Local Acoustic Fields Powered Assembly of Microparticles and Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Working Principles
2.2. Theoretical Analysis
2.3. Numerical Simulations
3. Experimental Results
3.1. Experimental Setup
3.2. Chain-Like Assembling of Micro Particles
3.3. Control of Chain-Like Flexible Robotic Fingers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lash, M.H.; Jordan, J.C.; Blevins, L.C.; Fedorchak, M.V.; Little, S.R.; McCarthy, J.J. Non-Brownian Particle-Based Materials with Microscale and Nanoscale Hierarchy. Angew. Chem. Int. Ed. 2015, 54, 5854–5858. [Google Scholar] [CrossRef] [PubMed]
- Boles, M.A.; Engel, M.; Talapin, D.V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem. Rev. 2016, 116, 11220–11289. [Google Scholar] [CrossRef] [PubMed]
- Kagan, C.R.; Lifshitz, E.; Sargent, E.H.; Talapin, D.V. Building Devices from Colloidal Quantum Dots. Science 2016, 353, aac5523. [Google Scholar] [CrossRef] [PubMed]
- Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M.V.; Cadavid, D.; Cabot, A. Bottom-up Engineering of Thermoelectric Nanomaterials and Devices from Solution-Processed Nanoparticle Building Blocks. Chem. Soc. Rev. 2017, 46, 3510–3528. [Google Scholar] [CrossRef]
- Pileni, M.-P. Impact of the Metallic Crystalline Structure on the Properties of Nanocrystals and Their Mesoscopic Assemblies. Acc. Chem. Res. 2017, 50, 1946–1955. [Google Scholar] [CrossRef]
- Guo, D.; Zheng, X.; Wang, X.; Li, H.; Li, K.; Li, Z.; Song, Y. Formation of Multicomponent Size-Sorted Assembly Patterns by Tunable Templated Dewetting. Angew. Chem. Int. Ed. 2018, 130, 16358–16362. [Google Scholar] [CrossRef]
- Kang, Y.; Ye, X.; Chen, J.; Cai, Y.; Diaz, R.E.; Adzic, R.R.; Stach, E.A.; Murray, C.B. Design of Pt–Pd Binary Superlattices Exploiting Shape Effects and Synergistic Effects for Oxygen Reduction Reactions. J. Am. Chem. Soc. 2012, 135, 42–45. [Google Scholar] [CrossRef]
- Cecchini, M.P.; Turek, V.A.; Paget, J.; Kornyshev, A.A.; Edel, J.B. Self-Assembled Nanoparticle Arrays for Multiphase Trace Analyte Detection. Nat. Mater. 2013, 12, 165–171. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, F.; Yager, K.G.; Van Der Lelie, D.; Gang, O. A General Strategy for the DNA-Mediated Self-Assembly of Functional Nanoparticles into Heterogeneous Systems. Nat. Nanotechnol. 2013, 8, 865–872. [Google Scholar] [CrossRef]
- Wu, X.; Xu, L.; Ma, W.; Liu, L.; Kuang, H.; Kotov, N.A.; Xu, C. Propeller-Like Nanorod-Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase. Adv. Mater. 2016, 28, 5907–5915. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Zhu, C.; Xia, Y. Inverse Opal Scaffolds and Their Biomedical Applications. Adv. Mater. 2017, 29, 1701115. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-p.; Qiao, Q.; Zhu, Y.; Ouyang, M. Colloidal Binary Supracrystals with Tunable Structural Lattices. J. Am. Chem. Soc. 2018, 140, 9095–9098. [Google Scholar] [CrossRef] [PubMed]
- Heatley, K.L.; Ma, F.; Wu, N. Colloidal Molecules Assembled from Binary Spheres under an Ac Electric Field. Soft Matter 2017, 13, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Erb, R.M.; Son, H.S.; Samanta, B.; Rotello, V.M.; Yellen, B.B. Magnetic Assembly of Colloidal Superstructures with Multipole Symmetry. Nature 2009, 457, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Finley, T.D.; Turkaydin, M.; Sung, Y.; Gurkan, U.A.; Yavuz, A.S.; Guldiken, R.O.; Demirci, U. The Assembly of Cell-Encapsulating Microscale Hydrogels Using Acoustic Waves. Biomaterials 2011, 32, 7847–7855. [Google Scholar] [CrossRef]
- Owens, C.E.; Shields, C.W.; Cruz, D.F.; Charbonneau, P.; López, G.P. Highly Parallel Acoustic Assembly of Microparticles into Well-Ordered Colloidal Crystallites. Soft Matter 2016, 12, 717–728. [Google Scholar] [CrossRef]
- He, L.; Wang, M.; Ge, J.; Yin, Y. Magnetic Assembly Route to Colloidal Responsive Photonic Nanostructures. Acc. Chem. Res. 2013, 45, 1431–1440. [Google Scholar] [CrossRef]
- Ding, X.; Lin, S.-C.S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.-K.; Shi, J.; Benkovic, S.J.; Huang, T.J. On-Chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves. Proc. Natl. Acad. Sci. USA 2012, 109, 11105–11109. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Mair, L.; Ahmed, S.; Huang, T.J.; Mallouk, T.E. Acoustic Propulsion of Nanorod Motors inside Living Cells. Angew. Chem. Int. Ed. 2014, 53, 3201–3204. [Google Scholar] [CrossRef]
- Guo, F.; Xie, Y.; Li, S.; Lata, J.; Ren, L.; Mao, Z.; Ren, B.; Wu, M.; Ozcelik, A.; Huang, T.J. Reusable Acoustic Tweezers for Disposable Devices. Lab. Chip 2015, 15, 4517–4523. [Google Scholar] [CrossRef]
- Ahmed, D.; Ozcelik, A.; Bojanala, N.; Nama, N.; Upadhyay, A.; Chen, Y.; Hanna-Rose, W.; Huang, T.J. Rotational Manipulation of Single Cells and Organisms Using Acoustic Waves. Nat. Commun. 2016, 7, 11085. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, D.; Baasch, T.; Blondel, N.; Läubli, N.; Dual, J.; Nelson, B.J. Neutrophil-Inspired Propulsion in a Combined Acoustic and Magnetic Field. Nat. Commun. 2017, 8, 770. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.J.; O’Rorke, R.; Neild, A.; Han, J.; Ai, Y. Acoustic Fields and Microfluidic Patterning around Embedded Micro-Structures Subject to Surface Acoustic Waves. Soft Matter 2019, 15, 8691–8705. [Google Scholar] [CrossRef] [PubMed]
- Leibacher, I.; Hahn, P.; Dual, J. Acoustophoretic Cell and Particle Trapping on Microfluidic Sharp Edges. Microfluid Nanofluid 2015, 19, 923–933. [Google Scholar] [CrossRef]
- Lu, X.; Soto, F.; Li, J.; Li, T.; Liang, Y.; Wang, J. Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming. ACS Appl. Mater. Interfaces 2017, 9, 38870–38876. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Martin, A.; Soto, F.; Angsantikul, P.; Li, J.; Chen, C.; Liang, Y.; Hu, J.; Zhang, L.; Wang, J. Parallel Label-Free Isolation of Cancer Cells Using Arrays of Acoustic Microstreaming Traps. Adv. Mater. Technol. 2018, 4, 1800374. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, K.; Peng, H.; Li, H.; Liu, W. Local Enhanced Microstreaming for Controllable High-Speed Acoustic Rotary Microsystems. Phys. Rev. Appl. 2019, 11, 044064. [Google Scholar] [CrossRef]
- Henrik, B. Acoustofluidics 2: Perturbation Theory and Ultrasound Resonance Modes. Lab. Chip 2011, 12, 20–28. [Google Scholar]
- Habibi, R.; Devendran, C.; Neild, A. Trapping and Patterning of Large Particles and Cells in a 1d Ultrasonic Standing Wave. Lab. Chip 2017, 17, 3279–3290. [Google Scholar] [CrossRef]
- Muller, P.B.; Barnkob, R.; Jensen, M.J.H.; Bruus, H. A Numerical Study of Microparticle Acoustophoresis Driven by Acoustic Radiation Forces and Streaming-Induced Drag Forces. Lab. Chip 2012, 12, 4617–4627. [Google Scholar] [CrossRef]
- Ozcelik, A.; Nama, N.; Huang, P.H.; Kaynak, M.; McReynolds, M.R.; Hanna-Rose, W.; Huang, T.J. Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures. Small 2016, 12, 5120–5125. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Huffman, J.; Ranganathan, N.; He, Z.Y.; Li, P. Acoustofluidic Enzyme-Linked Immunosorbent Assay (Elisa) Platform Enabled by Coupled Acoustic Streaming. Anal. Chim. Acta 2019, 1079, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Siciliani de Cumis, U.; Solsona, M.; Misra, S. Bi-Directional Transportation of Micro-Agents Induced by Symmetry-Broken Acoustic Streaming. AIP Adv. 2019, 9, 035352. [Google Scholar] [CrossRef]
- Collins, D.J.; Ma, Z.C.; Ai, Y. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields. Anal. Chem. 2016, 88, 5513–5522. [Google Scholar] [CrossRef] [PubMed]
- Friend, J.; Yeo, L.Y. Microscale Acoustofluidics: Microfluidics Driven Via Acoustics and Ultrasonics. Rev. Mod. Phys. 2011, 83, 647–704. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Zhao, K.; Wang, Z.; Xu, X.; Lu, J.; Liu, W.; Lu, X. Local Acoustic Fields Powered Assembly of Microparticles and Applications. Micromachines 2019, 10, 882. https://doi.org/10.3390/mi10120882
Shen H, Zhao K, Wang Z, Xu X, Lu J, Liu W, Lu X. Local Acoustic Fields Powered Assembly of Microparticles and Applications. Micromachines. 2019; 10(12):882. https://doi.org/10.3390/mi10120882
Chicago/Turabian StyleShen, Hui, Kangdong Zhao, Zhiwen Wang, Xiaoyu Xu, Jiayu Lu, Wenjuan Liu, and Xiaolong Lu. 2019. "Local Acoustic Fields Powered Assembly of Microparticles and Applications" Micromachines 10, no. 12: 882. https://doi.org/10.3390/mi10120882
APA StyleShen, H., Zhao, K., Wang, Z., Xu, X., Lu, J., Liu, W., & Lu, X. (2019). Local Acoustic Fields Powered Assembly of Microparticles and Applications. Micromachines, 10(12), 882. https://doi.org/10.3390/mi10120882