Microfluidic Technologies for cfDNA Isolation and Analysis
Abstract
:1. Introduction
2. Collection and Enrichment of cfDNA
2.1. Traditional Approaches for cfDNA Collection
2.2. Microfluidic Devices for cfDNA Isolation
2.2.1. Solid Phase Isolation
2.2.2. Liquid Phase Isolation
3. Quantification of cfDNA
4. Mutation Detection of cfDNA
4.1. Commercialized dPCR/ddPCR System and Application
4.2. Further Developed Methodological Study for Detection
5. Library Construction for Next-generation Sequencing
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DNA | deoxyribonucleic acid |
PCR | polymerase chain reaction |
LOC | lab-on-a-chip |
cfDNA | cell free DNA |
NIPT | Non-Invasive Prenatal Testing |
POCT | point-of-care testing |
EP | electrophoresis |
DEP | dielectrophoresis |
APTES | 3-aminopropyltrietboxysilane |
AEEA | 3-[2-(2-aminoethylamino)-ethylamino]-propyluimethoxysilane |
PDMS | polydimethylsiloxane |
DTBP | dithiobispropionimidate |
APDMS | 3-aminopropyl diethoxymethylsilane |
PCI | hydroxybenzene-chloroform-isoamyl alcohol |
DC | direct current |
CLL | chronic lymphocytic leukemia |
AC | alternating current |
OS | overall survival |
qPCR | quantitative PCR |
dPCR | digital PCR |
ddPCR | droplet digital PCR |
LOD | limit of detection |
MR | magnetoresistive |
SNPs | single-nucleotide polymorphisms |
CNA | copy number aberrations |
UMI | unique molecule identifiers |
NGS | next-generation sequencing |
DMF | digital microfluidics |
ITO | indium tin oxide |
References
- Lo, Y.M.D.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.G.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef]
- Beck, J.; Oellerich, M.; Schulz, U.; Schauerte, V.; Reinhard, L.; Fuchs, U.; Knabbe, C.; Zittermann, A.; Olbricht, C.; Gummert, J.F.; et al. Donor-derived cell-free DNA is a novel universal biomarker for allograft rejection in solid organ transplantation. Transplant. Proc. 2015, 47, 2400–2403. [Google Scholar] [CrossRef] [PubMed]
- Volik, S.; Alcaide, M.; Morin, R.D.; Collins, C. Cell-free DNA (cfDNA): Clinical significance and utility in cancer shaped by emerging technologies. Mol. Cancer Res. 2016, 14, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Mandel, P.; Metais, P.; Bieth, R. Etude comparee des acides nucleiques des globules rouges chez les oiseaux et chez lhomme. Comptes Rendus Des. Seances De La Soc. De Bio. Et De Ses. Fil. 1948, 142, 1022–1024. [Google Scholar]
- Vasioukhin, V.; Anker, P.; Maurice, P.; Lyautey, J.; Lederrey, C.; Stroun, M. Point mutations of the N-ras gene in the blood-plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukemia. Br. J. Haematol. 1994, 86, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Bahreini, A.; Gyanchandani, R.; Lucas, P.C.; Hartmaier, R.J.; Watters, R.J.; Jonnalagadda, A.R.; Bittar, H.E.T.; Berg, A.; Hamilton, R.L.; et al. Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin. Cancer Res. 2016, 22, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Ljubimov, V.A.; Zhou, C.; Tong, Y.; Liang, J. Cell-free circulating tumor DNA in cancer. Chin. J. Cancer 2016, 35, 36. [Google Scholar] [CrossRef]
- Sato, K.A.; Hachiya, T.; Iwaya, T.; Kume, K.; Matsuo, T.; Kawasaki, K.; Abiko, Y.; Akasaka, R.; Matsumoto, T.; Otsuka, K.; et al. Individualized Mutation Detection in Circulating Tumor DNA for Monitoring Colorectal Tumor Burden Using a Cancer-Associated Gene Sequencing Panel. PLoS ONE 2016, 11, e0146275. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Zhou, C.; Hu, C.-P.; Feng, J.; Lu, S.; Huang, Y.; Li, W.; Hou, M.; Shi, J.H.; Lee, K.Y.; et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): An open-label, randomised phase 3 trial. Lancet Oncol. 2014, 15, 213–222. [Google Scholar] [CrossRef]
- Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenègre, A.; Massutí, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef]
- Sorber, L.; Zwaenepoel, K.; Deschoolmeester, V.; Van Schil, P.E.; Van Meerbeeck, J.; Lardon, F.; Rolfo, C.; Pauwels, P. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer 2017, 107, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Stemmer, C.; Beau-Faller, M.; Pencreac’h, E.; Guerin, E.; Schneider, A.; Jaqmin, D.; Quoix, E.; Gaub, M.P.; Oudet, P. Use of magnetic beads for plasma cell-free DNA extraction: Toward automation of plasma DNA analysis for molecular diagnostics. Clin. Chem. 2003, 49, 1953–1955. [Google Scholar] [CrossRef] [PubMed]
- Adalsteinsson, V.A.; Ha, G.; Freeman, S.S.; Choudhury, A.D.; Stover, D.G.; Parsons, H.A.; Gydush, G.; Reed, S.C.; Rotem, D.; Rhoades, J.; et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 2017, 8, 1324. [Google Scholar] [CrossRef] [PubMed]
- Fleischhacker, M.; Schmidt, B. Circulating nucleic acids (CNAs) and cancer—A survey. Biochim. Biophys. Acta Rev. Cancer 2007, 1775, 181–232. [Google Scholar] [CrossRef]
- Volckmar, A.L.; Sultmann, H.; Riediger, A.; Fioretos, T.; Schirmacher, P.; Endris, V.; Stenzinger, A.; Dietz, S. A field guide for cancer diagnostics using cell-free DNA: From principles to practice and clinical applications. Genes Chromosomes Cancer 2018, 57, 123–139. [Google Scholar] [CrossRef]
- Tissot, C.; Toffart, A.C.; Villar, S.; Souquet, P.J.; Merle, P.; Moro-Sibilot, D.; Perol, M.; Zavadil, J.; Brambilla, C.; Olivier, M.; et al. Circulating free DNA concentration is an independent prognostic biomarker in lung cancer. Eur. Resp. J. 2015, 46, 1773–1780. [Google Scholar] [CrossRef]
- Tuxen, I.V.; Ahlborn, L.B.; Mau-Soerensen, M.; Rohrberg, K.S.; Nielsen, F.C.; Oestrup, O.; Yde, C.W.; Vogelius, I.B.; Lassen, U. Plasma total cell-free DNA is a prognostic biomarker of overall survival in metastatic solid tumour patients. Br. J. Cancer 2019, 121, 125–130. [Google Scholar] [CrossRef]
- Manz, A.; Graber, N.; Widmer, H.M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B 1990, 1, 244–248. [Google Scholar] [CrossRef]
- Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng. 2015, 132, 156–175. [Google Scholar] [CrossRef]
- Xiong, B.; Ren, K.M.; Shu, Y.W.; Chen, Y.; Shen, B.; Wu, H.K. Recent developments in microfluidics for cell studies. Adv. Mater. 2014, 26, 5525–5532. [Google Scholar] [CrossRef]
- Thompson, A.M.; Paguirigan, A.L.; Kreutz, J.E.; Radich, J.P.; Chiu, D.T. Microfluidics for single-cell genetic analysis. Lab Chip 2014, 14, 3135–3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Li, P.; Huang, P.-H.; Xie, Y.; Mai, J.D.; Wang, L.; Nam-Trung, N.; Huang, T.J. Rare cell isolation and analysis in microfluidics. Lab Chip 2014, 14, 626–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorgannezhad, L.; Umer, M.; Islam, M.N.; Nguyen, N.T.; Shiddiky, M.J.A. Circulating tumor DNA and liquid biopsy: Opportunities, challenges, and recent advances in detection technologies. Lab Chip 2018, 18, 1174–1196. [Google Scholar] [CrossRef] [PubMed]
- Drese, K.S. Lab on a chip. Der Internist 2019, 60, 339–344. [Google Scholar] [CrossRef]
- Diefenbach, R.J.; Lee, J.H.; Kefford, R.F.; Rizos, H. Evaluation of commercial kits for purification of circulating free DNA. Cancer Genet. 2018, 228, 21–27. [Google Scholar] [CrossRef]
- Page, K.; Guttery, D.S.; Zahra, N.; Primrose, L.; Elshaw, S.R.; Pringle, J.H.; Blighe, K.; Marchese, S.D.; Hills, A.; Woodley, L.; et al. Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLoS ONE 2013, 8, e77963. [Google Scholar] [CrossRef]
- Heitzer, E.; Ulz, P.; Geigl, J.B. Circulating tumor DNA as a liquid biopsy for cancer. Clin. Chem. 2014, 61, 112–123. [Google Scholar] [CrossRef]
- Sun, Y.X.; Haglund, T.A.; Rogers, A.J.; Ghanim, A.F.; Sethu, P. Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal. Chim. Acta 2018, 1012, 10–29. [Google Scholar] [CrossRef]
- Birch, C.; Esfahani, M.M.N.; Shaw, K.J.; Kemp, C.; Haswell, S.J.; Dyer, C.; Josic, D. The preparation of microfluidic architecture with monolithic materials using a dual porous silica structure. Electrophoresis 2017, 38, 2996–3002. [Google Scholar] [CrossRef]
- Christel, L.A.; Petersen, K.; McMillan, W.; Northrup, M.A. Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration. J. Biomech. Eng. 1999, 121, 22–27. [Google Scholar] [CrossRef]
- Cady, N.C.; Stelick, S.; Batt, C.A. Nucleic acid purification using microfabricated silicon structures. Biosens. Bioelectron. 2003, 19, 59–66. [Google Scholar] [CrossRef]
- Breadmore, M.C.; Wolfe, K.A.; Arcibal, I.G.; Leung, W.K.; Dickson, D.; Giordano, B.C.; Power, M.E.; Ferrance, J.P.; Feldman, S.H.; Norris, P.M.; et al. Microchip-based purification of DNA from biological samples. Anal. Chem. 2003, 75, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Bienvenue, J.M.; Hassan, B.J.; Kwok, Y.C.; Giordano, B.C.; Norris, P.M.; Landers, J.P.; Ferrance, J.P. Microchip-based macroporous silica sol-gel monolith for efficient isolation of DNA from clinical samples. Anal. Chem. 2006, 78, 5704–5710. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Legendre, L.A.; Bienvenue, J.M.; Landers, J.P. Purification of nucleic acids in microfluidic devices. Anal. Chem. 2008, 80, 6472–6479. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Jo, K.H.; Park, H.Y.; Hahn, J.H. Spatially controlled silica coating in poly(dimethylsiloxane) microchannels with the sol-gel process. Sens. Actuators B 2016, 232, 428–433. [Google Scholar] [CrossRef]
- Azimi, S.M.; Nixon, G.; Ahern, J.; Balachandran, W. A magnetic bead-based DNA extraction and purification microfluidic device. Microfluid. Nanofluid. 2011, 11, 157–165. [Google Scholar] [CrossRef]
- Verbruggen, B.; Leirs, K.; Puers, R.; Lammertyn, J. Selective DNA extraction with microparticles in segmented flow. Microfluid. Nanofluid. 2014, 18, 293–303. [Google Scholar] [CrossRef]
- Hernandez-Neuta, I.; Pereiro, I.; Ahlford, A.; Ferraro, D.; Zhang, Q.; Viovy, J.L.; Descroix, S.; Nilsson, M. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode. Biosens. Bioelectron. 2018, 102, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Perez-Toralla, K.; Pereiro, I.; Garrigou, S.; Di Federico, F.; Proudhon, C.; Bidard, F.-C.; Viovy, J.-L.; Taly, V.; Descroix, S. Microfluidic extraction and digital quantification of circulating cell-free DNA from serum. Sens. Actuators B 2019, 286, 533–539. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Park, S. A 3D-printed millifluidic platform enabling bacterial preconcentration and DNA purification for molecular detection of pathogens in blood. Micromachines 2018, 9, 472. [Google Scholar] [CrossRef]
- Nakagawa, T.; Tanaka, T.; Niwa, D.; Osaka, T.; Takeyama, H.; Matsunaga, T. Fabrication of amino silane-coated microchip for DNA extraction from whole blood. J. Biotechnol. 2005, 116, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Reinholt, S.J.; Baeumner, A.J. Microfluidic Isolation of Nucleic Acids. Angew. Chem. Int. Ed. 2014, 53, 13988–14001. [Google Scholar] [CrossRef] [PubMed]
- Park, D.S.W.; Hupert, M.L.; Witek, M.A.; You, B.H.; Datta, P.; Guy, J.; Lee, J.B.; Soper, S.A.; Nikitopoulos, D.E.; Murphy, M.C. A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification. Biomed. Microdevices 2008, 10, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Witek, M.A.; Llopis, S.D.; Wheatley, A.; McCarley, R.L.; Soper, S.A. Purification and preconcentration of genomic DNA from whole cell lysates using photoactivated polycarbonate (PPC) microfluidic chips. Nucleic Acids Res. 2006, 34, 9. [Google Scholar] [CrossRef] [PubMed]
- Witek, M.A.; Hupert, M.L.; Park, D.S.W.; Fears, K.; Murphy, M.C.; Soper, S.A. 96-Well Polycarbonate-Based Microfluidic Titer Plate for High-Throughput Purification of DNA and RNA. Anal. Chem. 2008, 80, 3483–3491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potrich, C.; Lunelli, L.; Cocuzza, M.; Marasso, S.L.; Pirri, C.F.; Pederzolli, C. Simple PDMS microdevice for biomedical applications. Talanta 2019, 193, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Lui, Y.; Chik, K.W.; Chiu, R.W.K.; Ho, C.Y.; Lam, C.W.K.; Lo, Y.M.D. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin. Chem. 2002, 48, 421–427. [Google Scholar]
- Jin, C.E.; Koo, B.; Lee, T.Y.; Han, K.; Lim, S.B.; Park, I.J.; Shin, Y. Simple and low-cost sampling of cell-free nucleic acids from blood plasma for rapid and sensitive detection of circulating tumor DNA. Adv. Sci. 2018, 5, 1800614. [Google Scholar] [CrossRef]
- Campos, C.D.M.; Gamage, S.S.T.; Jackson, J.M.; Witek, M.A.; Park, D.S.; Murphy, M.C.; Godwin, A.K.; Soper, S.A. Microfluidic-based solid phase extraction of cell free DNA. Lab Chip 2018, 18, 3459–3470. [Google Scholar] [CrossRef]
- Morales, M.C.; Zahn, J.D. Droplet enhanced microfluidic-based DNA purification from bacterial lysates via phenol extraction. Microfluid. Nanofluid. 2010, 9, 1041–1049. [Google Scholar] [CrossRef]
- Zhang, R.; Gong, H.Q.; Zeng, X.; Lou, C.; Sze, C. A microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from low copy/single bacterial cells in minute sample volume followed by direct on-chip quantitative PCR assay. Anal. Chem. 2013, 85, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Vulto, P.; Dame, G.; Maier, U.; Makohliso, S.; Podszun, S.; Zahn, P.; Urban, G.A. A microfluidic approach for high efficiency extraction of low molecular weight RNA. Lab Chip 2010, 10, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Montes, R.J.; Butler, J.E.; Ladd, A.J.C. Trapping DNA with a high throughput microfluidic device. Electrophoresis 2019, 40, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Sonnenberg, A.; Marciniak, J.Y.; Rassenti, L.; Ghia, E.M.; Skowronski, E.A.; Manouchehri, S.; McCanna, J.; Widhopf, G.F., II; Kipps, T.J.; Heller, M.J. Rapid electrokinetic isolation of cancer-related circulating cell-free DNA directly from blood. Clin. Chem. 2014, 60, 500–509. [Google Scholar] [CrossRef]
- Huang, Y.; Joo, S.; Duhon, M.; Heller, M.; Wallace, B.; Xu, X. Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Clin. Chem. 2002, 74, 3362–3371. [Google Scholar] [CrossRef]
- Heineck, D.P.; Lewis, J.M.; Heller, M.J.; Heineck, D. Electrokinetic device design and constraints for use in high conductance solutions. Electrophoresis 2017, 38, 1475–1482. [Google Scholar] [CrossRef]
- Yang, J.; Selvaganapathy, P.R.; Gould, T.J.; Dwivedi, D.J.; Liu, D.; Yang, J.; Fox-Robichaud, A.E.; Liaw, P.C. A microfluidic device for rapid quantification of cell-free DNA in patients with severe sepsis. Lab Chip 2015, 15, 3925–3933. [Google Scholar] [CrossRef] [Green Version]
- Hurth, C.; Yang, J.N.; Barrett, M.; Brooks, C.; Nordquist, A.; Smith, S.; Zenhausern, F. A miniature quantitative PCR device for directly monitoring a sample processing on a microfluidic rapid DNA system. Biomed. Microdevices 2014, 16, 905–914. [Google Scholar] [CrossRef]
- Pekin, D.; Skhiri, Y.; Baret, J.-C.; Le Corre, D.; Mazutis, L.; Ben Salem, C.; Millot, F.; El Harrak, A.; Hutchison, J.B.; Larson, J.W.; et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 2011, 11, 2156–2166. [Google Scholar] [CrossRef]
- Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; Belgrader, P.; Heredia, N.J.; Makarewicz, A.J.; Bright, I.J.; Lucero, M.Y.; Hiddessen, A.L.; Legler, T.C.; et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 2011, 83, 8604–8610. [Google Scholar] [CrossRef]
- Beck, J.; Bierau, S.; Balzer, S.; Andag, R.; Kanzow, P.; Schmitz, J.; Gaedcke, J.; Moerer, O.; Slotta, J.E.; Walson, P.; et al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin. Chem. 2013, 59, 1732–1741. [Google Scholar] [CrossRef]
- Chen, X.J.; Chang, C.W.; Spoerke, J.M.; Yoh, K.E.; Kapoor, V.; Baudo, C.; Aimi, J.; Yu, M.; Liang-Chu, M.M.Y.; Suttmann, R.; et al. Low-pass whole-genome sequencing of circulating cell-free DNA demonstrates dynamic changes in genomic copy number in a squamous lung cancer clinical cohort. Clin. Cancer Res. 2019, 25, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
- Dias, T.M.; Cardoso, F.A.; Martins, S.A.M.; Martins, V.C.; Cardoso, S.; Gaspar, J.F.; Monteiro, G.; Freitas, P.P. Implementing a strategy for on-chip detection of cell-free DNA fragments using GMR sensors: A translational application in cancer diagnostics using ALU elements. Anal. Methods 2016, 8, 119–128. [Google Scholar] [CrossRef]
- Xiao, Y.; Lou, X.; Uzawa, T.; Plakos, K.J.I.; Plaxco, K.W.; Soh, H.T. An electrochemical sensor for single nucleotide polymorphism detection in serum based on a triple-stem DNA probe. JACS 2009, 131, 15311–15316. [Google Scholar] [CrossRef] [PubMed]
- Brodbeck, K.; Kern, S.; Schick, S.; Steinbrueck, A.; Schwerer, M.; Bayer, B.; Anslinger, K.; Peldschus, S. Quantitative analysis of individual cell-free DNA concentration before and after penetrating trauma. Int. J. Leg. Med. 2019, 133, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Patsch, K.; Matasci, N.; Soundararajan, A.; Diaz, P.; Agus, D.B.; Ruderman, D.; Gross, M.E. Monitoring dynamic cytotoxic chemotherapy response in castration-resistant prostate cancer using plasma cell-free DNA (cfDNA). BMC Res. Notes 2019, 12, 275. [Google Scholar] [CrossRef] [PubMed]
- Nutz, S.; Doll, K.; Karlovsky, P. Determination of the LOQ in real-time PCR by receiver operating characteristic curve analysis: Application to qPCR assays for Fusarium verticillioides and F. proliferatum. Anal. Bioanal. Chem. 2011, 401, 717–726. [Google Scholar] [CrossRef]
- Weng, X.; Jiang, H.; Li, D. Microfluidic DNA hybridization assays. Microfluid. Nanofluid. 2011, 11, 367–383. [Google Scholar] [CrossRef]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef]
- Diehl, F.; Li, M.; Dressman, D.; He, Y.P.; Shen, D.; Szabo, S.; Diaz, L.A.; Goodman, S.N.; David, K.A.; Juhl, H.; et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl. Acad. Sci. USA 2005, 102, 16368–16373. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.A.; Volik, S.V.; Wyatt, A.W.; Haegert, A.; Le Bihan, S.; Bell, R.H.; Anderson, S.A.; McConeghy, B.; Shukin, R.; Bazov, J.; et al. Androgen receptor gene aberrations in circulating cell-free DNA: Biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res. 2015, 21, 2315–2324. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, N.; Kenmotsu, H.; Serizawa, M.; Umehara, R.; Ono, A.; Hisamatsu, Y.; Wakuda, K.; Omori, S.; Nakashima, K.; Taira, T.; et al. Plasma epidermal growth factor receptor mutation testing with a chip-based digital PCR system in patients with advanced non-small cell lung cancer. Lung Cancer 2017, 106, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Farkkila, A.; McConechy, M.K.; Yang, W.; Talhouk, A.; Ng, Y.; Lum, A.; Morin, R.D.; Bushell, K.; Riska, A.; McAlpine, J.N.; et al. FOXL2 402C > G mutation can be identified in the circulating tumor DNA of patients with adult-type granulosa cell tumor. J. Mol. Diagn. 2017, 19, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Mohrmann, L.; Huang, H.J.; Hong, D.S.; Tsimberidou, A.M.; Fu, S.; Piha-Paul, S.A.; Subbiah, V.; Karp, D.D.; Naing, A.; Krug, A.; et al. Liquid biopsies using plasma exosomal nucleic acids and plasma cell-free DNA compared with clinical outcomes of patients with advanced cancers. Clin. Cancer Res. 2018, 24, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Du, W.; Kreutz, J.E.; Fok, A.; Ismagilov, R.F. Digital PCR on a SlipChip. Lab Chip 2010, 10, 2666–2672. [Google Scholar] [CrossRef]
- Zhu, Q.; Qiu, L.; Yu, B.; Xu, Y.; Gao, Y.; Pan, T.; Tian, Q.; Song, Q.; Jin, W.; Jin, Q.; et al. Digital PCR on an integrated self-priming compartmentalization chip. Lab Chip 2014, 14, 1176–1185. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Southard, K.M.; Zeng, Y. Digital PCR using micropatterned superporous absorbent array chips. Analyst 2016, 141, 3821–3831. [Google Scholar] [CrossRef] [Green Version]
- Ou, C.Y.; Vu, T.; Grunwald, J.T.; Toledano, M.; Zimak, J.; Toosky, M.; Shen, B.; Zell, J.A.; Gratton, E.; Abram, T.J.; et al. An ultrasensitive test for profiling circulating tumor DNA using integrated comprehensive droplet digital detection. Lab Chip 2019, 19, 993–1005. [Google Scholar] [CrossRef]
- Liu, K.J.; Brock, M.V.; Shin, L.-M.; Wang, T.-H. Decoding circulating nucleic acids in human serum using microfluidic single molecule spectroscopy. JACS 2010, 132, 5793–5798. [Google Scholar] [CrossRef]
- Lan, F.; Demaree, B.; Ahmed, N.; Abate, A.R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 2017, 35, 640–646. [Google Scholar] [CrossRef] [Green Version]
- Snider, A.; Nilsson, M.; Dupal, M.; Toloue, M.; Tripathi, A. A microfluidics workflow for sample preparation for next-generation DNA sequencing. SLAS Technol. 2019, 24, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jebrail, M.J.; Sinha, A.; Bent, Z.W.; Solberg, O.D.; Williams, K.P.; Langevin, S.A.; Renzi, R.F.; Van De Vreugde, J.L.; Meagher, R.J.; et al. A microfluidic DNA library preparation platform for next-generation sequencing. PLoS ONE 2013, 8, e68988. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, M.; Sciambi, A.; Treusch, S.; Durruthy-Durruthy, R.; Gokhale, K.; Jacob, J.; Chen, T.X.; Geis, J.A.; Oldham, W.; Matthews, J.; et al. High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics. Genome Res. 2018, 28, 1345–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Isolation Method | Description of Method | Sample | Volume | Capture Efficiency or Results | Isolation Time | Ref. |
---|---|---|---|---|---|---|
Commercial kits | Column-based or magnetic bead-based | Plasma, serum, urine | >1 mL | 50–100% | >60 min | [25] |
Solid phase isolation | Dynamic magnetic extraction | Serum | 30–60 μL | 64 ± 9% | ~2.5 h | [39] |
DTBP-based microchannel platform | Plasma | ~200 μL | Similar to the input as an absolute value | <15 min | [48] | |
Chip activated by UV/O3 | Plasma | 7–717 ng | >90% for 100–700 bp, >70% for 50 bp | - | [49] | |
Liquid phase isolation | DEP-based device | Unprocessed blood | 25 μL | Comparable to commercial kits | <10 min | [55] |
DEP-based planar device | Plasma | 25 μL | - | <20 min | [56] | |
EP-based device with gel | Plasma | <10 μL | - | ~5 min | [57] |
Approach | Advantage | Ref. |
---|---|---|
Quantification | ||
On-chip direct optical detection | Easy to integrate for less sample loss, simple-structured, rapid, real-time monitoring | [55,57] |
On-chip RT-qPCR | Integrated with isolation process to reduce sample loss, simple-structured, more sensitive, real-time monitoring, automated | [51,58] |
dPCR/ddPCR | Most sensitive, precise quantification to single molecule, automated, high-throughput | [59,60,61,62] |
Mutation detection 1 | ||
Biochip platform with MR sensors | High sensitivity within picomolar range and increased portability, greater ability to discriminate homologous or truncated sequences | [63] |
Electrochemical-based chip | Sensitive, stable, reusable, no need of adding exogenous reagents, rapid (minutes) | [64] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Qiao, Y.; Tu, J. Microfluidic Technologies for cfDNA Isolation and Analysis. Micromachines 2019, 10, 672. https://doi.org/10.3390/mi10100672
Xu Z, Qiao Y, Tu J. Microfluidic Technologies for cfDNA Isolation and Analysis. Micromachines. 2019; 10(10):672. https://doi.org/10.3390/mi10100672
Chicago/Turabian StyleXu, Zheyun, Yi Qiao, and Jing Tu. 2019. "Microfluidic Technologies for cfDNA Isolation and Analysis" Micromachines 10, no. 10: 672. https://doi.org/10.3390/mi10100672
APA StyleXu, Z., Qiao, Y., & Tu, J. (2019). Microfluidic Technologies for cfDNA Isolation and Analysis. Micromachines, 10(10), 672. https://doi.org/10.3390/mi10100672