Next Article in Journal
Endothelial Toxicity of High Glucose and its by-Products in Diabetic Kidney Disease
Previous Article in Journal
Advanced Proteomics as a Powerful Tool for Studying Toxins of Human Bacterial Pathogens
Previous Article in Special Issue
Imbalance in the Blood Concentrations of Selected Steroids in Pre-pubertal Gilts Depending on the Time of Exposure to Low Doses of Zearalenone
Open AccessFeature PaperArticle

Mycotoxin Occurrence in Maize Silage—A Neglected Risk for Bovine Gut Health?

1
BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
2
Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
3
Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
4
Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
5
Institute for Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 20, 3430 Tulln, Austria
*
Author to whom correspondence should be addressed.
Toxins 2019, 11(10), 577; https://doi.org/10.3390/toxins11100577
Received: 12 September 2019 / Revised: 30 September 2019 / Accepted: 1 October 2019 / Published: 4 October 2019
(This article belongs to the Special Issue Mycotoxins Occurence in Feed and Their Influence on Animal Health)
Forages are important components of dairy cattle rations but might harbor a plethora of mycotoxins. Ruminants are considered to be less susceptible to the adverse health effects of mycotoxins, mainly because the ruminal microflora degrades certain mycotoxins. Yet, impairment of the ruminal degradation capacity or high ruminal stability of toxins can entail that the intestinal epithelium is exposed to significant mycotoxin amounts. The aims of our study were to assess (i) the mycotoxin occurrence in maize silage and (ii) the cytotoxicity of relevant mycotoxins on bovine intestinal cells. In total, 158 maize silage samples were collected from European dairy cattle farms. LC-MS/MS-based analysis of 61 mycotoxins revealed the presence of emerging mycotoxins (e.g., emodin, culmorin, enniatin B1, enniatin B, and beauvericin) in more than 70% of samples. Among the regulated mycotoxins, deoxynivalenol and zearalenone were most frequently detected (67.7%). Overall, 87% of maize silages contained more than five mycotoxins. Using an in vitro model with calf small intestinal epithelial cells B, the cytotoxicity of deoxynivalenol, nivalenol, fumonisin B1 and enniatin B was evaluated (0–200 µM). Absolute IC50 values varied in dependence of employed assay and were 1.2–3.6 µM, 0.8–1.0 µM, 8.6–18.3 µM, and 4.0–6.7 µM for deoxynivalenol, nivalenol, fumonisin B1, and enniatin B, respectively. Results highlight the potential relevance of mycotoxins for bovine gut health, a previously neglected target in ruminants. View Full-Text
Keywords: modified mycotoxin; co-occurrence; corn silage; CIEB; WST-1; NR; SRB; sphingolipid metabolism; Sa/So modified mycotoxin; co-occurrence; corn silage; CIEB; WST-1; NR; SRB; sphingolipid metabolism; Sa/So
Show Figures

Graphical abstract

MDPI and ACS Style

Reisinger, N.; Schürer-Waldheim, S.; Mayer, E.; Debevere, S.; Antonissen, G.; Sulyok, M.; Nagl, V. Mycotoxin Occurrence in Maize Silage—A Neglected Risk for Bovine Gut Health? Toxins 2019, 11, 577.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop