Avocado Consumption Increases Macular Pigment Density in Older Adults: A Randomized, Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Study Protocol
2.4. Serum Analysis for Carotenoids and Biomarkers of Oxidative Stress and Inflammation
2.5. Lipoprotein Analysis
2.6. Measurement of Macular Pigment Density
2.7. Cognitive Tests
2.8. Sample Size Calculation
2.9. Statistical Analyses
3. Results
3.1. Subject Characteristics
3.2. Serum Analysis for Carotenoids and Biomarkers of Oxidative Stress and Inflammation
3.3. Lipoproteins
3.4. Macular Pigment Density
3.5. Cognitive Measures
3.6. Relationship between MPD and Cognitive Measures
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bone, R.A.; Landrum, J.T.; Tarsis, S.L. Preliminary identification of the human macular pigment. Vis. Res. 1985, 25, 1531–1535. [Google Scholar] [CrossRef]
- Johnson, E.J. A role for lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr. Rev. 2014, 72, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Connor, S.L.; Johnson, E.J.; Klein, M.L.; Hughes, S.; Connor, W.E. Effect of dietary lutein and zeaxanthin on plasma carotenoids and their transport in lipoproteins in age-related macular degeneration. Am. J. Clin. Nutr. 2007, 85, 762–769. [Google Scholar] [PubMed]
- Renzi, L.M.; Hammond, B.R., Jr.; Dengler, M.; Roberts, R. The relation between serum lipids and lutein and zeaxanthin in the serum and retina: Results from cross-sectional, case-control and case study designs. Lipids Health Dis. 2012, 11. [Google Scholar] [CrossRef] [PubMed]
- Connor, W.E.; Duell, P.B.; Kean, R.; Wang, Y. The prime role of HDL to transport lutein into the retina: Evidence from HDL-deficient WHAM chicks having a mutant ABCA1 transporter. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4226–4231. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, R.; Iannaccone, A.; Scott, T.M.; Kritchevsky, S.B.; Jennings, B.J.; Carboni, G.; Forma, G.; Satterfield, S.; Harris, T.; Johnson, K.C.; et al. Macular pigment optical density is related to cognitive function in the elderly. Age Aging 2013, 43, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Feeney, J.; Finucane, C.; Savva, G.M.; Cronin, H.; Beatty, S.; Nolan, J.M.; Kenny, R.A. Low macular pigment optical density is associated with lower cognitive performance in a large, population-based sample of older adults. Neurobiol. Aging 2013, 34, 2449–2456. [Google Scholar] [CrossRef] [PubMed]
- Renzi, L.M.; Dengler, M.J.; Puente, A.; Miller, L.S.; Hammond, B.R. Relationships between macular pigment optical density and cognitive function in unimpaired and mildly cognitively impaired older adults. Neurobiol. Aging 2014, 35, 1695–1699. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, R.; Neuringer, M.; Snodderly, D.M.; Schalch, W.; Johnson, E.J. Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates. Nutr. Neurosci. 2013, 16, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, R.; Schalch, W.; Johnson, E.J. Macular pigment carotenoids in the retina and occipital cortex are related in humans. Nutr. Neurosci. 2016, 19, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J.; Vishwanathan, R.; Johnson, M.A.; Hausman, D.B.; Davey, A.; Scott, T.M.; Green, R.C.; Miller, L.S.; Gearing, M.; Woodard, J.; et al. Relationship between serum and brain carotenoids, alpha-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia Centenarian Study. J. Aging Res. 2013. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J.; McDonald, K.; Caldarella, S.M.; Chung, H.-Y.; Troen, A.M.; Snodderly, D.M. Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr. Neurosci. 2008, 11, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.; Rasmussen, H.; Johnson, E.J. Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J. Food Compos. Anal. 2009, 22, 9–15. [Google Scholar] [CrossRef]
- Unlu, N.Z.; Bohn, T.; Clinton, S.K.; Schwartz, S.J. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J. Nutr. 2005, 135, 431–436. [Google Scholar] [PubMed]
- Alvizouri-Muñoz, M.; Carranza-Madriga, l.J.; Herrera-Abarca, J.E.; Chávez-Carbajal, F.; Amezcua-Gastelum, J.L. Effects of avocado as a source of monounsaturated fatty acids on plasma lipid levels. Arch. Med. Res. 1992, 23, 163–167. [Google Scholar] [PubMed]
- López Ledesma, R.; Frati Munari, A.C.; Hernández Domínguez, B.C.; Cervantes Montalvo, S.; Hernández Luna, M.H.; Juárez, C.; Moran Lira, C. Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch. Med. Res. 1996, 27, 519–523. [Google Scholar] [PubMed]
- Rimm, E.B.; Giovannucci, E.L.; Stampfer, M.J.; Colditz, G.A.; Litin, L.B.; Willett, W.C. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am. J. Epidemiol. 1992, 135, 1114–1126. [Google Scholar] [CrossRef] [PubMed]
- Muzhingi, T.; Yeum, K.-J.; Russell, R.M.; Johnson, E.J.; Qin, J.; Tang, G. Determination of carotenoids in yellow maize, the effects of saponification and food preparations. Int. J. Vitam. Nutr. Res. 2008, 78, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Haytowitz, D.; Showell, B.; Pehrsson, P. USDA National Nutrient Database for Standard Reference, Release 25. Available online: http://ars.usda.gov/Services/docs.htm?docid=8964 (accessed on 9 September 2014).
- Neuringer, M.; Sandstrom, M.M.; Johnson, E.J.; Snodderly, D.M. Nutritional manipulation of primate retinas, I: Effects of lutein or zeaxanthin supplements on serum and macular pigment in xanthophyll-free rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3234–3243. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Bakhiet, R.M.; Hart, V.; Holtzman, G. Isoflavones improve plasma homocysteine status and antioxidant defense system in healthy young men at rest but do not ameliorate oxidative stress induced by 80% VO2pk exercise. Ann. Nutr. Metab. 2005, 49, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Stringham, J.M.; Hammond, B.R.; Nolan, J.M.; Wooten, B.R.; Mammen, A.; Smollon, W.; Snodderly, D.M. The utility of using customized heterochromatic flicker photometry (cHFP) to measure macular pigment in patients with age-related macular degeneration. Exp. Eye Res. 2008, 87, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Wooten, B.R.; Hammond, B.R., Jr.; Land, R.I.; Snodderly, D.M. A practical method for measuring macular pigment optical density. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2481–2489. [Google Scholar] [PubMed]
- Snodderly, D.M.; Mares, J.A.; Wooten, B.R.; Oxton, L.; Gruber, M.; Ficek, T.; CAREDS Macular Pigment Group. Macular pigment measurement by heterochromatic flicker photometry in older subjects: The carotenoids and age-related eye disease study. Investig. Ophthalmol. Vis. Sci. 2004, 45, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Robbins, T.W.; James, M.; Owen, A.M.; Sahakian, B.J.; McInnes, L.; Rabbitt, P. Cambridge Neuropsychological Test Automated Battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteers. Dementia 1994, 5, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, A.J.; Gerweck, C.; Barbato, D.; Nicolosi, R.J.; Handelman, G.J.; Curran-Celentano, J. A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. J. Nutr. 2006, 136, 2568–2573. [Google Scholar] [PubMed]
- Gruszecki, W.I. Carotenoid Orientation: Role in Membrane Atabilization. In Carotenoids in Health and Disease; Krinsky, N., Mayne, S.T., Sies, H., Eds.; Marcel Dekker: New York, NY, USA, 2004; pp. 151–164. [Google Scholar]
- Johnson, E.J.; Chung, H.-Y.; Caldarella, S.M.; Snodderly, D.M. The influence of supplemental lutein and docosahexaenoic acid on serum, lipoproteins, and macular pigmentation. Am. J. Clin. Nutr. 2008, 87, 1521–1529. [Google Scholar] [PubMed]
- Wang, L.; Bordi, P.L.; Fleming, J.A.; Hill, A.M.; Kris-Etherton, P.M. Effect of a moderate fat diet with and without avocados on lipoprotein particle number, size and subclasses in overweight and obese adults: A randomized, controlled trial. J. Am. Heart Assoc. 2015, 4. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-Y.; Rasmussen, H.M.; Johnson, E.J. Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. J. Nutr. 2004, 134, 1887–1893. [Google Scholar] [PubMed]
- Wien, M.; Haddad, E.; Oda, K.; Sabaté, J. A randomized 3 × 3 crossover study to evaluate the effect of Hass avocado intake on post-ingestive satiety, glucose and insulin levels, and subsequent energy intake in overweight adults. Nutr. J. 2013, 12, 155. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services; US Department of Agriculture. Dietary Guidelines for Americans 2015–2020 8th Edition. Available online: http://health.gov/dietaryguidelines/2015/guidelines (assessed on 19 July 2016).
Cognitive Test | Description | Outcome Measures |
---|---|---|
Attention Tests | ||
Test | Score | |
Choice Reaction Time (CRT) | Two-choice reaction time test with two possible stimuli and two possible responses | Mean correct latency (response speed) |
Rapid Visual Information Processing (RVIP) | Test of sustained attention | A’—Signal detection measure of sensitivity to the target B”—Signal detection measure of the strength of trace required to elicit a response |
Visual Memory Tests | ||
Test | Score | |
Delayed Match to Sample (DMS) | Test of simultaneous and delayed matching to sample | Percent correct (all delays) |
Paired Associates Learning (PAL) | Assesses visual memory and new learning | Total errors (adjusted) Stages completed |
Executive Function, Working Memory, and Planning Tests | ||
Test | Score | |
Spatial Span (SSP) | Assesses working memory | Span length |
Spatial Span Reverse (SSP-R) | Assesses working memory | Span length |
Spatial Working Memory (SWM) | Tests ability to retain spatial information and manipulate items in working memory | Between errors strategy |
Stockings of Cambridge (SOC) | Test of spatial planning and spatial working memory | Problems solved in minimum moves; Mean total thinking time: four moves |
Avocado | Control | |
---|---|---|
Age, years, mean (SD) | 63.3 (11.1) | 62.5 (9.2) |
Body mass index, kg/m2, mean (SD) | 24.1 (3.1) | 24.2 (2.4) |
Education (%), some college or greater | 85 | 75 |
Sex (female/male) | 14/6 | 11/9 |
Dietary lutein/zeaxanthin, mg/day, mean (SD) | 3.0 (3.1) | 2.8 (2.7) |
Dietary protein, g/day (SD) | 75.3 (41.9) | 68.2 (44.0) |
Dietary fat, g/day (SD) | 74.3 (35.0) | 66.2 (41.4) |
Dietary carbohydrate, g/day (SD) | 246.0 (130.5) | 228.3 (130.8) |
Dietary monounsaturated fatty acids, g/day (SD) | 27.4 (12.8) | 22.3 (11.5) |
Avocado | Control | |||||
---|---|---|---|---|---|---|
Baseline | 3 Months | 6 Months | Baseline | 3 Months | 6 Months a | |
Lutein (nmol/L) | 330 (139) | 423 (111) b | 414 (147) b | 322 (134) | 352 (153) | 371 (168) c |
Zeaxanthin (nmol/L) | 63 (17) | 69 (45) | 57 (30) | 65 (33) | 83 (47) d | 78 (40) e |
Macular pigment denisty (MPD), OD | 0.393 (0.142) | 0.484 (0.178) f | 0.494 (0.137) b | 0.380 (0.173) | 0.445 (0.177) g | 0.424 (0.149) |
Serum cholesterol (mg/dL) | 219 (52) | 224 (56) | 209 (43) | 200 (46) | 209 (42) | 205 (54) |
high density lipoproteins (HDL) (mg/dL) | 57 (21) | 61 (23) | 61 (22) | 58 (16) | 56 (14) | 57 (18) |
low-density lipoproteins (LDL) (mg/dL) | 129 (43) | 135 (37) | 131 (25) | 132 (37) | 137 (37) | 137 (45) |
Triglycerides (mg/dL) | 86 (64) | 99 (82) | 79 (57) | 84 (55) | 94 (84) | 93 (58) |
C-reactive protein, mg/L | 2.0 (2.8) | 2.0 (2.8) | 1.7 (1.8) | 1.3 (1.0) | 2.3 (2.4) | 1.6 (1.6) |
β-Amyloid, pg/mL | 7.7 (2.8) | 7.9 (2.7) | 7.5 (2.7) | 9.6 (5.0) | 9.2 (5.2) | 9.7 (5.2) |
LDL Oxidative lagtime (min) | 88.2 (22.9) | 91.2 (14.2) | 89.1 (17.3) | 84.5 (26.6) | 86.2 (16.9) | 85.0 (18.7) |
Avocado | Control | |||||
---|---|---|---|---|---|---|
Baseline | 3 Months | 6 Months | Baseline | 3 Months | 6 Months | |
CRT mean latency msec | 347.4 (55.4) | 355.0 (53.2) | 342.8 (56.8) | 356.0 (70.6) | 367.0 (76.5) | 359.1 (75.5) |
RVIP signal detection 4 | 0.86 (0.21) | 0.92 (0.04) | 0.93 (0.04) | 0.90 (0.05) | 0.92 (0.05) | 0.92 (0.05) |
DMS percent correct all delays | 84.7 (12.8) a | 86.0 (10.4) | 84.7 (13.5) | 80.0 (9.4) | 85.3 (11.2) | 83.0 (12.1) |
PAL total errors (adjusted) 2 | 28.0 (17.8) | 17.5 (14.2) c | 19.5 (15.5) d | 27.3 (18.7) | 17.9 (17.0) e | 16.8 (14.9) e |
SS Forward highest span | 5.8 (1.2) | 6.2 (1.3) | 5.8 (1.2) | 5.8 (1.1) | 6.1 (1.3) | 6.1 (1.5) |
SS Reverse highest span 1 | 5.3 (1.6) | 5.3 (1.3) | 5.5 (1.4) | 5.0 (1.0) | 5.6 (1.4) | 5.7 (2.0) b |
SWM errors 3 | 52.5 (19.6) | 43.6 (19.8) f | 48.4 (17.3) | 50.7 (19.1) | 47.80 (17.6) | 42.1 (19.8) |
SOC # completed in minimum moves 5 | 7.8 (2.1) | 8.7 (2.3) | 8.8 (2.2)c | 8.0 (2.0) | 8.4 (2.2) | 9.0 (2.7) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, T.M.; Rasmussen, H.M.; Chen, O.; Johnson, E.J. Avocado Consumption Increases Macular Pigment Density in Older Adults: A Randomized, Controlled Trial. Nutrients 2017, 9, 919. https://doi.org/10.3390/nu9090919
Scott TM, Rasmussen HM, Chen O, Johnson EJ. Avocado Consumption Increases Macular Pigment Density in Older Adults: A Randomized, Controlled Trial. Nutrients. 2017; 9(9):919. https://doi.org/10.3390/nu9090919
Chicago/Turabian StyleScott, Tammy M., Helen M. Rasmussen, Oliver Chen, and Elizabeth J. Johnson. 2017. "Avocado Consumption Increases Macular Pigment Density in Older Adults: A Randomized, Controlled Trial" Nutrients 9, no. 9: 919. https://doi.org/10.3390/nu9090919
APA StyleScott, T. M., Rasmussen, H. M., Chen, O., & Johnson, E. J. (2017). Avocado Consumption Increases Macular Pigment Density in Older Adults: A Randomized, Controlled Trial. Nutrients, 9(9), 919. https://doi.org/10.3390/nu9090919