Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation
Abstract
:1. Introduction
2. Moulds in Tea
3. Mycotoxins in Tea
4. Mycotoxin Transfer from Raw Tea into the Beverage
5. Exposure Assessment and Legislation
6. Methods of Mycotoxin Determination in Tea
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diby, L.; Kahia, J.; Kouamé, C.; Aynekulu, E. Tea, Coffee, and Cocoa. Encycl. Appl. Plant Sci. 2017, 3, 420–425. [Google Scholar] [CrossRef]
- The Statistics Portal. Available online: https://www.statista.com/statistics/695779/average-daily-tea-consumption-by-country/ (accessed on 22 August 2018).
- CCP: TE 18/CRS1 Committee on the Commodity Problems Intergovernmental Group on Tea. Twenty-Third Session Hangzhou, the People’s Republic of China, 17–20 May 2018. Current Market Situation and Medium-Term Outlook. Available online: http://www.fao.org/docrep/meeting/018/K7538E.pdf. (accessed on 20 August 2018).
- Sereshti, H.; Samadi, S.; Jalali-Heravi, M. Determination of volatile components of green, black, oolong and white tea by optimised ultrasound-assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography. J. Chromatogr. A 2013, 1280, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 2007, 81, 519–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Atya, A.M.; Choia, J.-H.; Musfiqur, R.M.D.; Kim, S.-W.; Tosun, A.; Shima, J.-H. Residues and contaminants in tea and tea infusions. Food Addit. Contam. 2014, 31, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Z.; Zhou, Y.; Ling, T.; Wan, X. Chinese dark teas: Postfermentation, chemistry and biological activities. Food Res. Intern. 2013, 53, 600–607. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Li, P.; Zhang, Q.; Zhang, W.; Ding, X. Determination for major chemical contaminants in tea (Camellia sinensis) matrices: A review. Food Res. Intern. 2013, 53, 649–658. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Klingelhöfer, D.; Zhu, Y.; Braun, M.; Bendels, M.H.K.; Brüggmann, D.; Groneberg, D.A. Aflatoxin—Publication analysis of a global health threat. Food Control 2018, 89, 280–290. [Google Scholar] [CrossRef]
- Wang, L.-M.; Huang, D.-F.; Fang, Y.; Wang, F.; Li, F.-L.; Liao, M. Soil fungal communities in tea plantation after 10 years of chemical vs. integrated fertilization. Chil. J. Agric. Res. 2017, 77, 355–364. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Li, J. Updating techniques on controlling mycotoxins—A review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- Dutta, B.K.; Dutta, S.; Nath, P.K. Mycotoxin production potential of mycoflora in tea. In Economic Crisis in Tea Industry; Jain, N.K., Rahman, F., Baker, P., Eds.; Studium Press: New Delhi, India, 2008; pp. 221–232. [Google Scholar]
- Soni, R.P.; Katoch, M.; Kumar, A.; Ladohiya, R.; Verma, P. Tea: Production, Composition, Consumption and its Potential an Antioxidant and Antimicrobial Agent. Intl. J. Food. Ferment. Technol. 2015, 5, 95–106. [Google Scholar] [CrossRef]
- Řezacova, V.; Kubatova, A. Saprobic microfungi in tea based on Camellia sinensis and on other dried herbs. Czech Mycol. 2005, 57, 79–89. [Google Scholar]
- Carraturo, F.; De Castro, O.; Troisi, J.; De Luca, A.; Masucci, A.; Cennamo, P.; Trifuoggi, M.; Aliberti, F.; Guida, M. Comparative assessment of the quality of commercial black and green tea using microbiology analyses. BMC Microbiol. 2018, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Halt, M. Moulds and mycotoxins in herb tea and medicinal plants. Eur. J. Epidemiol. 1998, 14, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, A.E.; Al-Lawatia, T.; Al-Bahry, S. Fungi associated with black tea and tea quality in the Sultanate of Oman. Mycopathologia 1999, 145, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.L.; Martins, H.M.; Bernardo, F. Fumonisins B 1 and B 2 in Black Tea and Medicinal Plants. J. Food Prot. 2001, 64, 1268–1270. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, B.; Menna, V.; Gruppioni, N.; Bergamini, C. Aflatoxins in spices, aromatic herbs, herb-teas and medicinal plants marketed in Italy. Food Control 2007, 18, 697–701. [Google Scholar] [CrossRef]
- Mogensen, J.M.; Varga, J.; Thrane, U.; Frisvad, J.C. Aspergillus acidus from Pu-erh tea and black tea does not produce ochratoxin A and fumonisin B2. Intern. J. Food Microbiol. 2009, 132, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Storari, M.; Dennert, F.G.; Bigler, L.; Gessler, C.; Broggini, G.A.L. Isolation of mycotoxins producing black Aspergilli in herbal teas available on the Swiss market. Food Control 2012, 26, 157–161. [Google Scholar] [CrossRef]
- Minaeva, L.P.; Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia. Personal communication, 2018.
- Zhao, Z.-J.; Pan, Y.-Z.; Liu, Q.-J.; Li, X.-H. Exposure assessment of lovastatin in Pu-erh tea. Int. J. Food Microbiol. 2013, 164, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.J.; Hu, X.C.; Liu, Q.J. Recent advances on the fungi of Pu-erh ripe tea. Intern. Food Res. J. 2015, 22, 1240–1246. [Google Scholar]
- Zhang, Y.; Skaar, I.; Sulyok, M.; Liu, X.; Rao, M.; Taylor, J.W. The Microbiome and Metabolites in Fermented Pu-erh Tea as Revealed by High-Throughput Sequencing and Quantitative Multiplex Metabolite Analysis. PLoS ONE 2016, 11, e0157847. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.J.; Tong, H.R.; Zhou, L.; Wang, E.X.; Liu, Q.J. Fungal colonisation of Pu-erh tea in Yunnan. J. Food Safety 2010, 30, 769–784. [Google Scholar] [CrossRef]
- Haas, D.; Pfeifer, B.; Reiterich, C.; Partenheimer, R.; Reck, B.; Buzina, W. Identification and quantification of fungi and mycotoxins from Pu-erh tea. Int. J. Food Microbiol. 2013, 166, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Omurtag, G.Z.; Yazicioglu, D. Determination of fumonisin B1 and B2 in herbal tea and medicinal plants in Turkey by high-performance liquid chromatography. J. Food Prot. 2004, 67, 1782–1786. [Google Scholar] [CrossRef] [PubMed]
- Pouretedal, Z.; Mazaheri, M. Aflatoxins in black tea in Iran. Food Addit. Contam. Part B 2013, 6, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Weidenbörner, M. Mycotoxins in Foodstuffs, 2nd ed.; Springer Science + Business Media: New York, NY, USA, 2013; p. 483. [Google Scholar]
- Chaly, Z.A.; Sedova, I.B.; Kiseleva, M.G. Occurrence of mycotoxins in tea. Prob. Nutr. 2018, 87, 199–200. [Google Scholar]
- Prado, G.; Altoé, A.F.; Gomes, T.C.B.; Leal, A.S.; Morais, V.A.D.; Oliveira, M.S.; Ferreira, M.B.; Gomes, M.B.; Paschoal, F.N.; Souza, R.V.; et al. Occurrence of aflatoxin B1 in natural products. Braz. J. Microbiol. 2012, 43, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Marin, S.; Sanchis, V.; Ramos, A.J. Screening of mycotoxin multi contamination in medicinal and aromatic herbs sampled in Spain. J. Sci. Food Agric. 2009, 89, 1802–1807. [Google Scholar] [CrossRef]
- Monbaliu, S.; Wu, A.; Zhang, D.; Van Peteghem, C.; De Saeger, S. Multimycotoxin UPLC−MS/MS for tea, herbal infusions and the derived drinkable products. J. Agric. Food Chem. 2010, 58, 12664–12671. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-Y.; Yang, G.-Y.; Chen, J.-L.; Li, W.-X.; Li, J.-T.; Fu, C.-X.; Jiang, G.-F.; Zhu, W. Investigation for Pu-Erh Tea Contamination Caused by Mycotoxins in a Tea Market in Guangzhou. J Basic Appl. Sci. 2014, 10, 349–356. [Google Scholar]
- Li, W.G.; Xu, K.L.; Xiao, R.; Yin, G.F.; Liu, W.W. Development of an HPLC-based method for the detection of aflatoxins in Pu-erh tea. Int. J. Food Prop. 2015, 18, 842–848. [Google Scholar] [CrossRef]
- Pallarés, N.; Font, G.; Mañes, J.; Ferrer, E. Multimycotoxin LC-MS/MS analysis in tea beverages after dispersive liquid-liquid microextraction (DLLME). J. Agric. Food Chem. 2017, 65, 10282–10289. [Google Scholar] [CrossRef] [PubMed]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Toman, J.; Bazin, I.; Roubal, T. Transfer of Ochratoxin A into Tea and Coffee Beverages. Toxins 2014, 6, 3438–3453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacıbekiroğlu, I.; Kolak, U. Aflatoxins in various food from Istanbul, Turkey. Food Addit. Contam. Part B 2013, 6, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Tosun, H.; GünçErgönül, P.; FatmaUçok, E. Occurrence of aflatoxins (B1, B2, G1, G2) in herbal tea consumed in Turkey. J. Verbr. Lebensm. 2016, 11, 265–269. [Google Scholar] [CrossRef]
- Feuell, A.J. Aflatoxin in groundnuts. Part 9: Problems of detoxification. Trop Sci. 1996, 8, 61–70. [Google Scholar]
- Kabak, B. The fate of mycotoxins during thermal food processing. J. Sci. Food Agric. 2009, 89, 549–554. [Google Scholar] [CrossRef]
- Chemical and physical characteristics of the principal mycotoxins. IARC Sci. Publ. 2012, 158, 31–38.
- PubChem Compound. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/ (accessed on 28 August 2018).
- Toman, J.; Malir, F.; Ostry, V.; Kilic, M.A.; Roubal, T.; Grosse, Y.; Pfohl-Leszkowicz, A. Transfer of ochratoxin A from raw black tea to tea infusions prepared according to the Turkish tradition. J. Sci. Food Agric. 2017, 98, 261–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viswanath, P.; Nanjegowda, D.K.; Govindegowda, H.; Dattatreya, A.M.; Siddappa, V. Aflatoxin determination in black tea (Camellia sinensis)—Status and development of a protocol. J. Food Saf. 2012, 32, 13–21. [Google Scholar] [CrossRef]
- Benford, D.; Leblanc, J.-C.; Setzer, R.W. Application of the margin of exposure (MoE) approach to substances in food that are genotoxic and carcinogenic Example: Aflatoxin B1 (AFB1). Food Chem. Toxicol. 2010, 48, 34–41. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Ochratoxin A; WHO: Geneva, Switzerland, 2008; Available online: http://apps.who.int/food-additives-contaminants-jecfa-database/PrintPreview.aspx?chemID=1905 (accessed on 10 September 2018).
- Technical Regulations of the Customs Union TR CU 021/2011 On Food Safety. 2011. Available online: http://www.eurexcert.com/TRCUpdf/TRCU-0021-On-food-safety.pdf (accessed on 10 September 2018).
- Zhang, L.; Dou, X.-W.; Zhang, C.; Logrieco, A.F.; Yang, M.-H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Anukul, N.; Vangnai, K.; Mahakarnchanakul, W. Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. J. Food Drug Anal. 2013, 21, 227–241. [Google Scholar] [CrossRef]
- China Food Safety National Standard. Maximum Levels of Mycotoxins in Food (GB 2761-2017). 2017. Available online: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/China%20Releases%20Standard%20for%20 Maximum%20Levels%20of%20Mycotoxins%20in%20Foods%20_Beijing_China%20-%20Peoples%20Republic%20of_5-9-2018.pdf (accessed on 29 October 2018).
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehotay, S.J. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. J AOAC Int. 2007, 90, 485–520. [Google Scholar] [PubMed]
- González-Curbelo, M.Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Evolution and applications of the QuEChERS method. TrAC Trend. Anal. Chem. 2015, 71, 169–185. [Google Scholar] [CrossRef]
- Martínez-Domínguez, G.; Romero-González, R.; Garrido, A.F. Multi-class methodology to determine pesticides and mycotoxins in green tea and royal jelly supplements by liquid chromatography coupled to Orbitrap high-resolution mass spectrometry. Food Chem. 2016, 197, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Dzuman, Z.; Zachariasova, M.; Veprikova, Z.; Godula, M.; Hajslova, J. Multi-analyte high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Anal. Chim. Acta 2015, 863, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Reichert, B.; de Kok, A.; Pizzutti, I.R.; Scholten, J.; Cardoso, C.D.; Spanjer, M. Simultaneous determination of 117 pesticides and 30 mycotoxins in raw coffee, without clean-up, by LC-ESI-MS/MS analysis. Anal. Chim. Acta 2018, 1004, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Cladiere, M.; Delaporte, G.; Le Roux, E.; Camel, V. Multi-class analysis for simultaneous determination of pesticides, mycotoxins, process-induced toxicants and packaging contaminants in tea. Food Chem. 2018, 242, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. SANTE/11813/2017 Supercedes SANTE/11945/2015 Implemented by 01/01/2018. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf (accessed on 29 October 2018).
- Komes, D.; Horžić, D.; Belščak, A.; Kovačević Ganič, K.; Baljak, A. Determination of Caffeine Content in Tea and Maté Tea by Using Different Methods. Czech J. Food Sci. 2009, 27, 213–216. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 3103:1980—Tea—Preparation of Liquor for use in Sensory Tests (p. 4). 1980. Available online: https://www.iso.org/standard/8250.html (accessed on 29 October 2018).
Tea | Country | Mycotoxin Positive/All Samples | Mycotoxin Content, μg/kg | LOD/LOQ, µg/kg | Ref. |
---|---|---|---|---|---|
Loose or Bricked Tea | |||||
Black | Portugal | FBs: 16/18 | 80–280 (average *: 149) | 20/- | [19] |
Turkey | FBs:5/51 | >LOD, <LOQ | 31/468 (FВ1), 103/1562 (FВ2) | [29] | |
Iran | AFL В1: 11/40 AFL В2: 2/40 AFLG1: 0/40 AFL G2: 3/40 Σ AFL: 11/40 | average: 10 average: 12.1 | 1.0/- (AFL B1, G1), 0.2/- (AFL В2, G2) | [30] | |
Korea | AFL: 1/9 | 1.45 | -/- | [31] | |
Russia | STC: 2/26 20 МТ: 0/26 | 0.4; 0.4 n.d. | 0.1-50/- | [32] | |
Green | Turkey | FBs: 0/3 | n.d. | 31/468 (FВ1), 103/1562 (FВ2) | [29] |
Italy | AFL: 0/6 | n.d. | 0.5/- (AFL B1, G1) 0.2/- (AFL В2, G2) | [20] | |
Brazil | AFL: 1/9 | <LOQ | -/1 | [33] | |
Russia | 21 МТ: 0/4 | n.d. | 0.1–50/- | [32] | |
Germany | ОТА: 1/32 | 1.3 | -/- | [31] | |
Red, White | Spain | AFL: 4/4 ** ОТА: 4/4 ** ZEN: 4/4 ** Т-2: 4/4 ** DON: 4/4 ** CIT: 3/4 ** FBs: 0/4 ** | 94.2–853.4 3.7–4.9 4.5–11.2 34.5–42.8 149.1–259.1 18.0–22.3 <LOD | 1.4 (ΣAFL) 0.025 (ОТА) 0.14 (ZEN) 0.28 (T-2) 14.8 (DON) 16.5 (CIT) 83 (FBs) | [34] |
White, Yellow, Green, Oolong, Black, Pu-erh, Herbal teas | Belgium, China | FВ1: 1/91 27 МТ: 0/91 | 76 n.d. | 2–122/- (raw tea), 0.4–46/-μg/L (beverage) | [35] |
Pu-erh | Austria | AFL В1, FBs:0/36, ОТА: 4/36 | n.d. 0.65–94.7 (average: 3.08) | 1.7/- (Σ AFL), 10/- (FBs), 0.5/- (ОТА) | [28] |
China | AFL В1: 70/70 FBs: 70/70 ** Т-2: 70/70 ** DON: 70/70 ** | 0.02–8.5 16–499 5.2–47.7 357–2914 | -/- AFL: HPLC-FLD (postcolumn deriv.) FBs, Т-2, DON: ELISA | [36] | |
China | AFL В1: 21/30 AFL В2: 4/30 AFLG1: 15/30 AFL G2: 3/30 | 0.4–15.1 0.1–6.3 0.4–19.0 9.9–56.6 | -/- HPLC-FLD (precolumn deriv.) | [37] | |
Tea Bags | |||||
Black | Italy | ОТА: 11/16 | 1.4–21.5 (average: 6.3) | 0.01 | [16] |
Spain *** | 17 МТ: 0/12 | n.d. | LOD: 0.05–10 μg/L LOQ: 0.2–33 μg/L | [38] | |
Czech Republic | ОТА: 4/12 | 1.9–250 (average: 33.1) | LOD: 0.1, LOQ: 0.35 | [39] | |
Green | Italy | ОТА: 14/16 | 0.1–20.0 (average: 7.2) | LOD: 0.01 | [16] |
Spain *** | ENN В: 2/10 16 МТ: 0/10 | ~LOQ (~0.2 µg/L) n.d. | LOD: 0.05–10 μg/L LOQ: 0.2–33 μg/L | [38] | |
Green + Mint | AFL В2: 6/8 AFL G1: 4/8 AFL G2: 4/8 15-acetyl DON: 2/8 13 МТ: 0/8 | 14.4–32.2 (average: 26) ~LOQ (~2.4 µg/L) 1.9–2.6 (average: 2.3) 60.5; 61 n.d. | |||
Red | 17 МТ: 0/14 | n.d. |
Mycotoxin | Tea | Data Numberof Samples, Origin | Contamination *, μg/kg | Exposure, ng/kg bw | Dietary Intake, ng/kg bw | |||||
---|---|---|---|---|---|---|---|---|---|---|
Median | Mean | Max | Median | Mean | Max | |||||
Aflatoxin B1 | Black | 40, Iran [30] 9, Korea [31] 26, Russia [32] | <LOQ | 5.3 | 190 | per day | negligible | 0.16 | 5.7 | 0.4–2.6 [48] |
Pu-erh | 36, Austria [28] 30, China [37] 70, China [36] | 1.6 | 2.6 | 15.1 | 0.05 | 0.08 | 0.45 | |||
Ochratoxin A | Black | 12, Czech Republic [39] 26, Russia [32] 16 (bagged), Italy [16] | <LOQ | 9.2 | 250 | per week | negligible | 1.93 | 52.5 | 8–17 [49] |
Pu-erh | 36, Austria [28] | <LOQ | 3.8 | 94.7 | negligible | 0.80 | 19.9 |
Detection (Mycotoxin) | Tea | Publication. Year | Short Description | Sensitivity, μg/kg ** | Ref. | |
---|---|---|---|---|---|---|
Extraction/Clean up | HPLC/Detection | |||||
TLC-FLD (AFL, ОТА, ZEN) | Herbal raw | 1998 | MeCN:Н2О (9:1, v/v), CHCl3 alkalinization/acidification | TLC: silica gel toluene, ethyl acetate, formic acid (50 + 40 + 10 v/v). UV irradiation | - | [17] |
HPLC-FLD (FBs) | Black raw | 2001 | MeOH:Н2О (3:1, v/v), SPE: anion-exchange column | Derivatisation (o-phthaldialdehyde), HPLC: ODS FLD, λEx/Em = 335 /440 nm | 31/468 (FВ1), 103/1562 (FВ2) | [19] |
HPLC-FLD (FBs) | Black, green raw | 2004 | MeOH:Н2О (3:1, v/v), SPE: anion-exchange column | Derivatisation (o-phthaldialdehyde), HPLC: ODS FLD, λEx/Em = 338/455 нм | LOD: ~30 (FВ1), ~470 (FВ2) | [29] |
HPLC (AFL) | Herbal, green raw | 2007 | MeOH:Н2О (80:20, v/v), NaCl, SPE: IAC | HPLC: ODS Post-column derivatisation (Br2, Cobra cell) FLD, λEx/Em = 365/435 nm | LOD: 0.5 (AFL B1, G1) 0.2 (AFL В2, G2) | [20] |
ELISA (ОТА, FBs, ΣAFL, ZEN, Т-2, DON, CIT) | Red, white raw | 2009 | AFL, ZEN, Т-2, DON: MeCN:Н2О (84:16, v/v), SPE: IAC (AFL + ZEN, DON + Т-2) FBs: MeCN:Н2О (50:50, v/v), SPE: IAC CIT: H3PO4:CH2Cl2, SPE: polyamide column ОТА: CH2Cl2 alkalinisation/acidification | ELISA λ = 450 nm | LOD: 0.025 (ОТА) 83 (FBs) 1.4 (ΣAFL) 0.14 (ZEN) 0.28 (T-2) 14.8 (DON) 16.5 (CIT) | [34] |
UHPLC-MS/MS (27 Mycotoxins) | White, green, yellow, black, oolong, Pu-erh raw and beverage | 2010 | Ethyl acetate: formic acid (99:1, v/v), SPE: amino-и ODS | UHPLC: ODS MS/MS: electrospray, positive polarity, internal standards | LOD: 2–122 (raw tea), 0.4–46 μg/L (beverage) | [35] |
HPLC (AFL) | Black raw | 2012 | MeCN:MeOH:Н2О (10:6:4, v/v), 8% Tween-20. SPE: IAC | HPLC: ODS Post-column photochemical derivatization, FLD, λEx/Em = 360/440 nm | LOD: 0.3 μg/L (AFL B1, G1) 0.15 μg/L (AFL В2, G2) | [47] |
HPLC-FLD (AFL) | Green raw | 2012 | Acetone:Н2О (85:15) SPE: IAC | HPLC: ODS Post-column derivatisation (Br2, Cobra cell) FLD, λEx/Em = 360/435 nm | LOQ: 1 | [33] |
ELISA, HPLC, HPLC-MS (AFL, ZEN, OTA) | Pu-erh raw | 2013 | AFL:MeOH:Н2О (70:30, v/v) + Tween-20, SPE: IAC FBs: MeCN:MeOH:Н2О (1:1:2 v/v), SPE: IAC ОТА: MeСN:Н2О (80:20, v/v), SPE: IAC | AFL: HPLC: ODS Post-column derivatization (Br2, Cobra cell) FLD, λEx/Em = 362/440 nm FBs: HPLC: ODS, MS/MS ОТА: HPLC: ODS FLD, λEx/Em = 333/460 nm | LOD: 1.7 (Σ AFL), 10 (FBs), 0.5 (ОТА) | [28] |
ELISA (AFL) | Herbal raw | 2013 | MeOH:Н2О (70:30, v/v) | ELISA | LOD: 1.7 (Σ AFL), 1.0 (AFL B1) | [40] |
HPLC-FLD (AFL) | Black raw | 2013 | MeOH:Н2О (80:20, v/v) + NaCl, SPE: IAC | HPLC: ODS Post-column derivatization (Br2, Cobra cell) FLD, λEx/Em = 360/435 nm | LOD: 1.0 (AFL B1, G1), 0.2 (AFL В2, G2) | [30] |
HPLC-FLD (ОТА) | Black raw, beverage | 2014 | Raw: CHCl3 + alkalinisation/acidification SPE: IAC Beverages: SPE: phenyl silica gel | HPLC: ODS FLD, λEx/Em = 333/465 nm | LOD: 0.1 LOQ: 0.35 | [39] |
HPLC (AFL В1)ELISA (FВ1, DON, Т-2) | Pu-erh raw | 2014 | MeOH:Н2О (70:30, v/v), SPE: IAC (AFL B1) | FВ1, DON, Т-2: ELISA AFL В1: HPLC: ODS Post-column derivatisation (iodine), FLD | - | [36] |
HPLC, ELISA (AFL) | Pu-erh raw | 2015 | MeCN:Н2О (84:16, v/v), SPE | ELISA HPLC: ODS Precolumn derivatisation (TFA) FLD, λEx/Em = 360/440 nm | - calibration curve lowest level corresponds to 1 | [37] |
HPLC-HRMS/MS (55 Mycotoxins) | Raw tea | 2015 | QuEChERS dispersive SPE: ODS | HPLC: ODS HRMS/MS, electrospray | 1–1000 | [58] |
HPLC-FLD (AFL) | Herbal raw | 2016 | MeOH:Н2О (6:4, v/v) with NaCl, SPE: IAC | HPLC: ODS Post-column derivatisation (Br2, Cobra cell analogue) FLD, λEx/Em = 362/440 nm | LOD: 0.1 (AFL B1, G1) 0.02 (AFL В2, G2) | [41] |
HPLC-MS/MS, (16 Mycotoxins) | Black, green, red, green + mint beverage | 2017 | Dispersive liquid-liquid microextraction by MeCN-ethyl acetate and MеОН-chloroform | HPLC: ODS MS/MS: electrospray, positive polarity, matrix match calibration | LOD: 0.05–10 μg/L LOQ: 0.2–33 μg/L | [38] |
HPLC-MS/MS, (22 Mycotoxins) | Black, green | 2018 | MeCN: Н2О:acetic acid (79:20:1) | HPLC: ODS MS/MS: ESI, positive polarity | LOD: 0.1–50 | [32] |
HPLC-FLD (ОТА) | Tea bags | 2018 | MeOH/NaHCO3aq. 1%, (70/30) SPE: IAC | HPLC: ODS FLD, λEx/Em = 333/466 nm Precolumn derivatisation (BF3) for positive findings confirmation Internal standard: diflunisal | LOD: 0.01 | [16] |
HPLC-HRMS/MS (4 Mycotoxins Tested) | Green tea raw, brew | 2018 | -QuEChERS without dSPE (raw) -MeCN, Н2О, MgSO4, NaCit, 5-fold dilution prior analysis (brew) -MeCN, Н2О, formic acid (brew) | HPLC: ODS HRMS/MS, electrospray | FBs—n.d. LOQ (DON) = 500 LOQ (OTA) = 10 | [60] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedova, I.; Kiseleva, M.; Tutelyan, V. Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. Toxins 2018, 10, 444. https://doi.org/10.3390/toxins10110444
Sedova I, Kiseleva M, Tutelyan V. Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. Toxins. 2018; 10(11):444. https://doi.org/10.3390/toxins10110444
Chicago/Turabian StyleSedova, Irina, Mariya Kiseleva, and Victor Tutelyan. 2018. "Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation" Toxins 10, no. 11: 444. https://doi.org/10.3390/toxins10110444
APA StyleSedova, I., Kiseleva, M., & Tutelyan, V. (2018). Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. Toxins, 10(11), 444. https://doi.org/10.3390/toxins10110444