Testing the Capacity of a Multi-Nutrient Profiling System to Guide Food and Beverage Reformulation: Results from Five National Food Composition Databases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Food Composition Datasets and Nutrient Profiling System
2.2. Categorisation and Inter-Rater Agreement
2.3. Missing Data and Imputation
2.4. NNPS Calculation
2.5. NNPS Outcome Analyses
3. Results
3.1. Food Composition Tables and Data Completeness
3.2. Representativeness of NNPS Food Categories for Each National Dataset
3.3. Inter-Rater Agreement Scores
3.4. NNPS Outcome—Overall Results
3.5. NNPS Outcome by Category
3.6. Achieving NNPS Standards—Impact of Modelled Reformulation on Average Nutrient Content
4. Discussion
4.1. Application to Food Composition Databases
4.2. Global Applicability and Potential to Stimulate Reformulation
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Nutrient Profiling: Report of a Who/Iaso Technical Meeting, London, United Kingdom 4–6 October 2010; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Leroy, P.; Réquillart, V.; Soler, L.; Enderli, G. An assessment of the potential health impacts of food reformulation. Eur. J. Clin. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed]
- Roodenburg, A.J.C.; Schlatmann, A.; Dötsch-Klerk, M.; Daamen, R.; Dong, J.; Guarro, M.; Stergiou, M.; Sayed, N.; Ronoh, E.; Jansen, L. Potential effects of nutrient profiles on nutrient intakes in The Netherlands, Greece, Spain, USA, Israel, China and South-Africa. PLoS ONE 2011, 6, e14721. [Google Scholar] [CrossRef] [PubMed]
- Van Raaij, J.; Hendriksen, M.; Verhagen, H. Potential for improvement of population diet through reformulation of commonly eaten foods. Public Health Nutr. 2009, 12, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Dotsch-Klerk, M.; Goossens, W.P.; Meijer, G.W.; van Het Hof, K.H. Reducing salt in food; setting product-specific criteria aiming at a salt intake of 5 g per day. Eur. J. Clin. Nutr. 2015, 69, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Requillart, V.; Soler, L.G. Is the reduction of chronic diseases related to food consumption in the hands of the food industry? Eur. Rev. Agric. Econ. 2014, 41, 375–403. [Google Scholar] [CrossRef]
- Trichterborn, J.; Drossard, C.; Kersting, M.; Harzer, G.; Kunz, C. The potential impact of nutrient profiles on dairy-related energy and nutrient intake in German children and adolescents. Eur. J. Clin. Nutr. 2012, 66, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Wyness, L.A.; Butriss, J.L.; Stanner, S.A. Reducing the population’s sodium intake: The UK food standards agency’s salt reduction programme. Public Health Nutr. 2012, 15, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Department of Health. Guide to Creating a Front of Pack (Fop) Nutrition Label for Pre-Packed Products Sold Through Retail Outlets. Available online: https://www.gov.uk/government/publications/front-of-pack-nutrition-labelling-guidance (accessed on 20 March 2017).
- Roodenburg, A.J.C.; Popkin, B.M.; Seidell, J.C. Development of international criteria for a front of package food labelling system: The international choices programme. Eur. J. Clin. Nutr. 2011, 65, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Commonwealth of Australia Health Star Rating System 2015. (Cited Jan 2016). Available online: http://healthstarrating.gov.au/internet/healthstarrating/publishing.Nsf/content/home (accessed on 20 March 2017).
- Fischer, L.M.; Sutherland, L.A.; Kaley, L.A.; Fox, T.A.; Hasler, C.M.; Nobel, J.; Kantor, M.A.; Blumberg, J. Development and implementation of the guiding stars nutrition guidance program. Am. J. Health Promot. 2011, 26, e55–e63. [Google Scholar] [CrossRef] [PubMed]
- Rayner, M; Scarborough, P.T.L. The UK Ofcom Nutrient Profiling Model—Defining ’Healthy’ and ’Unhealthy’ Food and Drinks for TV Advertising to Children. Ofcom: London. Available online: https://www.ndph.ox.ac.uk/cpnp/about/publications-and-reports/group-reports/uk-ofcom-nutrient-profile-model.pdf (accessed on 27 March 2017).
- EU Pledge. Nutrition Criteria White Paper. Available online: http://www.eu-pledge.eu/content/eu-pledge-nutrition-criteria (accessed on 20 March 2017).
- Labonte, M.E.; Poon, T.; Gladanac, B.; Ahmed, M.; Franco Arellano, B.; Rayner, M.; L’Abbe, M.L. Systematic Review of Nutrient Profile Models Developed for Nutrition-Related Policies and Regulations Aimed at Noncommunicable Disease Prevention. Available online: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42015024750 (accessed on 20 March 2017).
- Vlassopoulos, A.; Masset, G.; Charles, V.R.; Hoover, C.; Chesneau-Guillemont, C.; Leroy, F.; Lehmann, U.; Spieldenner, J.; Tee, E.-S.; Gibney, M. A nutrient profiling system for the (re) formulation of a global food and beverage portfolio. Eur. J. Nutr. 2016, 56, 1105–1122. [Google Scholar] [CrossRef] [PubMed]
- Nijman, C.A.; Zijp, I.M.; Sierksma, A.; Roodenburg, A.J.; Leenen, R.; van den Kerkhoff, C.; Weststrate, J.A.; Meijer, G.W. A method to improve the nutritional quality of foods and beverages based on dietary recommendations. Eur. J. Clin. Nutr. 2007, 61, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Emrich, T.E.; Qi, Y.; Lou, W.Y.; L’Abbe, M.R. Traffic-light labels could reduce population intakes of calories, total fat, saturated fat, and sodium. PLoS ONE 2017, 12, e0171188. [Google Scholar] [CrossRef] [PubMed]
- Young, L.; Swinburn, B. Impact of the pick the tick food information programme on the salt content of food in New Zealand. Health Promot. Int. 2002, 17, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch. Guidance for the Food Industry on Reducing Sodium in Processed Foods; Health Canada: Ottawa, ON, Canada, 2012.
- Department of Health. The Public Health Responsibility Deal. Available online: https://responsibilitydeal.dh.gov.uk/ (accessed on 20 March 2017).
- World Cancer Research Fund. World Cancer Research Fund International Nourishing Framework, Improve Nutritional Quality of the Whole Food Supply. Available online: http://www.wcrf.org/sites/default/files/Improve-Food-Supply.pdf (accessed on 26 September 2016).
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture, Agricultural Research Service. Nutrient Data Laboratory. The US Fndds National Nutrient Database for Standard Reference. Available online: https://ndb.nal.usda.gov/ (accessed on 20 March 2017).
- Food Standards Agency UK. Mccance and Widdowson’s the Composition of Foods Integrated Dataset. Available online: http://tna.europarchive.org/20110116113217/http://www.food.gov.uk/science/dietarysurveys/dietsurveys/ (accessed on 20 March 2017).
- Bistriche Giuntini, E.; Lajolo, F.M.; Wenzel de Menezes, E. Brazilian Food Composition Table Tbca-Usp (Versions 3 and 4) in the International Context. Available online: http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pof/2008_2009_composicao_nutricional/default.shtm (accessed on 20 March 2017).
- Chinese National Institute of Nutrition and Food Safety. China Food Composition. Available online: http://www.neasiafoods.org/dataCenter.do;jsessionid=4EF547CDD8FC1B13CB5AED3FEB202506?level=yycfk&language=us (accessed on 20 March 2017).
- Agence Nationale de Sécurité Sanitaire de L’alimentation de L’environnement et du Travail (ANSES). Table Ciqual, French Food Composition Table. Available online: https://pro.anses.fr/tableciqual/ (accessed on 20 March 2017).
- Bowman, S.; Clemens, J.; Friday, J.; Thoerig, R.; Moshfegh, A. Food Pattern Equivalent Database 2011-12: Methodology and User Guide; 2014. [Google Scholar]
- Louie, J.C.Y.; Moshtaghian, H.; Boylan, S.; Flood, V.M.; Rangan, A.; Barclay, A.; Brand-Miller, J.; Gill, T. A systematic methodology to estimate added sugar content of foods. Eur. J. Clin. Nutr. 2015, 69, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Creme Software Ltd. Creme Global Software Food Version 3.6.9. Available online: https://www.cremeglobal.com/products/creme-nutrition/ (accessed on 20 March 2017).
- US Food and Drug Administration. Reference Amounts Customarily Consumed per Eating Occasion - 21 CFR 101.12. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.12 (accessed on 20 March 2017).
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar] [PubMed]
- Agence Nationale de Sécurité Sanitaire de L’alimentation de L’environnement et du Travail (ANSES). Classification Nutritionnelle des Aliments: Comparaison des Systèmes Sens ou 5-c. Available online: https://www.anses.fr/fr/content/classification-nutritionnelle-des-aliments-comparaison-des-syst%C3%A8mes-sens-ou-5-c-bas%C3%A9-sur-le (accessed on 20 March 2017).
- Scarborough, P.; Arambepola, C.; Kaur, A.; Bhatnagar, P.; Rayner, M. Should nutrient profile models be ‘category specific’ or ‘across-the-board’? A comparison of the two systems using diets of British adults. Eur. J. Clin. Nutr. 2010, 64, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, P.; Boxer, A.; Rayner, M.; Stockley, L. Testing nutrient profile models using data from a survey of nutrition professionals. Public Health Nutr. 2007, 10, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, P.; Rayner, M.; Stockley, L. Developing nutrient profile models: A systematic approach. Public Health Nutr. 2007, 10, 330–336. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Draft Guidance for Industry: Voluntary Sodium Reduction Goals: Target Mean and Upper Bound Concentrations for Sodium in Commercially Processed, Packaged, and Prepared Foods. Available online: https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ucm494732.htm (accessed on 20 March 2017).
- WHO Regional Office for Europe. Nutrient Profile Model. Available online: http://www.euro.who.int/__data/assets/pdf_file/0005/270716/Europe-nutrient-profile-model-2015-en.pdf?ua=1 (accessed on 20 March 2017).
- Pan American Health Organisation. Nutrient Profile Model. Available online: http://iris.paho.org/xmlui/handle/123456789/18621 (accessed on 20 March 2017).
- US Food and Drug Administration. Changes to the Nutrition Facts Label. Available online: https://www.fda.gov/food/guidanceregulation/guidancedocumentsregulatoryinformation/labelingnutrition/ucm385663.htm (accessed on 20 March 2017).
- Menard, C.; Dumas, C.; Goglia, R.; Spiteri, M.; Gillot, N.; Combris, P.; Ireland, J.; Soler, L.G.; Volatier, J.L. Oqali: A french database on processed foods. J. Food Compos. Anal. 2011, 24, 744–749. [Google Scholar] [CrossRef]
- Mintel. Global New Products Database. Available online: http://www.mintel.com/global-new-products-database (accessed on 20 March 2017).
- US Department of Agriculture, Agricultural Research Service. Nutrient Data Laboratory. Branded Food Products Database. Available online: http://www.ars.usda.gov/ba/bhnrc/ndl (accessed on 20 March 2017).
- Mathias, K.C.; Ng, S.W.; Popkin, B. Monitoring changes in the nutritional content of ready-to-eat grain-based dessert products manufactured and purchased between 2005 and 2012. J. Acad. Nutr. Diet. 2015, 115, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Poti, J.M.; Mendez, M.A.; Ng, S.W.; Popkin, B.M. Highly processed and ready-to-eat packaged food and beverage purchases differ by race/ethnicity among US households. J. Nutr. 2016, 146, 1722–1730. [Google Scholar] [CrossRef] [PubMed]
- Open Food Facts. Available online: https://world.openfoodfacts.org/ (accessed on 20 March 2017).
- Dötsch, M.; Busch, J.; Batenburg, M.; Liem, G.; Tareilus, E.; Mueller, R.; Meijer, G. Strategies to reduce sodium consumption: A food industry perspective. Crit. Rev. Food Sci. Nutr. 2009, 49, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Israr, T.; Rakha, A.; Sohail, M.; Rashid, S.; Shehzad, A. Salt reduction in baked products: Strategies and constraints. Trends Food Sci. Technol. 2016, 51, 98–105. [Google Scholar] [CrossRef]
- Celnik, D.; Gillespie, L.; Lean, M. Time-scarcity, ready-meals, ill-health and the obesity epidemic. Trends Food Sci. Technol. 2012, 27, 4–11. [Google Scholar] [CrossRef]
- Combet, E.; Jarlot, A.; Aidoo, K.E.; Lean, M.E. Development of a nutritionally balanced pizza as a functional meal designed to meet published dietary guidelines. Public Health Nutr. 2014, 17, 2577–2586. [Google Scholar] [CrossRef] [PubMed]
- Rosentreter, S.C.; Eyles, H.; Ni Mhurchu, C. Traffic lights and health claims: A comparative analysis of the nutrient profile of packaged foods available for sale in new Zealand supermarkets. Aust. N. Z. J. Public Health 2013, 37, 278–283. [Google Scholar] [CrossRef] [PubMed]
- National Salt Reduction Initiative. Available online: https://www1.nyc.gov/assets/doh/downloads/pdf/cardio/packaged-food-targets.pdf (accessed on 20 March 2017).
- Drewnowski, A.; Maillot, M.; Darmon, N. Should nutrient profiles be based on 100 g, 100 kcal or serving size? Eur. J. Clin. Nutr. 2008, 63, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, L.; Walsh, M.C.; Brennan, L.; Gibney, E.R.; Drevon, C.A.; Daniel, H.; Lovegrove, J.A.; Manios, Y.; Martinez, J.A.; Saris, W.H.; et al. Comparison of the portion size and frequency of consumption of 156 foods across seven European countries: Insights from the food4me study. Eur. J. Clin. Nutr. 2016, 70, 642–644. [Google Scholar] [CrossRef] [PubMed]
- Promoting Healthier Diets Through an Evolved Colour-Coded Nutrition Labelling Scheme. Available online: http://evolvednutritionlabel.eu/ (accessed on 24 March 2017).
- Briggs, A.D.M.; Kehlbacher, A.; Tiffin, R.; Scarborough, P. Simulating the impact on health of internalising the cost of carbon in food prices combined with a tax on sugar-sweetened beverages. BMC Public Health 2016, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Masset, G.; Soler, L.-G.; Vieux, F.; Darmon, N. Identifying sustainable foods: The relationship between environmental impact, nutritional quality, and prices of foods representative of the French diet. J. Acad. Nutr. Diet. 2014, 114, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Knai, C.; Petticrew, M.; Durand, M.A.; Eastmure, E.; James, L.; Mehrotra, A.; Scott, C.; Mays, N. Has a public–private partnership resulted in action on healthier diets in England? An analysis of the public health responsibility deal food pledges. Food Policy 2015, 54, 1–10. [Google Scholar]
- He, F.J.; Brinsden, H.C.; MacGregor, G.A. Salt reduction in the United Kingdom: A successful experiment in public health. J. Hum. Hypertens. 2014, 28, 345–352. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Pombo-Rodrigues, S.; Macgregor, G.A. Salt reduction in England from 2003 to 2011: Its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 2014, 4, e004549. [Google Scholar] [CrossRef] [PubMed]
- Karppanen, H.; Mervaala, E. Sodium intake and hypertension. Prog. Cardiovasc. Dis. 2006, 49, 59–75. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; MacGregor, G.A. A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J. Hum. Hypertens. 2008, 23, 363–384. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.M.; Nguyen, B.T.; Dietz, W.H. Energy and nutrient intake from pizza in the United States. Pediatrics 2015, 135, 322–330. [Google Scholar] [CrossRef] [PubMed]
Dataset | Number of Items Categorised and Scored (Amenable to Reformulation) | Number of Categories with Products Available for Analysis | Data Imputed & Calculated (n (%)) | ||||
---|---|---|---|---|---|---|---|
n | % † | ≥1 Item | ≥10 Items | SFA | Added Sugars | Sodium | |
UK | 1527 | 45% | 31 | 23 | 0 (0%) | 1527 (100%) | 0 (0%) |
France | 913 | 68% | 29 | 20 | 0 (0%) | 0 (0%) | 0 (0%) |
US | 3135 | 41% | 34 | 29 | 0 (0%) | 0 (0%) | 0 (0%) |
Brazil | 987 | 50% | 30 | 14 | 0 (0%) | 664 (67%) | 0 (0%) |
China | 621 | 34% | 27 | 16 | 247 (60%) | 621 (100%) | 0 (0%) |
Food Composition Tables | ||||||
---|---|---|---|---|---|---|
France | UK | US | Brazil | China | ||
Product Sample n (%) | 267 (20%) | 350 (10%) | 702 (9%) | 200 (10%) | 200 (11%) | |
Products classified (%) to the same category by all three reviewers | 68% | 64% | 51% | 88% | 64% | |
Kappa statistics | 1–2 † | 0.71 | 0.73 | 0.64 | 0.72 | 0.72 |
2–3 † | 0.84 | 0.71 | 0.68 | 0.81 | 0.70 | |
1–3 † | 0.76 | 0.68 | 0.62 | 0.87 | 0.68 |
Overall n (%) | France n (%) | UK n (%) | China n (%) | Brazil n (%) | US n (%) | p-Value (χ2) † | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of nutrient criteria not met * | one criterion only | 1797 | 40% | 194 | 31% | 341 | 33% | 170 | 43% | 232 | 39% | 860 | 45% | 0.09 |
two criteria | 1244 | 27% | 194 | 31% | 334 | 33% | 75 | 19% | 156 | 26% | 485 | 25% | 0.34 | |
three criteria | 880 | 19% | 147 | 24% | 213 | 21% | 91 | 23% | 131 | 22% | 298 | 16% | 0.58 | |
more than three criteria | 624 | 14% | 84 | 14% | 132 | 13% | 60 | 15% | 71 | 12% | 277 | 14% | 0.94 | |
Products that do not meet the criterion - # | energy | 1347 | 19% | 188 | 21% | 305 | 20% | 160 | 26% | 200 | 20% | 494 | 16% | 0.72 |
total fat | 2746 | 38% | 383 | 42% | 720 | 47% | 192 | 31% | 389 | 39% | 1062 | 34% | 0.06 | |
saturated fat | 2116 | 29% | 399 | 44% | 564 | 37% | 168 | 27% | 276 | 28% | 709 | 23% | 0.002 | |
added sugar | 1119 | 16% | 149 | 16% | 278 | 18% | 103 | 17% | 129 | 13% | 460 | 15% | 0.66 | |
sodium | 1707 | 24% | 202 | 22% | 335 | 22% | 117 | 19% | 163 | 17% | 890 | 28% | 0.29 | |
protein # | 498 | 14% | 28 | 4% | 171 | 25% | 55 | 24% | 51 | 9% | 193 | 13% | 0.000 | |
calcium # | 216 | 43% | 37 | 41% | 19 | 22% | 38 | 46% | 30 | 57% | 92 | 49% | 0.000 | |
fibre # | 36 | 38% | - | - | 0% | 6 | 21% | 1 | 25% | 29 | 48% | 0.06 |
Nutrient | Key Categories | n | % Weighted Reduction (Weight Average All Countries) # | Min%–Max% Reduction | Absolute Weighted Reduction (Weight Average) |
---|---|---|---|---|---|
Energy | Cakes, cookies & desserts | 700 | −15% | 11% (BR)–21% (FR) | 50.4 kcal/serving |
Malt-based beverages | 8 | −13% | 0% (US)–81% (CN) | 110.7 kcal/serving | |
Culinary sauces as accessory | 50 | −11% | 0% (BR)–69% (CN) | 30 kcal/serving | |
Culinary sauces | 46 | −11% | 0% (BR)–69% (CN) | 35.9 kcal/serving | |
Dressings | 259 | −10% | 0% (BR)–13% (CN) | 12.5 kcal/serving | |
Total fat | Dressings | 259 | −30% | 19% (BR)–33% (FR/CN/UK) | 3.8 g/serving |
Culinary sauces | 46 | −30% | 0% (CN)–46% (UK) | 5.9 g/serving | |
Culinary sauces as accessory | 50 | −27% | 15% (UK)–88% (CN) | 4.8 g/serving | |
Cold cuts & spreads | 260 | −26% | 22% (CN)–29% (FR) | 4.9 g/serving | |
Confectionery bars | 97 | −19% | 7% (BR)–53% (CN) | 2.6 g/serving | |
Saturated fats | Dressings | 259 | −45% | 35% (US)–51% (BR/FR) | 1.8 g/serving |
Ice creams | 81 | −28% | 22% (CN)–40% (FR) | 2.6 g/serving | |
Cold cuts & spreads | 260 | −28% | 21% (CN)–35% (BR) | 1.8 g/serving | |
Culinary sauces as accessory | 50 | −27% | 0% (CN)–73% (BR) | 2.4 g/serving | |
Culinary sauces | 46 | −24% | 0% (CN)–37% (UK) | 1.9 g/serving | |
Added sugar | Juice-based beverages | 165 | −29% | 23% (BR)–35% (US) | 6.3 g/serving |
Chocolate | 99 | −25% | 21% (BR/US)–45% (CN) | 4.9 g/serving | |
Water ice creams | 10 | −25% | 19% (US)–43% (FR) | 6 g/serving | |
Culinary sauces as accessory | 50 | −19% | 0% (BR/FR/CN)–38% (UK) | 2.5 g/serving | |
Cakes, cookies & desserts | 700 | −18% | 15% (US)–24% (CN) | 4.3 g/serving | |
Sodium | Cold cuts & spreads | 260 | −48% | 43% (CN/FR)–53% (UK) | 365.7 mg/serving |
Cold sauces | 89 | −34% | 20% (UK)–64% (CN) | 230.6 mg/serving | |
Cereal-based foods | 69 | −30% | 0% (FR/CN)–36% (US) | 145 mg/serving | |
Culinary sauces as accessory | 50 | −21% | 0% (BR)–64% (CN) | 258.9 mg/serving | |
Culinary sauces | 46 | −16% | 0% (CN)–34% (FR) | 66.5 mg/serving |
Nutrient | Key Categories | n | % Weighted Increase (Weight Average All Countries) # | Min%–Max% Increase | Absolute Weighted Increase (Weight Average) |
---|---|---|---|---|---|
Protein | Cereal-based foods | 69 | 39% | 1% (US)–274% (CN) | 5.4 g/serving |
Center of plates | 1473 | 25% | 1% (US/UK)–271% (CN) | 1.8 g/serving | |
Milk-based beverages | 194 | 32% | 0% (UK/US/FR)–124% (CN) | 0.2 g/serving | |
Small meals | 506 | 1% | 0% (US)–21% (CN) | 0.3 g/serving | |
Calcium | Cereal-based foods | 69 | 1006% | 0% (UK)–4212% (BR) | 160.5 mg/serving |
Milk-based beverages | 194 | 279% | 5% (UK)–1049% (CN) | 28.7 mg/serving | |
Yoghurts & fresh cheeses | 144 | 38% | 13% (US)–72% (UKR) | 25.4 mg/serving | |
Dairy desserts | 93 | 24% | 1% (FR)–48% (BR) | 9.3 mg/serving | |
Fibre | Cereal-based foods | 69 | 86% | 0% (FR)–542% (CN) | 0.5 g/serving |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Combet, E.; Vlassopoulos, A.; Mölenberg, F.; Gressier, M.; Privet, L.; Wratten, C.; Sharif, S.; Vieux, F.; Lehmann, U.; Masset, G. Testing the Capacity of a Multi-Nutrient Profiling System to Guide Food and Beverage Reformulation: Results from Five National Food Composition Databases. Nutrients 2017, 9, 406. https://doi.org/10.3390/nu9040406
Combet E, Vlassopoulos A, Mölenberg F, Gressier M, Privet L, Wratten C, Sharif S, Vieux F, Lehmann U, Masset G. Testing the Capacity of a Multi-Nutrient Profiling System to Guide Food and Beverage Reformulation: Results from Five National Food Composition Databases. Nutrients. 2017; 9(4):406. https://doi.org/10.3390/nu9040406
Chicago/Turabian StyleCombet, Emilie, Antonis Vlassopoulos, Famke Mölenberg, Mathilde Gressier, Lisa Privet, Craig Wratten, Sahar Sharif, Florent Vieux, Undine Lehmann, and Gabriel Masset. 2017. "Testing the Capacity of a Multi-Nutrient Profiling System to Guide Food and Beverage Reformulation: Results from Five National Food Composition Databases" Nutrients 9, no. 4: 406. https://doi.org/10.3390/nu9040406