cryst. Solids 2004, 338–340, 744–748. [Google Scholar] [CrossRef]
- Syllaios, A.J.; Schimert, T.R.; Gooch, R.W.; McCardel, W.L.; Ritchey, B.A.; Tregilgas, J.H. Amorphous Silicon Microbolometer Technology. MRS Proc. 2000, 609, A14.4. [Google Scholar] [CrossRef]
- Ambrosio, R.; Moreno, M.; Mireles, J., Jr.; Torres, A.; Kosarev, A.; Heredia, A. An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys. Phys. Status Solidi C 2010, 7, 1180–1183. [Google Scholar] [CrossRef]
- Zeman, M.; van Elzakker, G.; Tichelaar, F.D.; Sutta, P. Structural properties of amorphous silicon prepared from hydrogen-diluted silane. Philos. Mag. 2009, 89, 2435–2448. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, T.D.; Doan, A.T.; Ishii, S.; Yokoyama, T.; Ørjan, H.S.; Ngo, D.H.; Ohki, T.; Ohi, A.; Wada, Y.; Niikura, C.; et al. MEMS-Based Wavelength-Selective Bolometers. Micromachines 2019, 10, 416. https://doi.org/10.3390/mi10060416
Dao TD, Doan AT, Ishii S, Yokoyama T, Ørjan HS, Ngo DH, Ohki T, Ohi A, Wada Y, Niikura C, et al. MEMS-Based Wavelength-Selective Bolometers. Micromachines. 2019; 10(6):416. https://doi.org/10.3390/mi10060416
Chicago/Turabian StyleDao, Thang Duy, Anh Tung Doan, Satoshi Ishii, Takahiro Yokoyama, Handegård Sele Ørjan, Dang Hai Ngo, Tomoko Ohki, Akihiko Ohi, Yoshiki Wada, Chisato Niikura, and et al. 2019. "MEMS-Based Wavelength-Selective Bolometers" Micromachines 10, no. 6: 416. https://doi.org/10.3390/mi10060416