Impact of High-Carbohydrate Diet on Metabolic Parameters in Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Obstacles in Evaluating High-Carbohydrate Diet Studies in Diabetes Care
2.1. Definition of High-Carbohydrate Diet
2.2. Optimal Range of Carbohydrate
3. Literature about the Effects of High Carbohydrate on Metabolic Parameters in Type 2 Diabetes
3.1. Studies on the Effects of High-Carbohydrate Diet or High-Carbohydrate Diet vs. Low-Carbohydrate Diet
3.2. Studies on High-Carbohydrate Diet vs. High-Protein, Low-Carbohydrate Diet
3.3. Studies on High-Carbohydrate Diet in Asians
3.4. Adherence and Sustainability of HC Diet
3.5. Various Circumstances Influence the Response to a High-Carbohydrate Diet
4. Are All Carbohydrates the Same? Does Carbohydrate Type Matter?
4.1. Glycemic Index/Glycemic Load
4.2. Dietary Fiber
5. Suggestive Mechanism of the Effects by a High-Carbohydrate Diet on Metabolic Parameters
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Khazrai, Y.M.; Defeudis, G.; Pozzilli, P. Effect of diet on type 2 diabetes mellitus: A review. Diabetes Metab. Res. Rev. 2014, 30 (Suppl. S1), 24–33. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, L.; Gale, E.A.M. Diet, delusion and diabetes. Diabetologia 2009, 52, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stone, D.B.; Connor, W.D. The prolonged effects of a low cholesterol high carbohydrate diet upon the serum lipids in diabetic patients. Diabetes 1963, 12, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Hockaday, T.D.R.; Hockaday, J.M.; Mann, J.I.; Turner, R.C. Prospective comparison of modified-fat-high-carbohydrate with standard low-carbohydrate dietary advice in the treatment of diabetes: One year follow-up study. Br. J. Nutr. 1978, 39, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Becker, W. Nordic nutrition recommendations 2004, based on scientific evidence. Scand. J. Nutr. 2005, 49, 68–71. [Google Scholar] [CrossRef]
- Margetts, B. FAO/WHO launch expert report on diet, nutrition and prevention of chronic diseases. Public Health Nutr. 2003, 6, 323–325. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association; Bantle, J.P.; Wylie-Rosett, J.; Albright, A.L.; Apovian, C.M.; Clark, N.G.; Franz, M.J.; Hoogwerf, B.J.; Lichtenstein, A.H.; Mayer-Davis, E.; et al. Nutrition recommendations and interventions for diabetes: A position statement of the American Diabetes Association. Diabetes Care 2008, 31 (Suppl. S1), S61–S78. [Google Scholar] [PubMed]
- Garg, A.; Bantle, J.P.; Henry, R.R.; Coulston, A.M.; Griver, K.A.; Raatz, S.K.; Brinkley, L.; Chen, Y.D.; Grundy, S.M.; Huet, B.A. Effects of varying carbohydrate content of diet in patients with non-insulin-dependent diabetes mellitus. JAMA 1994, 271, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Garg, A. High-monounsaturated-fat diets for patients with diabetes mellitus: A meta-analysis. Am. J. Clin. Nutr. 1998, 67 (Suppl. s3), 577S–582S. [Google Scholar] [PubMed]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I.; et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Naude, C.E.; Schoonees, A.; Senekal, M.; Young, T.; Garner, P.; Volmink, J. Low carbohydrate versus isoenergetic balanced diets for reducing weight and cardiovascular risk: A systematic review and meta-analysis. PLoS ONE 2014, 9, e100652. [Google Scholar] [CrossRef] [PubMed]
- Accurso, A.; Bernstein, R.; Dahlqvist, A.; Drazini, B.; Finman, R.; Fine, E.; Gleed, A.; Jacobs, D.; Larson, G.; Lustig, R.; et al. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: Time for a critical appraisal. Nutr. Metab. 2008, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Liebman, M. When and why carbohydrate restriction can be a viable option. Nutrition 2014, 30, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Sato, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Influence of fat and carbohydrate proportions on the metabolic profile in patients with type 2 diabetes: A meta-analysis. Diabetes Care 2009, 32, 959–965. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of Medical Care in Diabetes. Diabetes Care 2016, 39 (Suppl. S1), S1–S112. [Google Scholar]
- Canadian Diabetes Assocaition Clinical Practice Guidelines Expert Committee. Clinical Practice Guidelines: Nutrition Therapy. Can. J. Diabetes 2013, 37, S45–S55. [Google Scholar]
- Mann, J.I.; De Leeuw, I.; Hermansen, K.; Karamanos, B.; Karlström, B.; Katsilambros, N.; Riccardi, G.; Rivellese, A.A.; Rizkalla, S.; Slama, G.; et al. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2004, 14, 373–394. [Google Scholar] [CrossRef]
- Dyson, P.A.; Kelly, T.; Deakin, T.; Duncan, A.; Frost, G.; Harrison, Z.; Khatri, D.; Kunka, D.; McArdle, P.; Mellor, D.; et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet. Med. 2011, 28, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Tajima, N.; Noda, M.; Origasa, H.; Noto, H.; Yabe, D.; Fujita, Y.; Goto, A.; Fujimoto, K.; Sakamoto, M.; Haneda, M. Evidence-based practice guideline for the treatment for diabetes in Japan 2013. Diabetol. Int. 2015, 6, 151–187. [Google Scholar] [CrossRef]
- Korean Diabetes Association. 2015 Treatment Guideline for Diabetes (5th Edition). Available online: http://www.diabetes.or.kr/general/index.html (accessed on 12 October 2016).
- McDougall, J.; Thomas, L.E.; McDougall, C.; Moloney, G.; Saul, B.; Finnell, J.S.; Richardson, K.; Petersen, K.M. Effects of 7 days on an ad libitum low-fat vegan diet: The McDougall Program cohort. Nutr. J. 2014, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Guldbrand, H.; Dizdar, B.; Bunjaku, B.; Lindström, T.; Bachrach-Lindström, M.; Fredrikson, M.; Ostgren, C.J.; Nystrom, F.H. In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia 2012, 55, 2118–2127. [Google Scholar] [CrossRef] [PubMed]
- Brehm, BJ.; Lattin, B.L.; Summer, S.S.; Boback, J.A.; Gilchrist, G.M.; Jandacek, R.J.; D’Alessio, D.A. One-year comparison of a high-monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes. Diabetes Care 2009, 32, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Meher, D.; Dutta, D.; Ghosh, S.; Mukhopadhyay, P.; Chowdhury, S.; Mukhopadhyay, S. Effect of a mixed meal on plasma lipids, insulin resistance and systemic inflammation in non-obese Indian adults with normal glucose tolerance and treatment naïve type-2 diabetes. Diabetes Res. Clin. Pract. 2014, 104, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, H.J.; Davis, R.E.; Davies, J.S. A critical review of low-carbohydrate diets in people with Type 2 diabetes. Diabetic Med. 2016, 33, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Westman, E.C.; Yancy, W.S.; Mavropoulos, J.C.; Marquart, M.; McDuffie, J.R. The effect of a low-carbohydrate, ketogenic diet versus a lowglycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr. Metab. 2008, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Krebs, J.D.; Elley, C.R.; Parry-Strong, A.; Lunt, H.; Drury, P.L.; Bell, D.A.; Robinson, E.; Moyes, S.A.; Mann, J.I. The Diabetes Excess Weight Loss (DEWL) Trial: A randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia 2012, 55, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.N.; Mann, N.J.; Maclean, E.; Shaw, J.E. The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: A 12 month randomised controlled trial. Diabetologia 2011, 54, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, M.; Daly, B.J. Nutritional patterns of Korean diabetic patients: An exploratory study. Int. Nurs. Rev. 2008, 55, 442–446. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Pan, J.; Pan, M.; Wang, J.; Dong, J.; Yuan, H.; Zhou, L.; Chen, M.; Chen, Y.; Lu, Y.; et al. Dietary and physical activity of adult patients with type 2 diabetes in Zhejiang province of eastern China: Data from a cross-sectional study. J. Diabetes Investig. 2016, 7, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.C.; Lau, K.H.; Matsumoto, M.; Moghazy, D.; Keenan, H.; King, G.L. Improvement of insulin sensitivity by isoenergy high carbohydrate traditional Asian diet: A randomized controlled pilot feasibility study. PLoS ONE 2014, 16, e106851. [Google Scholar] [CrossRef] [PubMed]
- Kamada, C.; Yoshimura, H.; Okumura, R.; Takahashi, K.; Iimuro, S.; Ohashi, Y.; Araki, A.; Umegaki, H.; Sakurai, T.; Yoshimura, Y.; et al. Optimal energy distribution of carbohydrate intake for Japanese elderly patients with type 2 diabetes: The Japanese Elderly Intervention Trial. Geriatr. Gerontol. Int. 2012, 12 (Suppl. S1), 41–49. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.H.; Park, S.J.; Woo, J.T.; Choue, R.W. A comparative study of diet in good and poor glycemic control groups in elderly patients with type 2 diabetes mellitus. Korean Diabetes J. 2010, 34, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.; Luscombe-Marsh, N.D.; Thompson, C.H.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Yancy, W.S., Jr.; Brinkworth, G.D. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: A randomized trial. Am. J. Clin. Nutr. 2015, 102, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Bozzetto, L.; Costabile, G.; Luongo, D.; Naviglio, D.; Cicala, V.; Piantadosi, C.; Patti, L.; Cipriano, P.; Annuzzi, G.; Rivellese, A.A. Reduction in liver fat by dietary MUFA in type 2 diabetes is helped by enhanced hepatic fat oxidation. Diabetologia 2016, 59, 2697–2701. [Google Scholar] [CrossRef] [PubMed]
- Soare, A.; Khazrai, Y.M.; Del Toro, R.; Roncella, E.; Fontana, L.; Fallucca, S.; Angeletti, S.; Formisano, V.; Capata, F.; Ruiz, V.; et al. The effect of the macrobiotic Ma-Pi 2 diet vs. the recommended diet in the management of type 2 diabetes: The randomized controlled MADIAB trial. Nutr. Metab. 2014, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Bozzetto, L.; Annuzzi, G.; Costabile, G.; Costagliola, L.; Giorgini, M.; Alderisio, A.; Strazzullo, A.; Patti, L.; Cipriano, P.; Mangione, A.; et al. A CHO/fibre diet reduces and a MUFA diet increases postprandial lipaemia in type 2 diabetes: No supplementary effects of low-volume physical training. Acta Diabetologica 2014, 51, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Vetter, M.L.; Moore, R.H.; Chittams, J.L.; Dalton-Bakes, C.V.; Dowd, M.; Williams-Smith, C.; Cardillo, S.; Wadden, T.A. Effects of a low-intensity intervention that prescribed a low-carbohydrate vs. a low-fat diet in obese, diabetic participants. Obesity 2010, 18, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Allerton, D.M.; Campbell, M.D.; Gonzalez, J.T.; Rumbold, P.L.S.; West, D.J.; Stevenson, E.J. Co-Ingestion of Whey Protein with a Carbohydrate-Rich Breakfast Does Not Affect Glycemia, Insulinemia or Subjective Appetite Following a Subsequent Meal in Healthy Males. Nutrients 2016, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Soong, Y.Y.; Lim, J.; Sun, L.; Henry, C.J. Effect of co-ingestion of amino acids with rice on glycaemic and insulinaemic response. Br. J. Nutr. 2015, 114, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Panduro, A.; Martinez-Lopez, E.; Roman, S. Sweet Taste Receptor TAS1R2 Polymorphism (Val191Val) Is Associated with a Higher Carbohydrate Intake and Hypertriglyceridemia among the Population of West Mexico. Nutrients 2016, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Park, J.E.; Choi, Y.J.; Huh, K.B.; Chang, N.; Kim, W.Y. Carbohydrate intake interacts with SNP276G>T polymorphism in the adiponectin gene to affect fasting blood glucose, HbA1C, and HDL cholesterol in Korean patients with type 2 diabetes. J. Am. Coll. Nutr. 2013, 32, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Bray, G.A.; Hu, F.B.; Sacks, F.M.; Qi, L. Weight-loss diets modify glucose-dependent insulinotropic polypeptide receptor rs2287019 genotype effects on changes in body weight, fasting glucose, and insulin resistance: The Preventing Overweight Using Novel Dietary Strategies trial. Am. J. Clin. Nutr. 2012, 95, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Lyssenko, V.; Ericson, U.; Gullberg, B.; Wirfält, E.; Groop, L.; Orho-Melander, M. Genetic variation in the glucose-dependent insulinotropic polypeptide receptor modifies the association between carbohydrate and fat intake and risk of type 2 diabetes in the Malmo diet and Cancer cohort. J. Clin. Endocrinol. Metab. 2012, 97, E810–E818. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, G.; Rivellese, A.A.; Giacco, R. Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes. Am. J. Clin. Nutr. 2008, 87, 269S–274S. [Google Scholar] [PubMed]
- Liljeberg, H.; Granfeldt, Y.; Bjorch, I. Metabolic responses to starch in bread containing intact kernels versus milled flour. Eur. J. Clin. Nutr. 1992, 46, 561–565. [Google Scholar] [PubMed]
- Wheeler, M.L.; Pi-Sunyer, F.X. Carbohydrate issues: Type and amount. J. Am. Diet. Assoc. 2008, 108, S34–S39. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Grundy, S.M.; Koffler, M. Effect of high carbohydrate intake on hyperglycemia, islet function, and plasma lipoproteins in NIDDM. Diabetes Care 1992, 15, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Grundy, S.M.; Unger, R.H. Comparison of effects of high and low carbohydrate diets on plasma lipoproteins and insulin sensitivity in patients with mild NIDDM. Diabetes 1992, 41, 1278–1285. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [PubMed]
- Rizkalla, S.W.; Taghrid, L.; Laromiguiere, M.; Huet, D.; Boillot, J.; Rigoir, A.; Elgrably, F.; Slama, G. Improved plasma glucose control, whole-body glucose utilization, and lipid profile on a low–glycemic index diet in type 2 diabetic men. Diabetes Care 2004, 27, 1866–1872. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M.; Gibbs, A.L.; Mehling, C.; Chiasson, J.L.; Connelly, P.W.; Josse, R.G.; Leiter, L.A.; Maheux, P.; Rabasa-Lhoret, R.; Rodger, N.W.; et al. The Canadian trial of carbohydrates in diabetes (CCD), a 1-y controlled trial of low-glycemic-index dietary carbohydrate in type 2 diabetes: No effect on glycated hemoglobin but reduction in C-reactive protein. Am. J. Clin. Nutr. 2008, 87, 114–125. [Google Scholar] [PubMed]
- Wolever, T.M.; Gibbs, A.L.; Chiasson, J.L.; Connelly, P.W.; Josse, R.G.; Leiter, L.A.; Maheux, P.; Rabasa-Lhoret, R.; Rodger, N.W.; Ryan, E.A. Altering source or amount of dietary carbohydrate has acute and chronic effects on postprandial glucose and triglycerides in type 2 diabetes: Canadian trial of Carbohydrates in Diabetes (CCD). Nutr. Metab. Cardiovasc. Dis. 2013, 23, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Carey, V.J.; Anderson, C.A.; Miller, E.R., 3rd; Copeland, T.; Charleston, J.; Harshfield, B.J.; Laranjo, N.; McCarron, P.; Swain, J.; et al. Effects of high vs. low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: The OmniCarb randomized clinical trial. JAMA 2014, 312, 2531–2541. [Google Scholar] [CrossRef] [PubMed]
- Brand-Miller, J.; Hayne, S.; Petocz, P.; Colagiuri, S. Low-glycemic index diets in the management of diabetes: A meta-analysis of randomized controlled trials. Diabetes Care 2003, 26, 2261–2267. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Augustin, L.S.; Mitchell, S.; Sahye-Pudaruth, S.; Blanco Mejia, S.; Chiavaroli, L.; Mirrahimi, A.; Ireland, C.; Bashyam, B.; et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Arch. Intern. Med. 2012, 172, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.E.; Elliott, E.J. The use of low-glycaemic index diets in diabetes control. Br. J. Nutr. 2010, 104, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Argiana, V.; Kanellos, P.Τ.; Makrilakis, K.; Eleftheriadou, I.; Tsitsinakis, G.; Kokkinos, A.; Perrea, D.; Tentolouris, N. The effect of consumption of low-glycemic-index and low-glycemic-load desserts on anthropometric parameters and inflammatory markers in patients with type 2 diabetes mellitus. Eur. J. Nutr. 2015, 54, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, X. Do glycemic index, glycemic load, and fiber play a role in insulin sensitivity, disposition index, and type 2 diabetes? Diabetes Care 2005, 28, 2978–2979. [Google Scholar] [CrossRef] [PubMed]
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [PubMed]
- Willett, W.C.; Manson, J.; Liu, S. Glycemic index, glycemic load, and risk of type 2 diabetes. Am. J. Clin. Nutr. 2002, 76, 274S–279S. [Google Scholar] [PubMed]
- Goto, M.; Morita, A.; Goto, A.; Sasaki, S.; Aiba, N.; Shimbo, T.; Terauchi, Y.; Miyachi, M.; Noda, M.; Watanabe, S.; et al. Dietary glycemic index and glycemic load in relation to HbA1c in Japanese obese adults: A cross-sectional analysis of the Saku Control Obesity Program. Nutr. Metab. 2012, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Homayouni, F.; Shokoohi, M.; Fallah, A.; Farvid, M.S. Glycemic index, glycemic load and their association with glycemic control among patients with type 2 diabetes. Eur. J. Clin. Nutr. 2014, 68, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Venn, B.J.; Green, T.J. Glycemic index and glycemic load: Measurement issues and their effect on diet–disease relationships. Eur. J. Clin. Nutr. 2007, 61 (Suppl. S1), S122–S131. [Google Scholar] [CrossRef] [PubMed]
- James, M.L.; Mark, D.H. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar]
- AAAC. AACC Adopts Oat Bran Definition. Available online: http://www.aaccnet.org/news/pdfs/OatBran.pdf (accessed on 15 November 2010).
- The British Nutrition Foundation. Available online: http://www.nutrition.org.uk/nutritionscience/nutrients/dietary-fibre.html (accessed on 26 July 2015).
- Sizer, F.; Whitney, E. Nutrition: Concepts and Controversies, 11th ed.; Thomson Wadsworth: Belmont, CA, USA, 2008. [Google Scholar]
- Slavin, J.L.; Martini, M.C.; Jacobs, D.R.; Marquart, L. Possible mechanisms for the protectiveness of whole grains. Am. J. Clin. Nutr. 1999, 70, 459S–463S. [Google Scholar] [PubMed]
- Eleazu, C.O. The concept of low glycemic index and glycemic load foods as panacea for type 2 diabetes mellitus; prospects, challenges and solutions. Afr. Health Sci. 2016, 16, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Leeds, A.R.; Gassull, M.A.; Haisman, P.; Dilawari, J.; Goff, D.V.; Metz, G.L.; Alberti, K.G. Dietary fibres, fibre analogues, and glucose tolerance: Importance of viscosity. Br. Med. J. 1978, 1, 1392–1394. [Google Scholar] [CrossRef] [PubMed]
- Story, J.A.; Furumoto, E.J.; Buhman, K.K. Dietary fiber and bile acid metabolism-an update. Adv. Exp. Med. Biol. 1997, 427, 259–266. [Google Scholar] [PubMed]
- Weickert, M.O.; Pfeiffer, A.F. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [PubMed]
- Ostman, E.M.; Liljeberg Elmstahl, H.G.; Bjorck, I.M. Barley bread containing lactic acid improves glucose tolerance at a subsequent meal in healthy men and women. J. Nutr. 2002, 132, 1173–1175. [Google Scholar] [PubMed]
- Samra, R.; Anderson, G.H. Insoluble cereal fiber reduces appetite and short-term food intake and glycemic response to food consumed 75 min later by healthy men. Am. J. Clin. Nutr. 2007, 86, 972–979. [Google Scholar] [PubMed]
- Craig, W.J.; Mangels, A.R. Position of the American Dietetic Association: Vegetarian diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar] [PubMed]
- Kiehm, T.G.; Anderson, J.W.; Ward, K. Beneficial effects of a high carbohydrate, high fiber diet on hyperglycemic diabetic men. Am. J. Clin. Nutr. 1976, 29, 895–899. [Google Scholar] [PubMed]
- Fallucca, F.; Fontana, L.; Fallucca, S.; Pianesi, M. Gut microbiota and Ma-Pi 2 macrobiotic diet in the treatment of type 2 diabetes. World J. Diabetes 2015, 6, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Post, R.E.; Mainous, A.G., 3rd; King, D.E.; Simpson, K.N. Dietary fiber for the treatment of type 2 diabetes mellitus: A meta-analysis. J. Am. Board Fam. Med. 2012, 25, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.M.; Kramer, C.K.; de Almeida, J.C.; Steemburgo, T.; Gross, J.L.; Azevedo, M.J. Fiber intake and glycemic control in patients with type 2 diabetes mellitus: A systematic review with meta-analysis of randomized controlled trials. Nutr. Rev. 2013, 71, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Marlett, J.A.; McBurney, M.I.; Slavin, J.L.; American Dietetic Association. Position of the American Dietetic Association: Health implications of dietary fiber. J. Am. Diet. Assoc. 2002, 102, 993–1000. [Google Scholar] [CrossRef]
- Trapp, C.B.; Barnard, N.D. Usefulness of vegetarian and vegan diets for treating type 2 diabetes. Curr. Diab. Rep. 2010, 10, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.E.; Stubbs, R.J. High and low carbohydrate and fat intakes: Limits imposed by appetite and palatability and their implications for energy balance. Eur. J. Clin. Nutr. 1999, 53, S148–S165. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, R.J.; Mazlan, N.; Whybrow, S. Carbohydrates, Appetite and Feeding Behavior in Humans. J. Nutr. 2001, 131, 2775S–2781S. [Google Scholar] [PubMed]
- Yu-Poth, S.; Zhao, G.; Etherton, T.; Naglak, M.; Jonnalagadda, S.; Kris-Etherton, P.M. Effects of the National Cholesterol Education Program’s Step I And Step II dietary intervention programs on cardiovascular disease risk factors: A meta-analysis. Am. J. Clin. Nutr. 1999, 69, 632–646. [Google Scholar] [PubMed]
- Astrup, A.; Ryan, L.; Grunwald, G.K.; Storgaard, M.; Saris, W.; Melanson, E.; Hill, J.O. The role of dietary fat in body fatness: Evidence from a preliminary meta-analysis of ad libitum low-fat dietary intervention studies. Br. J. Nutr. 2000, 83 (Suppl. S1), S25–S32. [Google Scholar] [CrossRef] [PubMed]
- Hellerstein, M.K. Carbohydrate-induced hypertriglyceridemia: Modifying factors and implications for cardiovascular risk. Curr. Opin. Lipidol. 2002, 13, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [PubMed]
- Ma, Y.; Li, Y.; Chiriboga, D.E.; Olendzki, B.C.; Hebert, J.R.; Li, W.; Leung, K.; Hafner, A.R.; Ockene, I.S. Association between carbohydrate intake and serum lipids. J. Am. Coll. Nutr. 2006, 25, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Fried, S.K.; Rao, S.P. Sugars, hypertriglyceridemia, and cardiovascular disease. Am. J. Clin. Nutr. 2003, 78, 873S–880S. [Google Scholar] [PubMed]
- Marckmann, P.; Raben, A.; Astrup, A. Ad libitum intake of low-fat diets rich in either starchy foods or sucrose: Effects on blood lipids, factor VII coagulant activity, and fibrinogen. Metabolism 2000, 49, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.N.; Le, N.A.; Melish, D.; Steinberg, D.; Brown, W.V. Effect of a high carbohydrate diet on apolipoprotein B catabolism in man. Metabolism 1981, 30, 347–353. [Google Scholar] [CrossRef]
- Parks, E.J.; Krauss, R.M.; Christiansen, M.P.; Neese, R.A.; Hellerstein, M.K. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J. Clin. Investig. 1999, 104, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Farese, R.V., Jr.; Yost, T.J.; Eckel, R.H. Tissue-specific regulation of lipoprotein lipase activity by insulin/glucose in normal-weight humans. Metabolism 1991, 40, 214–216. [Google Scholar] [CrossRef]
- Roberts, R.; Bickerton, A.S.; Fielding, B.A.; Blaak, E.E.; Wagenmakers, A.J.; Chong, M.F.; Gilbert, M.; Karpe, F.; Frayn, K.N. Reduced oxidation of dietary fat after a short term high-carbohydrate diet. Am. J. Clin. Nutr. 2008, 87, 824–831. [Google Scholar] [PubMed]
- Amaral, L.; Morgan, D.; Stephen, A.M.; Whiting, S. Effect of propionate on lipid metabolism in healthy human subjects. FASEB J. 1992, 6, A1655. [Google Scholar]
- Howard, B.V.; Curb, J.D.; Eaton, C.B.; Kooperberg, C.; Ockene, J.; Kostis, J.B.; Pettinger, M.; Rajkovic, A.; Robinson, J.G.; Rossouw, J.; et al. Low-fat dietary pattern and lipoprotein risk factors: The Women’s Health Initiative Dietary Modification Trial. Am. J. Clin. Nutr. 2010, 91, 860–874. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Friedman, M.I. Increasing adiposity: Consequence or cause of overeating? JAMA 2014, 311, 2167–2168. [Google Scholar] [CrossRef] [PubMed]
Amount of Carbohydrate | Reference |
---|---|
High carbohydrate: >65% of total energy | Liebman [4] |
Typical carbohydrate diets: 45%–65% | |
Moderately-restricted carbohydrate diet: 26%–44% | |
Low carbohydrate: <130 g/day (which represents 26% of calories of a 2000 calorie diet) | |
Very low carbohydrate diet: 20–50 g of carbohydrate or 5%–15% of total energy | |
High carbohydrate: >65% | Naude et al. [11] |
Balanced carbohydrate: 45%–65% | (based on recommendation range from USA, Canada, Australia, New Zealand and Europe) |
Low carbohydrate: <45% | |
High carbohydrate: >45% of total energy | Feinman et al. [10], Accurso et al. [12] |
Moderate carbohydrate: 26%–45% | (based on recommendation target on ADA websites, on the 2010 dietary guidelines for Americans and carbohydrate consumption (NHANES) |
Low carbohydrate: <130 g/day or <26% | |
Very low carbohydrate ketogenic: 20–50 g/day or 10% of the 2000 kcal/day diet | |
By carbohydrate/fat ratio; | Kodama et al. [14] |
High carbohydrate: 1.67–7.3 | |
Low carbohydrate: 0.6–1.56 |
ADA (2016) | KDA (2015) | JDA (2013) | CDA (2013) | EASD (2004) | |
---|---|---|---|---|---|
Macronutrient distribution | Use of individualized assessment because evidence suggests no one ideal distribution for all people | The intake of carbohydrate, protein and fat should be individualized according to the patient’s eating patterns, preferences and metabolic goals | 50%–60% of carbohydrate, 1.0–1.2g/kg/ideal body weight, rest of the energy for fat (no consensus as to the lower normal limits for carbohydrate, desirable not more than 60%) | Individualization within the following ranges: 45%–60% carbohydrate, 15%–20% protein, 20%–35% fat of total energy | Ranges of 45%–60% carbohydrate, 10%–20% protein, <35% fat of energy |
Glycemic index and Glycemic load | Substituting low glycemic load foods for higher glycemic load foods may be beneficial | 50%–60% | 50%–60% | 45%–60% choose food sources from a low glycemic index | low glycemic index foods are suitable as carbohydrate-rich choices |
Fiber and whole grain | Consume at least the amount recommended for the general public (14 g/1000 kcal or 25 g/day for women and 38 g/day for men) | Including various sources such as whole grains, should be 20–25 g/day (12 g/1000 kcal/day) | Fruit is limited to up to 1 unit (<80 kcal/day) | Consume higher intake than those for the general public (25–50 g/day or 15–25 g/1000 kcal) | Consume fiber intake >40 g/day (or 20 g/1000 kcal/day) with half as soluble; choose cereal-based foods high in fiber and whole grains |
Sucrose and fructose | Limit or avoid intake of sugar-sweetened beverages | Intake of sweets, jams or soft drinks must be minimized | Added sucrose or fructose can be substituted for other carbohydrate as a mixed meal up to a maximum of 10% total daily energy intake | Moderate intake of free sugars (up to 50 g/day) recommended without exceeding 10% total energy |
Solution for Cons | ||
---|---|---|
Pros | Considerable body weight reduction | |
Efficient fasting glucose control/HbA1c | ||
Decrease in LDL-C | ||
Cons | Raise in TG | HC with low GI/high fiber counter these lipid abnormalities |
Decrease in HDL-C | ||
Increase postprandial glucose/insulin response | HC with low GI/high fiber counter these lipid abnormalities |
Study | Country | Participants | n | Duration | Compared Diets | Amount of Macronutrients (C:F:P, % of Total Energy Intake) | GI/GL/Fiber | Main Source of Carbohydrate |
---|---|---|---|---|---|---|---|---|
McDougall et al. [21] | USA | 14.4% among participants had DM | 1615 | 7 days | No comparison group (HC/LF, starch-based diet only) | 81%:7%:12% | Not presented | Common starches, including wheat flour products, corn, rice, oats, barley, quinoa, potatoes, sweat potatoes, beans, lentils |
Guldbrand et al. [22] | Sweden | Adults with T2DM | 61 | 2 years | HC(LF) diet vs. VLC diet | HC(LF):55%–60%:30% (<10% saturated fat): 10%–15% VLC: 20%:50%:30% | Not presented | |
Brehm et al. [23] | USA | Overweight/obese with T2DM | 124 | 1 year | HC diet vs. high MUFA diet | HC: 60%:25%:15% High-MUFA: 45%:40% (20% MUFA):15% Both diet: calorie restriction (200–300 kcal/day) | Not presented | |
Meher et al. [24] | India | Newly diagnosed T2DM, treatment-naive | 48 | Postmeal 0, 2, 4 h | No comparison group (HC diet only) | HC (mixed meal breakfast): 79%:13%:8% | Not presented | Biscuits and sweetened milk |
Krebs et al. [27] | New Zealand | T2DM | 419 | 1 year and following 1 year | HC vs. High-Protein, Low-Fat(HPLF) diet | HC: 55%:30%:15% HPLF: 40%:30%:30% Both diet: calorie restriction (500 kcal/day) | Fiber: 1 year in study (HC vs. HPLF = 23.8 g vs. 25 g/day) Following 1 year after study (HC vs. HPLF = 23.7 g vs. 23.2 g/day) | |
Larsen et al. [28] | Australia | Overweight/obese with T2DM | 99 | 1 year | HC vs. HP diet | HC: 55%:30%:15% HP: 40%:30%:30% (3-month energy restrictive period (30%) followed by 9 months) | Both diets were recommended low GI diet | |
Hsu et al. [31] | USA | Adults at risk for DM (Caucasian Americans and East Asian Americans; Korean, Chinese and Japanese) | 50 | 16 weeks | Control group (16 weeks of Traditional Asian Diet (TAD)) vs. intervention group (8 weeks of TAD, followed by 8 weeks of Traditional Western Diet (TWD)) | TAD (HC): 70%:15%:15% TWD: 50%:34%:16% | TAD (HC): 15 g fiber/1000 kcal TWD: 6 g fiber/1000 kcal | |
Sacks et al. [54] | USA | Overweight/obese adults | 163 | 5 weeks | High GI/HC vs. Low GI/HC vs. High GI/VLC vs. Low GI/VLC diet | HC: 58% carbohydrate, VLC: 40% carbohydrate High GI: ≥65 on the glucose scale Low GI: ≤45 on the glucose scale (each diet was based on DASH-type diet) | Fiber: - High GI: averaged 31 g - Low GI: averaged 35 g | |
Wolever et al. [52] | Canada | T2DM managed by diet only | 162 | 1 year | High GI vs. low GI vs. VLC/High-MUFA | High GI: 47%:31%:22% low GI: 52%:27%:21% VLC/high-MUFA: 39%:40%:21% | High GI: GI 63 Low GI: GI 55 VLC/high-MUFA: GI 59 | High GI/low GI diet: starch carbohydrates |
Farvid et al. [63] | Iran | Adults with T2DM | 640 | Cross-sectional study | According to the Quartile of GI/GL | Quartile of GI: <54.1, 54.1–58.7, 58.8–63.5, >63.5 Quartile of GL : <129.6, 129.6–171.2, 171.3–212, >212 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, C.-H.; Choi, K.M. Impact of High-Carbohydrate Diet on Metabolic Parameters in Patients with Type 2 Diabetes. Nutrients 2017, 9, 322. https://doi.org/10.3390/nu9040322
Jung C-H, Choi KM. Impact of High-Carbohydrate Diet on Metabolic Parameters in Patients with Type 2 Diabetes. Nutrients. 2017; 9(4):322. https://doi.org/10.3390/nu9040322
Chicago/Turabian StyleJung, Chan-Hee, and Kyung Mook Choi. 2017. "Impact of High-Carbohydrate Diet on Metabolic Parameters in Patients with Type 2 Diabetes" Nutrients 9, no. 4: 322. https://doi.org/10.3390/nu9040322