Effect of Ochratoxin A (OTA) on the Immune System: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. The Impact of OTA on the Organs of the Immune System
2.2. Effects of OTA on the Innate Immune Response
2.2.1. The Impact of OTA on Epithelial Barriers
2.2.2. The Impact of OTA on Macrophages
2.3. Effects of OTA on the Adaptive Immune Response
2.3.1. The Impact of OTA on T-Cell-Mediated Immunity
2.3.2. The Impact of OTA on Humoral Immunity
2.4. OTA and Cytokine Secretion
2.5. Effects of OTA on Signaling Pathways
3. Discussion
4. Conclusions
5. Future Directions
5.1. Mechanisms of Immune Toxicity
5.2. Acute and Chronic Exposure Effects
5.3. Immune Dysfunction and OTA Metabolites
5.4. Host–Microbiome Interactions and OTA Exposure
5.5. Role of Autophagy and Apoptosis in OTA-Induced Immunosuppression
5.6. OTA and Vaccine Efficacy
5.7. OTA-Induced Autoimmune and Inflammatory Diseases
5.8. Study Limitations
6. Materials and Methods
6.1. Data Sources
6.2. Study Selection and Search Strategy
- (i)
- Key organs of the immune system as measured by size, color and functions;
- (ii)
- Innate immune system as measured by cell death, cell recruitment, pro-inflammation or anti-inflammation responses and cytokine secretion;
- (iii)
- Adaptive immune system as measured by cell death, cell differentiation, cell population, antibody secretion and cytokine secretion;
- (iv)
- Drug and vaccine efficacy;
- (v)
- Microbial (bacterial and viral) clearance.
6.3. Risk of Bias Assessment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OTA | Ochratoxin A |
IARC | International Agency for Research on Cancer |
MALTs | Mucosa-associated lymphoid tissues |
GIM | Gastrointestinal mucosa |
DAO | Diamine oxidase |
TER | Transepithelial resistance |
LPS | Lipopolysaccharide |
SOCS | Suppressors of cytokine signaling |
SRBC | Sheep red blood cells |
NEC | Nasal epithelial cell cultures |
ECRS | Eosinophilic chronic rhinosinusitis |
hPBMCs | Human peripheral blood mononuclear cells |
Appendix A. Search Strategy
Search | Query |
---|---|
1 | (((Ochratoxin A[MeSH Terms]) OR (Ochratoxin[MeSH Terms])) OR (Mycotoxins[MeSH Terms])) OR (Fungi toxins[MeSH Terms]) |
2 | ((((((Immunology[MeSH Terms]) OR (Immunotoxicity[MeSH Terms])) OR (Immunological[MeSH Terms])) OR (Immune response[MeSH Terms])) OR (Immunity[MeSH Terms])) OR (Inflammation[MeSH Terms])) OR (Immune[MeSH Terms]) |
3 | Filters: Humans, Other Animals, English, from 2010–2024 |
4 | Combination of results 1, 2, linked by Boolean operator “AND” |
Appendix B. Quality Appraisal and Risk of Bias Assessment for Included Studies
Criterion | [41] | [63] | [64] | [59] | [56] | [45] | [62] | [48] | [50] | [51] | [66] | [47] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Was the test substance identified? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the purity of the substance given? | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is information on the source/origin of the substance given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is all necessary physico-chemical property information provided? | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Is the species given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the sex of the test organism given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is information on the strain and other relevant specifications given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is age or body weight of the test organisms at the start of the study given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
For repeated dose toxicity studies, are housing and feeding conditions provided? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the administration route given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are the doses administered or concentrations in application media given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are the frequency and duration of exposure, as well as observation time-points explained? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Were negative and positive controls included, where required? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the number of animals per group given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are sufficient details of the administration scheme provided? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
For inhalation/repeated dose studies, were the achieved concentrations verified? | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Are the study endpoints and their determination methods described? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the description of the study results complete and transparent? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are statistical methods provided and transparently applied? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the study design appropriate for obtaining substance-specific data? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are the quantitative study results reliable? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Total Score | 20 | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 19 | 19 | 19 |
Criterion | [57] | [94] | [60] | [61] | [58] | [59] | [38] | [95] | [55] | [62] |
---|---|---|---|---|---|---|---|---|---|---|
Was the test substance identified? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the purity of the substance given? | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
Is information on the source/origin of the substance given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is all information on the nature and/or physico-chemical properties provided? | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
Is the test system described? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is information on the source/origin of the test system given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are necessary conditions of cultivation and maintenance given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the method of administration given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are doses/concentrations in application media given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are the frequency and duration of exposure, as well as observation time-points explained? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Were negative and positive controls included, where required? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the number of replicates or experiment repetitions given? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are the study endpoints and their determination methods described? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the description of the study results complete and transparent? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are statistical methods provided and transparently applied? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Is the study design appropriate for obtaining substance-specific data? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Are the quantitative study results reliable? | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Total Score | 16 | 18 | 18 | 16 | 16 | 18 | 18 | 18 | 18 | 18 |
Domain | [55] |
---|---|
Confounding | Moderate |
Classification of Interventions | Moderate |
Selection of Participants into the Study | Low |
Deviations from Intended Interventions | N/A |
Missing Data | Moderate |
Measurement of Outcomes | Low |
Selection of the Reported Result | Low |
References
- Lee, H.J.; Dahal, S.; Perez, E.G.; Kowalski, R.J.; Ganjyal, G.M.; Ryu, D. Reduction of ochratoxin A in oat flakes by twin-screw extrusion processing. J. Food Prot. 2017, 80, 1628–1634. [Google Scholar] [CrossRef]
- Wang, G.; Li, E.; Gallo, A.; Perrone, G.; Varga, E.; Ma, J.; Yang, B.; Tai, B.; Xing, F. Impact of environmental factors on ochratoxin A: From natural occurrence to control strategy. Environ. Pollut. 2022, 317, 120767. [Google Scholar] [CrossRef]
- Bouseta, A.; Laaziz, A.; Hajjaj, H.; Belkhou, R. Mycotoxins in foods and feeds in Morocco: Occurrence, sources of contamination, prevention/control and regulation. In Mycotoxins in Food and Beverages; CRC Press: Boca Raton, FL, USA, 2021; pp. 116–161. [Google Scholar]
- Jaus, A.; Rhyn, P.; Haldimann, M.; Brüschweiler, B.J.; Fragnière Rime, C.; Jenny-Burri, J.; Zoller, O. Biomonitoring of ochratoxin A, 2′ R-ochratoxin A and citrinin in human blood serum from Switzerland. Mycotoxin Res. 2022, 38, 147–161. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Schöffel, N.; Oremek, G.M.; Brüggmann, D.; Groneberg, D.A. Influences and challenges of global research. Food Control 2020, 114, 107230. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2016, 33, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Makun, H.A.; Adeniran, A.; Mailafiya, S.C.; Ayanda, I.S.; Mudashiru, A.T.; Ojukwu, U.J.; Jagaba, A.S.; Usman, Z.; Salihu, D.A. Natural occurrence of ochratoxin A in some marketed Nigerian foods. Food Control 2013, 31, 566–571. [Google Scholar] [CrossRef]
- Majeed, M.; Khaneghah, A.M.; Kadmi, Y.; Khan, M.U.; Shariati, M.A. Assessment of ochratoxin A in commercial corn and wheat products. Curr. Nutr. Food Sci. 2018, 14, 116–120. [Google Scholar] [CrossRef]
- Nalle, C.L.; Helda, H.; Masus, B.; Malo, J. Nutritional evaluation of sago of Gebang tree (Corypha utan Lamk) from different locations in west Timor-Indonesia for broilers. Trop. Anim. Sci. J. 2021, 44, 48–61. [Google Scholar] [CrossRef]
- De Girolamo, A.; Ciasca, B.; Stroka, J.; Bratinova, S.; Pascale, M.; Visconti, A.; Lattanzio, V.M. Performance evaluation of LC–MS/MS methods for multi-mycotoxin determination in maize and wheat by means of international Proficiency Testing TrAC Trends Anal. Chem. 2017, 86, 222–234. [Google Scholar] [CrossRef]
- Kara, G.N.; Ozbey, F.; Kabak, B. Co-occurrence of aflatoxins and ochratoxin A in cereal flours commercialised in Turkey. Food Control 2015, 54, 275–281. [Google Scholar] [CrossRef]
- Kamala, A.; Ortiz, J.; Kimanya, M.; Haesaert, G.; Donoso, S.; Tiisekwa, B.; De Meulenaer, B. Multiple mycotoxin co-occurrence in maize grown in three agro-ecological zones of Tanzania. Food Control 2015, 54, 208–215. [Google Scholar] [CrossRef]
- Kortei, N.K.; Annan, T.; Kyei-Baffour, V.; Essuman, E.K.; Okyere, H.; Tettey, C.O. Exposure and risk characterizations of ochratoxins A and aflatoxins through maize (Zea mays) consumed in different agro-ecological zones of Ghana. Sci. Rep. 2021, 11, 1–19. [Google Scholar] [CrossRef]
- Hassan, S.W.U.; Sadef, Y.; Hussain, S.; Asi, M.R.; Ashraf, M.Y.; Anwar, S.; Malik, A. Unusual pattern of aflatoxins and ochratoxin in commercially grown maize varieties of Pakistan. Toxicon 2020, 182, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef]
- Jonsyn-Ellis, F.E. Aflatoxins and ochratoxins in urine samples of school children in Mokonde, Southern Sierra Leone. J. Nutr. Environ. Med. 2000, 10, 225–231. [Google Scholar] [CrossRef]
- Ediage, E.N.; Di Mavungu, J.D.; Song, S.; Sioen, I.; De Saeger, S. Multimycotoxin analysis in urines to assess infant exposure: A case study in Cameroon. Environ. Int. 2013, 57, 50–59. [Google Scholar] [CrossRef]
- Wallin, S.; Gambacorta, L.; Kotova, N.; Lemming, E.W.; Nälsén, C.; Solfrizzo, M.; Olsen, M. Biomonitoring of concurrent mycotoxin exposure among adults in Sweden through urinary multi-biomarker analysis. Food Chem. Toxicol. 2015, 83, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Coronel, M.; Marin, S.; Tarragó, M.; Cano-Sancho, G.; Ramos, A.; Sanchis, V. Ochratoxin A and its metabolite ochratoxin alpha in urine and assessment of the exposure of inhabitants of Lleida. Food Chem. Toxicol. 2011, 49, 1436–1442. [Google Scholar] [CrossRef]
- Duarte, S.; Alves, M.; Pena, A.; Lino, C. Determinants of ochratoxin A exposure—A one year follow-up study of urine levels. Int. J. Hyg. Environ. Health 2012, 215, 360–367. [Google Scholar] [CrossRef]
- Walker, R.; Larsen, J.C. Ochratoxin A: Previous risk assessments and issues arising. Food Addit. Contam. 2005, 22, 6–9. [Google Scholar] [CrossRef]
- Battacone, G.; Nudda, A.; Pulina, G. Effects of ochratoxin A on livestock production. Toxins 2010, 2, 1796–1824. [Google Scholar] [CrossRef]
- Lippold, C.C.; Stothers, S.C.; Frohlich, A.A.; Boila, R.J.; Marquardt, R.R. Effects of periodic feeding of diets containing ochratoxin A on the performance and clinical chemistry of pigs from 15 to 50 kg body weight. Can. J. Anim. Sci. 1992, 72, 135–146. [Google Scholar] [CrossRef]
- Tahir, M.A.; Abbas, A.; Muneeb, M.; Bilal, R.M.; Hussain, K.; Abdel-Moneim, A.-M.E.; Farag, M.R.; Dhama, K.; Elnesr, S.S.; Alagawany, M. pathological alterations and amelioration strategies. World’s Poult. Sci. J. 2022, 78, 727–749. [Google Scholar] [CrossRef]
- Mobashar, M.; Hummel, J.; Blank, R.; Südekum, K.-H. Ochratoxin A in ruminants–a review on its degradation by gut microbes and effects on animals. Toxins 2010, 2, 809–839. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C. Risks for animal health related to the presence of ochratoxin A (OTA) in feed. EFSA J. 2023, 21, e08375. [Google Scholar] [PubMed]
- Mahmudiono, T.; Mazaheri, Y.; Sadighara, P.; Akbarlou, Z.; Hoseinvandtabar, S.; Fakhri, Y. Prevalence and concentration of aflatoxin M1 and ochratoxin A in cheese: A global systematic review and meta-analysis and probabilistic risk assessment. Rev. Environ. Health 2023, 39, 801–840. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, e06113. [Google Scholar]
- Więckowska, M.; Cichon, N.; Szelenberger, R.; Gorniak, L.; Bijak, M. Ochratoxin A and Its Role in Cancer Development: A Comprehensive Review. Cancers 2024, 16, 3473. [Google Scholar] [CrossRef]
- Rahimtula, A.D.; Béréziat, J.C.; Bussacchini-Griot, V.; Bartsch, H. Lipid peroxidation as a possible cause of ochratoxin A toxicity Biochem. Pharmacol. 1988, 37, 4469–4477. [Google Scholar]
- Khan, S.; Martin, M.; Bartsch, H.; Rahimtula, A.D. Perturbation of liver microsomal calcium homeostasis by ochratoxin A. Biochem. Pharmacol. 1989, 38, 67–72. [Google Scholar] [CrossRef]
- Chong, X.; Rahimtula, A.D. Alterations in ATP-dependent calcium uptake by rat renal cortex microsomes following ochratoxin A administration in vivo or addition in vitro. Biochem. Pharmacol. 1992, 44, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Ringot, D.; Chango, A.; Schneider, Y.J.; Larondelle, Y. Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem. Biol. Interact. 2006, 159, 18–46. [Google Scholar] [CrossRef]
- Park, S.; Lim, W.; You, S.; Song, G. Ochratoxin A exerts neurotoxicity in human astrocytes through mitochondria-dependent apoptosis and intracellular calcium overload. Toxicol. Lett. 2019, 313, 42–49. [Google Scholar] [CrossRef]
- Boesch-Saadatmandi, C.; Wagner, A.E.; Graeser, A.C.; Hundhausen, C.; Wolffram, S.; Rimbach, G. Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J. Anim. Physiol. Anim. Nutr. 2009, 93, 547–554. [Google Scholar] [CrossRef]
- Zhang, Z.; Gan, F.; Xue, H.; Liu, Y.; Huang, D.; Khan, A.Z.; Chen, X.; Huang, K. Nephropathy and hepatopathy in weaned piglets provoked by natural ochratoxin A and involved mechanisms. Exp. Toxicol. Pathol. 2016, 68, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Liu, D.; Wang, Q.; Lin, J.; Song, S.; Huang, K. Long-time instead of short-time exposure in vitro and administration in vivo of ochratoxin a is consistent in immunosuppression. J. Agric. Food Chem. 2019, 67, 7485–7495. [Google Scholar] [CrossRef]
- Hassan, Z.U.; Khan, M.Z.; Saleemi, M.K.; Khan, A.; Javed, I.; Noreen, M. Immunological responses of male White Leghorn chicks kept on ochratoxin A (OTA)-contaminated feed. J. Immunotoxicol. 2011, 9, 56–63. [Google Scholar] [CrossRef]
- Ul-Hassan, Z.; Zargham Khan, M.; Khan, A.; Javed, I. Immunological status of the progeny of breeder hens kept on ochratoxin A (OTA)-and aflatoxin B1 (AFB1)-contaminated feeds. J. Immunotoxicol. 2012, 9, 381–391. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, X.; Jiang, W.D.; Wu, P.; Liu, Y.; Jiang, J.; Zhang, L.; Mi, H.F.; Kuang, S.Y.; Tang, L.; et al. The multiple biotoxicity integrated study in grass carp (Ctenopharyngodon idella) caused by Ochratoxin A: Oxidative damage, apoptosis and immunosuppression. J. Hazard. Mater. 2022, 436, 129268. [Google Scholar] [CrossRef]
- Stoev, S.D.; Daskalov, H.; Radic, B.; Domijan, A.-M.; Peraica, M. Spontaneous mycotoxic nephropathy in Bulgarian chickens with unclarified mycotoxin aetiology. Veter. Res. 2002, 33, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Akhand, A.A.; Ahsan, N. Cells and Organs of the Immune System. In Immunology for Dentistry; 2023; pp. 1–12. Available online: https://lccn.loc.gov/2022059914 (accessed on 7 March 2025).
- Mustafa, S.; Bajic, J.E.; Barry, B.; Evans, S.; Siemens, K.R.; Hutchinson, M.R.; Grace, P.M. One immune system plays many parts: The dynamic role of the immune system in chronic pain and opioid pharmacology. Neuropharmacology 2023, 228, 109459. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, S.A.; Khan, M.Z.; Saleemi, M.K.; Khan, A.; Ul-Hassan, Z. Protective role of bentonite against aflatoxin B1-and ochratoxin A-induced immunotoxicity in broilers. J. Immunotoxicol. 2017, 14, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Meng, L.; Liu, H.; Wang, J.; Zheng, N. The Compromised Intestinal Barrier Induced by Mycotoxins. Toxins 2020, 12, 619. [Google Scholar] [CrossRef]
- Jahreis, S.; Kuhn, S.; Madaj, A.-M.; Bauer, M.; Polte, T. Mold Metabolites Drive Rheumatoid Arthritis in Mice via Promotion of IFN-Gamma-and IL-17-Producing T Cells. Food Chem. Toxicol. 2017, 109, 405–413. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, A.; Liu, X.; Ma, Y.; Zhao, F.; Wang, M.; Loor, J.J.; Wang, H. oxidative stress and mitophagy in mice involving in intestinal microbiota and restoring the intestinal barrier function. J. Hazard. Mater. 2021, 407, 124489. [Google Scholar] [CrossRef]
- Bied, M.; Ho, W.W.; Ginhoux, F.; Blériot, C. Roles of macrophages in tumor development: A spatiotemporal perspective. Cell. Mol. Immunol. 2023, 20, 983–992. [Google Scholar] [CrossRef]
- Zahoor-ul-Hassan; Khan, M.Z.; Saleemi, M.K.; Khan, A.; Javed, I.; Hussain, A. Immunological Status of White Leghorn Chicks Hatched from Eggs Inoculated with Ochratoxin A (OTA). J. Immunotoxicol. 2011, 8, 204–209. [Google Scholar] [CrossRef]
- Zahoor-ul-Hassan Muhammad Zargham, K.; Ahrar, K.; Ijaz, J.; Mnaza, N. In vivo and ex vivo phagocytic potential of macrophages from progeny of breeder hens kept on ochratoxin A (OTA)-contaminated diet. J. Immunotoxicol. 2012, 9, 64–71. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, X.; Wang, Z.; Fang, L.; Liu, J. Recent advances in understanding T cell activation and exhaustion during HBV infection. Virol. Sin. 2023, 38, 851–859. [Google Scholar] [CrossRef]
- Wood, L.F.; Wood, M.P.; Fisher, B.S.; Jaspan, H.B.; Sodora, D.L. T cell activation in South African HIV-exposed infants correlates with Ochratoxin A exposure. Front. Immunol. 2017, 8, 1857. [Google Scholar] [CrossRef]
- Ly, A.; Hansen, D.S. Development of B cell memory in malaria. Front. Immunol. 2019, 10, 559. [Google Scholar] [CrossRef] [PubMed]
- Qing, H.; Huo, X.; Huang, S.; Zhao, L.; Zhang, J.; Ji, C.; Ma, Q. Bacillus subtilis ANSB168 Producing d-alanyl-d-alanine Carboxypeptidase Could Alleviate the Immune Injury and Inflammation Induced by Ochratoxin A. Int. J. Mol. Sci. 2021, 22, 12059. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, A.; Khan, M.Z.; Khan, A.; Saleemi, M.K.; Javed, I. Amelioration of Ochratoxin A-induced immunotoxic effects by silymarin and vitamin E in White Leghorn cockerels. J. Immunotoxicol. 2012, 10, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Cremer, B.; Soja, A.; Sauer, J.-A.; Damm, M. Pro-inflammatory effects of ochratoxin A on nasal epithelial cells. Eur. Arch. Oto-Rhino-Laryngol. 2011, 269, 1155–1161. [Google Scholar] [CrossRef]
- Tsilioni, I.; Theoharides, T.C. IL-18 and CXCL8 from cultured human microglia. Toxicology 2024, 502, 153738. [Google Scholar] [CrossRef]
- Chansawhang, A.; Phochantachinda, S.; Temviriyanukul, P.; Chantong, B. Corticosterone potentiates ochratoxin A-induced microglial activation. Biomol. Concepts 2022, 13, 230–241. [Google Scholar] [CrossRef]
- Periasamy, R.; Kalal, I.G.; Krishnaswamy, R.; Viswanadha, V. Quercetin protects human peripheral blood mononuclear cells from OTA-induced oxidative stress, genotoxicity, and inflammation. Environ. Toxicol. 2016, 31, 855–865. [Google Scholar] [CrossRef]
- Raghubeer, S.; Nagiah, S.; Chuturgoon, A.A. Acute Ochratoxin A exposure induces inflammation and apoptosis in human embryonic kidney (HEK293) cells. Toxicon 2017, 137, 48–53. [Google Scholar] [CrossRef]
- Schulz, M.-C.; Schumann, L.; Rottkord, U.; Humpf, H.-U.; Gekle, M.; Schwerdt, G. Synergistic action of the nephrotoxic mycotoxins ochratoxin A and citrinin at nanomolar concentrations in human proximal tubule-derived cells. Toxicol. Lett. 2018, 291, 149–157. [Google Scholar] [CrossRef]
- Wang, W.; Zhai, S.; Xia, Y.; Wang, H.; Ruan, D.; Zhou, T.; Zhu, Y.; Zhang, H.; Zhang, M.; Ye, H.; et al. Ochratoxin A induces liver inflammation: Involvement of intestinal microbiota. Microbiome 2019, 7, 151. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Yang, L.; Li, Y.; Chen, J.; Zhang, X.; Wang, H.; Zhai, S.; Jiang, X.; Meca, G.; Wang, S.; et al. Melatonin alleviates Ochratoxin A-induced liver inflammation involved intestinal microbiota homeostasis and microbiota-independent manner. J. Hazard. Mater. 2021, 413, 125239. [Google Scholar] [CrossRef]
- Marin, D.E.; Pistol, G.C.; Gras, M.; Palade, M.; Taranu, I. A comparison between the effects of ochratoxin A and aristolochic acid on the inflammation and oxidative stress in the liver and kidney of weanling piglets. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2018, 391, 1147–1156. [Google Scholar] [CrossRef]
- Marin, D.E.; Pistol, G.C.; Gras, M.A.; Palade, M.L.; Taranu, I. Comparative effect of ochratoxin A on inflammation and oxidative stress parameters in gut and kidney of piglets. Regul. Toxicol. Pharmacol. 2017, 89, 224–231. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, Y.; Wang, C.; Liu, X.; Jiang, A.; Liu, Z.; Wang, J.; Yang, Z.; Wei, Z. Ochratoxin A-Triggered Chicken Heterophil Extracellular Traps Release through Reactive Oxygen Species Production Dependent on Activation of NADPH Oxidase, ERK, and p38 MAPK Signaling Pathways. J. Agric. Food Chem. 2019, 67, 11230–11235. [Google Scholar] [CrossRef] [PubMed]
- Al-Anati, L.; Petzinger, E. Immunotoxic activity of ochratoxin A. J. Veter- Pharmacol. Ther. 2006, 29, 79–90. [Google Scholar] [CrossRef]
- Elaroussi, M.; Mohamed, F.; El Barkouky, E.; Abdou, A.; Hatab, M. Experimental ochratoxicosis in broiler chickens. Avian Pathol. 2006, 35, 263–269. [Google Scholar] [CrossRef]
- Pitout, M.; Nel, W. The inhibitory effect of ochratoxin A on bovine carboxypeptidase A in vitro. Biochem. Pharmacol. 1969, 18, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Creppy, E.; Kern, D.; Steyn, P.; Vleggaar, R.; Röschenthaler, R.; Dirheimer, G. Comparative study of the effect of ochratoxin A analogues on yeast aminoacyl-tRNA synthetases and on the growth and protein synthesis of hepatoma cells. Toxicol. Lett. 1983, 19, 217–224. [Google Scholar] [CrossRef]
- Page, R.K.; Stewart, G.; Wyatt, R.; Bush, P.; Fletcher, O.J.; Brown, J. Influence of low levels of ochratoxin A on egg production, egg-shell stains, and serum uric-acid levels in Leghorn-type hens. Avian Dis. 1980, 24, 777–780. [Google Scholar] [CrossRef]
- Kumar, S.; Dhingra, A.; Daniell, H. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol. Biol. 2004, 56, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Abidin, Z.U.; Khan, M.Z.; Khatoon, A.; Saleemi, M.K.; Khan, A. Protective effects of l-carnitine upon toxicopathological alterations induced by ochratoxin A in white Leghorn cockerels. Toxin Rev. 2016, 35, 157–164. [Google Scholar] [CrossRef]
- Sandhu, B.S.; Singh, H.; Singh, B. Pathological studies in broiler chicks fed aflatoxin or ochratoxin and inoculated with inclusion body hepatitis virus singly and in concurrence. Veter- Res. Commun. 1995, 19, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jindal, N.; Shukla, C.L.; Asrani, R.K.; Ledoux, D.R.; Rottinghaus, G.E. Pathological changes in broiler chickens fed ochratoxin A and inoculated with Escherichia coli. Avian Pathol. 2004, 33, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.; Anguelov, G.; Ivanov, I.; Pavlov, D. Influence of ochratoxin A and an extract of artichoke on the vaccinal immunity and health in broiler chicks. Exp. Toxicol. Pathol. 2000, 52, 43–55. [Google Scholar] [CrossRef]
- Stoev, S.; Goundasheva, D.; Mirtcheva, T.; Mantle, P. Susceptibility to secondary bacterial infections in growing pigs as an early response in ochratoxicosis. Exp. Toxicol. Pathol. 2000, 52, 287–296. [Google Scholar] [CrossRef]
- Koynarsky, V.; Stoev, S.; Grozeva, N.; Mirtcheva, T. Experimental coccidiosis provoked by Eimeria adenoeides in turkey poults given ochratoxin A. Vet. Arh. 2007, 77, 113–128. [Google Scholar]
- Hamilton, P.B.; Huff, W.E.; Harris, J.R.; Wyatt, R.D. Natural occurrences of ochratoxicosis in poultry. Poult. Sci. 1982, 61, 1832–1841. [Google Scholar] [CrossRef]
- Stoev, S.; Koynarsky, V.; Mantle, P. Clinicomorphological studies in chicks fed ochratoxin A while simultaneously developing coccidiosis. Veter- Res. Commun. 2002, 26, 189–204. [Google Scholar] [CrossRef]
- Müller, G.; Kielstein, P.; Köhler, H.; Berndt, A.; Rosner, H. Studies of the influence of ochratoxin A on immune and defence reactions in the mouse model: Untersuchungen zur Beeinflussung von Immun-und Abwehrvorgängen durch Ochratoxin A am Modelltier Maus. Mycoses 1995, 38, 85–91. [Google Scholar] [CrossRef]
- Croons, V.; Martinet, W.; Herman, A.G.; Timmermans, J.-P.; De Meyer, G.R.Y. Selective clearance of macrophages in atherosclerotic plaques by the protein synthesis inhibitor cycloheximide. J. Pharmacol. Exp. Ther. 2007, 320, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Bruinink, A.; Sidler, C. The neurotoxic effects of ochratoxin-A are reduced by protein binding but are not affected byl-phenylalanine. Toxicol. Appl. Pharmacol. 1997, 146, 173–179. [Google Scholar] [CrossRef]
- Dirheimer, G. Mechanistic approaches to ochratoxin toxicity. Food Addit. Contam. 1996, 13, 45–48. [Google Scholar]
- Mehta, M.M.; Weinberg, S.E.; Chandel, N.S. Mitochondrial control of immunity: Beyond ATP. Nat. Rev. Immunol. 2017, 17, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, J.; Sun, X.; Yangzom, C.; Shang, P. Mitochondrial calcium uniporter involved in foodborne mycotoxin-induced hepatotoxicity. Ecotoxicol. Environ. Saf. 2022, 237, 113535. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.H.L.; Jameson, C.W.; Boorman, G.A. Residual hematropoietic effect in mice exposed to ochratoxin a prior to irradiation. Toxicology 1988, 53, 57–67. [Google Scholar] [CrossRef]
- Chang, C.F.; Hamilton, P.B. Impairment of phagocytosis by heterophils from chickens during ochratoxicosis. Appl. Environ. Microbiol. 1980, 39, 572–575. [Google Scholar] [CrossRef]
- Meditz, A.L.; Haas, M.K.; Folkvord, J.M.; Melander, K.; Young, R.; McCarter, M.; MaWhinney, S.; Campbell, T.B.; Lie, Y.; Coakley, E.; et al. HLA-DR+ CD38+ CD4+ T lymphocytes have elevated CCR5 expression and produce the majority of R5-tropic HIV-1 RNA in vivo. J. Virol. 2011, 85, 10189–10200. [Google Scholar] [CrossRef]
- Maresca, M.; Mahfoud, R.; Pfohl-Leszkowicz, A.; Fantini, J. The mycotoxin ochratoxin A alters intestinal barrier and absorption functions but has no effect on chloride secretion. Toxicol. Appl. Pharmacol. 2001, 176, 54–63. [Google Scholar] [CrossRef]
- McLaughlin, J.; Padfield, P.J.; Burt, J.P.H.; O’Neill, C.A. Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms. Am. J. Physiol. Physiol. 2004, 287, C1412–C1417. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- González-Arias, C.; Crespo-Sempere, A.; Marín, S.; Sanchis, V.; Ramos, A. Modulation of the xenobiotic transformation system and inflammatory response by ochratoxin A exposure using a co-culture system of Caco-2 and HepG2 cells. Food Chem. Toxicol. 2015, 86, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Shandilya, U.K.; Yiannikouris, A.; Karrow, N.A. Ochratoxin A and Citrinin Differentially Modulate Bovine Mammary Epithelial Cell Permeability and Innate Immune Function. Toxins 2022, 14, 640. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.; Schwarz, M.; Burkholder, I.; Kopp-Schneider, A.; Edler, L.; Kinsner-Ovaskainen, A.; Hartung, T.; Hoffmann, S. A new tool to assess the reliability of toxicological data. Toxicol. Lett. 2009, 189, 138–144. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Klimisch, H.-J.; Andreae, M.; Tillmann, U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul. Toxicol. Pharmacol. 1997, 25, 1–5. [Google Scholar] [CrossRef]
Cytokine Secretion Effects | Type of Cells, Tissues or Organs | OTA Concentration | References |
---|---|---|---|
Elevated IL-6 and IL-8 | Nasal epithelial cells | 10 ng/ml | [59] |
Elevated CXCL8, IL-1β and IL-18 | Human microglia-SV40 cells | (1, 10 and 100) nM | [58] |
Elevated IL-6 | Mouse microglial cells (BV-2) | (500 to 2000) nM | [59] |
Elevated TNF-α | PAMs | 1.0 μg/mL | [38] |
Elevated IL-6, IL-8 and TNF-α | hPBMCs | 20 µM | [60] |
Reduced IL-1β | HEK293 | 1.2 µM | [61] |
Elevated TNF-α, IL-1β, IL-6 and IL12p40/p70 | Murine macrophages | 10 ng/mL | [47] |
No effect on TNF-α levels | Human proximal tubule-derived cells | 10 nM | [62] |
Elevated IL-6, IL-1β and TNF-α | Liver and ileum of mice | 250 μg/kg | [48] |
Elevated IL-1β, IL-6 levels and TNF-α | Mice plasma | 10 ng/500 mL of saline | [47] |
Elevated IFN-γ and IL-17 | Mice splenocytes | 10 ng/500 mL of saline | [47] |
Elevated IL-1β and IL-6 | Duck serum | 235 μg/kg of feed | [63] |
Elevated IL-6, IL-1β and TNF-α | Ducklings’ serum and plasma | 500 μg/kg of feed | [64] |
Elevated TNF-α and IL-2 | Hens’ plasma | 250 μg/kg of feed | [55] |
Did not alter TNF-alpha, IFN-gamma, IL-1beta, IL-6 or IL-8 levels | Pig liver and kidney | 250 μg/kg of feed | [65] |
Did not alter IFN-γ, IL-1β, IL-8 or TNF-α levels but reduced IL-6 levels | Duodenum, kidney or colon | 0.05 mg/kg feed | [66] |
Decreased TGF-β | PAMs | 1.0 μg/mL | [38] |
IL-4 levels not affected | Mice splenocytes | 10 ng/500 mL of saline | [47] |
Elevated IL-10 | Hens’ plasma | 250 μg/kg of feed | [55] |
Elevated IL-4 with no effect on IL-10 levels | Pig liver | 250 μg/kg of feed | [65] |
Did not alter IL-4 and IL-10 levels | Pig kidney | 250 μg/kg of feed | [65] |
Reduced IL-10 and IL-4 levels | Colon or duodenum of piglets | 0.05 mg/kg feed | [66] |
Reference | Country | Study Type | Sample Size | Participants, Type of Animal and/or Cell | Duration of Exposure | OTA Concentration | Route of Exposure | Outcome |
---|---|---|---|---|---|---|---|---|
[38] | China | In vitro | N/A | Porcine alveolar macrophage cell line 3D4/21 | 24, 48 and 72 h | 1.0 μg/mL | N/A | Inflammatory response |
[39] | Pakistan | In vivo | 50 | White Leghorn chicks | 21 days | 0.1, 0.5, 1.0 and 1.5 mg/Kg feed | Oral | Bursa of Fabricius and spleen function effects, phagocytic function and antibody response |
[40] | Pakistan | In vivo | 36 | Breeder hens | 21 days | 3 and 5 mg OTA/Kg feed | Oral | Bursa of Fabricius, spleen and macrophage function and antibody secreting cells effect |
[41] | China | In vivo | 21 | Grass carp (Ctenopharyngodon idella) | 60 days | 400, 800, 1200, 1600, 2000 and 2400 μg/kg of feed | Oral | Oxidative damage, apoptosis and inflammatory response |
[45] | Pakistan | In vivo | 30 | Broiler chicks | 12–42 days | 0.15, 0.3 and 1.0 g/kg feed | Oral | Immune toxicity |
[48] | China | In vivo | 30 | Mice | 3 weeks | 250 μg/kg body weight | Oral | Inflammatory response and mitophagy |
[50] | Pakistan | In vivo | 120 | Chicks | 30 days | 0.01, 0.03, 0.05, 0.10, 0.50 and 1.00 µg OTA/egg | Oral | Immune suppression |
[51] | Pakistan | In vivo | 70 | Breeder hens | 3 weeks | 0.1, 0.5, 1.0, 3.0, 5.0 or 10.0 mg OTA/kg feed | Oral | Immune suppression |
[53] | South Africa | Human | 168 | Pregnant women and infants | N/A | N/A | N/A | Immune cells activation |
[56] | Pakistan | In vivo | 60 | White Leghorn cockerels | 42 days | 1.0 or 2.0 mg/kg feed | Oral | Immune toxicity |
[57] | Germany | In vitro | 23 | Human (nasal epithelial cells) | 24 h | 10 ng/ml | N/A | Inflammatory response |
[58] | USA | In vitro | N/A | Human microglia-SV40 | 24 h | 1, 10 and 100 nM | N/A | Inflammatory response |
[59] | Thailand | In vitro | N/A | Murine microglial cells (BV-2) | 24 h | 50, 250 and 500 nM | N/A | Inflammatory response |
[60] | India | In vitro | N/A | Human peripheral blood mononuclear cells | 4, 8, 12 and 16 h | 20 μM | N/A | Oxidative stress, genotoxicity and inflammatory response |
[61] | South Africa | In vitro | N/A | Human embryonic kidney (HEK293) cells | 24 h | 0.5 mM (sub-IC50), 1.2 mm (IC50) and 2 mm (supra-IC50) | N/A | Inflammatory response and apoptosis |
[62] | Germany | In vitro | N/A | Human proximal tubule-derived epithelial cells (HK-2) | 48 h | 0.3, 1, 10 and 100 nM | N/A | Inflammatory response and fibrosis |
[63] | China | In vivo | 30 | Peking ducklings | 14 days | 235 μg/kg body weight | Oral | Intestinal microbiota composition and structure alteration, accumulation of LPS and inflammatory response |
[64] | China | In vivo | 15 | Ducks | 28 days | 235 μg/kg body | Oral | Inflammatory response |
[65] | Romania | In vivo | 10 | Weanling piglets | 28 days | 250 μg/kg of feed | Oral | Inflammatory response |
[66] | Romania | In vivo | 12 | Piglets | 30 days | 0.050 mg OTA/kg feed | Oral | Oxidative stress and inflammatory response |
[67] | China | In vitro | N/A | Chicken heterophils | 2 h | 5, 10 and 20 μM | N/A | HET and NET formation |
[94] | Spain | In vitro | N/A | Human colon cell line Caco-2 and hepatic cell line HepG2 | 24 h | 5, 15 and 45 μM | N/A | Inflammatory response and cell morphology effect |
[95] | Canada | In vitro | N/A | Bovine mammary epithelial cell line (MAC-T) | 4, 24 and 48 h | 9.6 μmol/L | N/A | Inflammatory response |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubarik, Y.; Boyetey, S.T.; Aikins, A.R.; Mutocheluh, M. Effect of Ochratoxin A (OTA) on the Immune System: A Systematic Review. Toxins 2025, 17, 256. https://doi.org/10.3390/toxins17050256
Mubarik Y, Boyetey ST, Aikins AR, Mutocheluh M. Effect of Ochratoxin A (OTA) on the Immune System: A Systematic Review. Toxins. 2025; 17(5):256. https://doi.org/10.3390/toxins17050256
Chicago/Turabian StyleMubarik, Yusif, Shadrach Tetteh Boyetey, Anastasia Rosebud Aikins, and Mohamed Mutocheluh. 2025. "Effect of Ochratoxin A (OTA) on the Immune System: A Systematic Review" Toxins 17, no. 5: 256. https://doi.org/10.3390/toxins17050256
APA StyleMubarik, Y., Boyetey, S. T., Aikins, A. R., & Mutocheluh, M. (2025). Effect of Ochratoxin A (OTA) on the Immune System: A Systematic Review. Toxins, 17(5), 256. https://doi.org/10.3390/toxins17050256