Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings
Abstract
1. Introduction
2. Modeling of the pVEH Microdevice
2.1. Design
2.2. Analytical Modeling
2.3. Finite Element Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, L.T.; Mohamed, M.A.; Yahya, I.; Kulothungan, J.; Muruganathan, M.; Mizuta, H. Comparison of piezoelectric energy harvesting performance using silicon and graphene cantilever beam. Microsyst. Technol. 2018, 1–7. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Mahmud, S.; Van Heyst, B. A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manag. 2015, 106, 728–747. [Google Scholar] [CrossRef]
- Fernandes, E.; Martin, B.; Rua, I.; Zarabi, S.; Debéda, H.; Nairn, D.; Salehian, A. Design, fabrication, and testing of a low frequency MEMS piezoelectromagnetic energy harvester. Smart Mater. Struct. 2018, 27, 035017. [Google Scholar] [CrossRef]
- Solleti, R.T.; Harikrishna, K.; Velmurugan, V. Simulation Studies on Energy Harvesting Characteristics and Storage Analysis Through Microcantilever Vibration. Int. J. Nanosci. 2018, 16, 1760024. [Google Scholar] [CrossRef]
- Blokhina, E.; El Aroudi, A.; Alarcon, E.; Galayko, D. Nonlinearity in Energy Harvesting Systems, Micro-and Nanoscale Applications; Springer: Basel, Switzerland, 2016; pp. 4–8. ISBN 978-3-319-20354-6. [Google Scholar]
- Yuan, M.; Cao, Z.; Luo, J.; Chou, X. Recent Developments of Acoustic Energy Harvesting: A Review. Micromachines 2019, 10, 48. [Google Scholar] [CrossRef]
- Jia, J.; Shan, X.; Upadrashta, D.; Xie, T.; Yang, Y.; Song, R. Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration. Micromachines 2018, 9, 667. [Google Scholar] [CrossRef]
- Udvardi, P.; Radó, J.; Straszner, A.; Ferencz, J.; Hajnal, Z.; Soleimani, S.; Schneider, M.; Schmid, U.; Révész, P.; Volk, J. Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems. Micromachines 2017, 8, 311. [Google Scholar] [CrossRef]
- Xu, Y.; Bader, S.; Oelmann, B. A Survey on Variable Reluctance Energy Harvesters in Low-Speed Rotating Applications. IEEE Sens. J. 2018, 18, 3426–3435. [Google Scholar] [CrossRef]
- Priya, S.; Song, H.C.; Zhou, Y.; Varghese, R.; Chopra, A.; Kim, S.G.; Polcawich, R.G. A review on piezoelectric energy harvesting: Materials, methods, and circuits. Energy Harvest. Syst. 2017, 4, 3–39. [Google Scholar] [CrossRef]
- Prušáková, L.; Novák, P.; Kulha, P.; Očenášek, J.; Savková, J.; Pastorek, L.; Šutta, P. Modeling and fabrication of single cantilever piezoelectric microgenerator with optimized Zno active layer. Thin Solid Films 2015, 591, 305–310. [Google Scholar] [CrossRef]
- Chang, W.T.; Chen, Y.C.; Lin, R.C.; Cheng, C.C.; Kao, K.S.; Huang, Y.C. Wind-power generators based on ZnO piezoelectric thin films on stainless steel substrates. Curr. Appl. Phys. 2011, 11, S333–S338. [Google Scholar] [CrossRef]
- Wang, P.; Du, H. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance. Rev. Sci. Instrum. 2015, 86, 075002. [Google Scholar] [CrossRef] [PubMed]
- Roundy, S.; Wright, P.K.; Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003, 1131–1144. [Google Scholar] [CrossRef]
- Singh, H.H.; Singh, S.; Khare, N. Enhanced β-phase in PVDF polymer nanocomposite and its application for nanogenerator. Polym. Adv. Technol. 2018, 143–150. [Google Scholar] [CrossRef]
- Tao, K.; Yi, H.; Tang, L.; Wu, J.; Wang, P.; Wang, N.; Hu, P.; Fu, Y.; Miao, J.; Chang, H. Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting. Surf. Coat. Technol. 2019, 289–295. [Google Scholar] [CrossRef]
- Pan, C.T.; Liu, Z.H.; Chen, Y.C. Study of broad bandwidth vibrational energy harvesting system with optimum thickness of PET substrate. Curr. Appl. Phys. 2012, 12, 684–696. [Google Scholar] [CrossRef]
- Larsson, S.; Johannisson, P.; Kolev, D.; Ohlsson, F.; Nik, S.; Liljeholm, J.; Ebefors, T.; Rusu, C. Simple method for quality factor estimation in resonating MEMS structures. J. Phys. Conf. Ser. 2018, 1052. [Google Scholar] [CrossRef]
- Blom, F.R.; Bouwstra, S.; Elwenspoek, M.; Fluitman, J.H.J. Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. Process. Measurement Phenomena 1992, 10, 19–26. [Google Scholar] [CrossRef]
- Herrera-May, A.L.; Aguilera-Cortés, L.A.; Plascencia-Mora, H.; Rodríguez-Morales, Á.L.; Lu, J. Analytical modeling for the bending resonant frequency of multilayered microresonators with variable cross-section. Sensors 2011, 11, 8203–8226. [Google Scholar] [CrossRef]
- Weaver, W., Jr.; Timoshenko, S.P.; Young, D.H. Vibration Problems in Engineering, 5th ed.; John Wiley & Sons Inc.: New York, NY, USA, 1990; Chapter 5. [Google Scholar]
- Vasiliev, V.V.; Morozov, E.V. Mechanics and Analysis of Composite Materials; Elsevier: Amsterdam, The Netherlands, 2001; pp. 225–270. [Google Scholar]
- Craig, R.R., Jr. Mechanics of Materials, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1996; Chapter 5. [Google Scholar]
- Bolton, W.C. Mechanical Science, 3rd ed.; Blackwell Publishing Ltd.: Chennai, India, 2006; pp. 113–120. [Google Scholar]
- Bao, M. Analysis and Design Principles of MEMS Devices; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Kuang, Y.; Daniels, A.; Zhu, M. A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments. J. Phys. D Appl. Phys. 2017, 50, 345501. [Google Scholar] [CrossRef]
- Ong, C.W.; Zong, D.G.; Aravind, M.; Choy, C.L.; Lu, D.R. Tensile strength of zinc oxide films measured by a microbridge method. J. Mater. Res. 2003, 18, 2464–2472. [Google Scholar] [CrossRef]
- Champagne, M.F.; Huneault, M.A.; Roux, C.; Peyrel, W. Reactive compatibilization of polypropylene/polyethylene terephthalate blends. Polym. Eng. Sci. 1999, 39, 976–984. [Google Scholar] [CrossRef]
- Moure, A.; Rodríguez, M.I.; Rueda, S.H.; Gonzalo, A.; Rubio-Marcos, F.; Cuadros, D.U.; Fernández, J.F. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Convers. Manag. 2016, 112, 246–253. [Google Scholar] [CrossRef]
Geometric Parameter | Dimension (mm) | Geometric Parameter | Dimension (μm) |
---|---|---|---|
L1 | 4.5 | t1S1 = t1S2 = t1S3 | 160 |
L2 = L3 | 7.5 | t2S1 = t2S2 = t2S3 | 2 |
b1S1 = b2S1 | 12 | t3S1 = t3S2 | 730 |
b1S2 = b2S2 | 17 | h1S1 = h1S2 = h1S3 | 160 |
b3S2 | 7 | h2S1 = h2S2 = h2S3 | 162 |
b1S3 = b2S3 = b3S3 | 20 | h3S1 = h3S2 | 892 |
Parameter | Magnitude |
---|---|
(EIz)S1 | 22.421 × 10−6 N∙m2 |
(EIz)S2 | 1.6 × 10−3 N∙m2 |
(EIz)S3 | 13.2 × 10−3 N∙m2 |
ωS1 | 27.7 × 10−3 N∙m−1 |
ωS2 | 91.3 × 10−3 N∙m−1 |
ωS3 | 194.8 × 10−3 N∙m−1 |
Ro | 2.3 × 10−3 N |
Mo | 28.94 × 10−6 N∙m |
Material Property | ZnO | PET Substrate | UV-Resin |
---|---|---|---|
Young’s module E (GPa) | 137 | 2.4 | 2.4 |
Density ρ (kg/m3) | 5665 | 1400 | 1037.78 |
Poisson ratio ν | 0.25 | 0.36 | 0.34 |
ZnO piezoelectric stress matrix [e] |
ZnO piezoelectric dielectric matrix [εr] under the constant strain |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elvira-Hernández, E.A.; Uscanga-González, L.A.; de León, A.; López-Huerta, F.; Herrera-May, A.L. Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings. Micromachines 2019, 10, 211. https://doi.org/10.3390/mi10030211
Elvira-Hernández EA, Uscanga-González LA, de León A, López-Huerta F, Herrera-May AL. Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings. Micromachines. 2019; 10(3):211. https://doi.org/10.3390/mi10030211
Chicago/Turabian StyleElvira-Hernández, Ernesto A., Luis A. Uscanga-González, Arxel de León, Francisco López-Huerta, and Agustín L. Herrera-May. 2019. "Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings" Micromachines 10, no. 3: 211. https://doi.org/10.3390/mi10030211
APA StyleElvira-Hernández, E. A., Uscanga-González, L. A., de León, A., López-Huerta, F., & Herrera-May, A. L. (2019). Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings. Micromachines, 10(3), 211. https://doi.org/10.3390/mi10030211