eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. eBASIS
2.2. eBASIS Updates
2.2.1. Database Revisions: Procedure for Addition of Meat Bioactive Data
2.3. Addition of New Data: Plants and Meats
2.4. Linking of eBASIS Data to Probabilistic Intake Model to Assess Bioactive Intakes
2.5. Case Study: Scenario Modelling to Predict Dietary Intake of Epicatechin
2.6. eBASIS-Creme Global Exposure Interface
3. Results
3.1. eBASIS Database Contents
3.2. Assessment of Bioactive Intakes
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gry, J.; Black, L.; Eriksen, F.D.; Pilegaard, K.; Plumb, J.; Rhodes, M.; Sheehan, D.; Kiely, M.; Kroon, P.A. EuroFIR-BASIS—A combined composition and biological activity database for bioactive compounds in plant-based foods. Trends Food Sci. Technol. 2007, 18, 434–444. [Google Scholar] [CrossRef]
- Hartmann, R.; Meisel, H. Food-derived peptides with biological activity: From research to food applications. Curr. Opin. Biotechnol. 2007, 18, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Milan, B.Z.; Boskovic, M.; Ivanovic, J.; Janjic, J.; Dokmanovic, M.; Markovic, R.; Baltic, T. Bioactive peptides from meat and their influence on human health. Tehnol. Mesa 2014, 55, 8–21. [Google Scholar]
- Stadnik, J.; Keska, P. Meat and fermented meat products as a source of bioactive peptides. Acta Sci. Polon. Technol. Aliment. 2015, 14, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Jauhiainen, T.; Vapaatalo, H.; Poussa, T.; Kyronpalo, S.; Rasmussen, M.; Korpela, R. Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am. J. Hypertens. 2005, 18, 1600–1605. [Google Scholar] [CrossRef] [PubMed]
- Playne, M.J.; Bennett, L.E.; Smithers, G.W. Functional dairy foods and ingredients. Aust. J. Dairy Technol. 2003, 58, 242–264. [Google Scholar]
- Seppo, L.; Jauhiainen, T.; Poussa, T.; Korpela, R. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 2003, 77, 326–330. [Google Scholar] [PubMed]
- Hooper, L.; Kay, C.; Abdelhamid, A.; Kroon, P.A.; Cohn, J.S.; Rimm, E.B.; Cassidy, A. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: A systematic review and meta-analysis of randomized trials. Am. J. Clin. Nutr. 2012, 95, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Kay, C.D.; Hooper, L.; Kroon, P.A.; Rimm, E.B.; Cassidy, A. Relative impact of flavonoid composition, dose and structure on vascular function: A systematic review of randomised controlled trials of flavonoid-rich food products. Mol. Nutr. Food Res. 2012, 56, 1605–1616. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.T.M.; Threapleton, D.E.; Day, A.J.; Williamson, G.; Cade, J.E.; Burley, V.J. Fruit intake and cardiovascular disease mortality in the UK Women’s Cohort Study. Eur. J. Epidemiol. 2015, 30, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Wedick, N.M.; Pan, A.; Cassidy, A.; Rimm, E.B.; Sampson, L.; Rosner, B.; Willett, W.; Hu, F.B.; Sun, Q.; van Dam, R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr. 2012, 95, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Forouhi, N.G.; Sharp, S.J.; Gonzalez, C.A.; Buijsse, B.; Guevara, M.; van der Schouw, Y.T.; Amiano, P.; Boeing, H.; Bredsdorff, L.; et al. The Association Between Dietary Flavonoid and Lignan Intakes and Incident Type 2 Diabetes in European Populations The EPIC-InterAct study. Diabetes Care 2013, 36, 3961–3970. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Negri, E.; Parpinel, M.; Lagiou, P.; Bosetti, C.; Talamini, R.; Montella, M.; Giacosa, A.; Franceschi, S.; La Vecchia, C. Proanthocyanidins and the risk of colorectal cancer in Italy. Cancer Causes Control 2010, 21, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Rosato, V.; Bosetti, C.; Lagiou, P.; Parpinel, M.; Bertuccio, P.; Negri, E.; La Vecchia, C. Flavonoids, proanthocyanidins, and the risk of stomach cancer. Cancer Causes Control 2010, 21, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Cornet, M.; Bousset, J. Free amino acids and dipeptides in porcine muscles: Differences between ‘red’ and ‘white’ muscles. Meat Sci. 1999, 51, 215–219. [Google Scholar] [CrossRef]
- Overvad, K.; Diamant, B.; Holm, L.; Holmer, G.; Mortensen, S.A.; Stender, S. Coenzyme Q10 in health and disease. Eur. J. Clin. Nutr. 1999, 53, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Purchas, R.W.; Rutherfurd, S.M.; Pearce, P.D.; Vather, R.; Wilkinson, B.H.P. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q(10), and creatine. Meat Sci. 2004, 66, 629–637. [Google Scholar] [CrossRef]
- Aristoy, M.C.; Toldra, F. Concentration of free amino acids and dipeptides in porcine skeletal muscles with different oxidative patterns. Meat Sci. 1998, 50, 327–332. [Google Scholar] [CrossRef]
- Iwamoto, E.; Iwaki, F.; Oka, A. Effects of dietary protein level in the early fattening period on free amino acids and dipeptides in the blood and Longissimus thoracis muscle in Japanese Black steers. Anim. Sci. J. 2010, 81, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Mora, L.; Sentandreu, M.A.; Toldra, F. Contents of creatine, creatinine and carnosine in porcine muscles of different metabolic types. Meat Sci. 2008, 79, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.J.; Dwyer, J.T.; Jacques, P.F.; McCullough, M.L. Improving the estimation of flavonoid intake for study of health outcomes. Nutr. Rev. 2015, 73, 553–576. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.; Haytowitz, D.B. USDA Database for the Flavonoid Content of Selected Foods. Release 3.2; U.S. Department of Agriculture Agricultural Research Service: Beltsville, MD, USA, 2015.
- Phenol-Explorer. Available online: http://phenol-explorer.eu/ (accessed on 15 December 2016).
- EuroFIR AISBL. eBASIS: BioActive Substances in Food Information System. Available online: http://ebasis.eurofir.org/Default.asp (accessed on 28 July 2016).
- Kiely, M.; Black, L.J.; Plumb, J.; Kroon, P.A.; Hollman, P.C.; Larsen, J.C.; Speijers, G.J.; Kapsokefalou, M.; Sheehan, D.; Gry, J.; et al. EuroFIR eBASIS: Application for health claims submissions and evaluations. Eur. J. Clin. Nutr. 2010, 64, S101–S107. [Google Scholar] [CrossRef] [PubMed]
- BACCHUS. Available online: http://www.bacchus-fp7.eu/ (accessed on 28 July 2016).
- EuroFIR AISBL; PlantLIBRA. ePlantLIBRA Database. Available online: http://eplantlibra.eurofir.org/ (accessed on 8 March 2017).
- LanguaL—The International Framework for Food Description. Available online: http://www.langual.org/ (accessed on 28 July 2016).
- EuroFIR AISBL. Available online: http://eurofir.org/ (accessed on 28 July 2016).
- Peiretti, P.G.; Medana, C.; Visentin, S.; Giancotti, V.; Zunino, V.; Meineri, G. Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem. 2011, 126, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Dinelli, G.; Marotti, I.; Di Silvestro, R.; Bosi, S.; Bregola, V.; Accorsi, M.; Di Loreto, A.; Benedettelli, S.; Ghiselli, L.; Catizone, P. Agronomic, nutritional and nutraceutical aspects of durum wheat (Triticum durum Desf.) cultivars under low input agricultural management. Ital. J. Agron. 2013, 8, 85–93. [Google Scholar] [CrossRef]
- Web of Science. Available online: https://apps.webofknowledge.com/ (accessed on 8 March 2017).
- Plumb, J.; Lyons, J.; Norby, K.; Thomas, M.; Norby, E.; Poms, R.; Bucchini, L.; Restani, P.; Kiely, M.; Finglas, P.; et al. ePlantLIBRA: A composition and biological activity database for bioactive compounds in plant food supplements. Food Chem. 2016, 193, 121–127. [Google Scholar] [CrossRef] [PubMed]
- NatCen Social Research. National Diet and Nutrition Survey Years 1–4, 2008/09–2011/12. Available online: https://discover.ukdataservice.ac.uk/doi?sn=6533#6 (accessed on 20 October 2016).
- IUNA. The National Adult Nutrition Survey. Summary Report. Available online: http://www.iuna.net/ (accessed on 1 February 2017).
- The Spanish Agency for Food Safety and Nutrition (AESAN). National Survey of Dietary Intake (ENIDE). 2009–2010; The Spanish Agency for Food Safety and Nutrition (AESAN): Madrid, Spain, 2011. [Google Scholar]
- McNamara, C.; Naddy, B.; Rohan, D.; Sexton, J. Design, development and validation of software for modelling dietary exposure to food chemicals and nutrients. Food Addit. Contam. 2003, 20, S8–S26. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.A.; Haytowitz, D.B.; Wasswa-Kintu, S.I.; Pehrsson, P.R. Process of formulating USDA’s Expanded Flavonoid Database for the Assessment of Dietary intakes: A new tool for epidemiological research. Br. J. Nutr. 2015, 114, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Stepaniak, U.; Topor-Madry, R.; Szafraniec, K.; Pajak, A. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition 2014, 30, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, A.M.; Zujko, M.E.; Waskiewicz, A.; Terlikowska, K.M.; Piotrowski, W. Comparison of Various Databases for Estimation of Dietary Polyphenol Intake in the Population of Polish Adults. Nutrients 2015, 7, 9299–9308. [Google Scholar] [CrossRef] [PubMed]
- BACCHUS eBASIS-Creme Global Exposure Model. Available online: http://bacchus.cremeglobal.com/bacchus/ (accessed on 1 February 2017).
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’Hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordonez, M.; Knox, C.; Llorach, R.; Eisner, R.; Cruz, J.; Neveu, V.; Wishart, D.; Manach, C.; et al. Phenol-Explorer 2.0: A major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database 2012. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Andres-Lacueva, C.; Arita, M.; Kroon, P.; Manach, C.; Urpi-Sarda, M.; Wishart, D. Databases on Food Phytochemicals and Their Health-Promoting Effects. J. Agric. Food Chem. 2011, 59, 4331–4348. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.; Fernandez, M.; Cuervo, A.; Lasheras, C. Dietary intake of polyphenols and major food sources in an institutionalised elderly population. J. Hum. Nutr. Diet. 2014, 27, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, J.; Saura-Calixto, F. Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries. Food Res. Int. 2015, 74, 315–323. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. Soc. Clin. Nutr. 2004, 79, 727–747. [Google Scholar]
- Buttriss, J.L. Nutrition and health claims in practice. Nutr. Bull. 2015, 40, 211–222. [Google Scholar] [CrossRef]
- EUR-Lex. Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32006R1924 (accessed on 20 October 2016).
Plant Names | Compound Classes | Selected Output Fields | ||
---|---|---|---|---|
Almond Apple Apple Juice Apricot Aubergine, eggplant Avocado Banana Bean, Faba Bean, kidney Blackberry Blackcurrant Blackcurrant Juice Blueberry Broccoli Cabbage, Chinese Cabbage, red Cabbage, white Carrot Celeriac Cherry Chicory Chocolate Chocolate drink Clementine mandarin Coriander Cranberry Juice Cucumber | Dill Elder Juice Fennel Fig Garlic Ginkgo product Gooseberry Grape (fruit) Grape (fruit) Juice Grape (Wine) Grapefruit Grapefruit Juice Green tea dietary supplement Guava Kiwi Leek Lemon Lemon Juice Lettuce Lime Lime Juice Mandarin Mango Nectarine Onion Orange Juice Orange, Seville | Orange, sweet Papaya Parsley Pea, garden Peach Pear Pecan Pepper, bell Persimmon Pineapple Pistachio Plum Pomegranate Pomegranate Juice Pomelo Potato Radish, Japanese Raspberry Rice Rosemary Sage Soya Spinach Strawberry Strawberry Juice Sweet potato Tea Tomato Walnut Watercress Watermelon | Anthocyanins Flavanols Ellagitannins and Ellagic Acids Flavanones Flavonols Pro(antho)cyanidins Flavanols | Scientific name Compound Level Unit Part Plant description Shape, state or form EuroFIR classification Heat treatment Cooking method Treatment applied Preservation method Quality code |
Data Type | Plants | Compounds | References | Records |
---|---|---|---|---|
Composition | ||||
Total | 267 | 794 | 1147 | 39,756 |
Via BACCHUS | 107 | 339 | 231 | 10,679 |
Bioeffects | ||||
Total | 88 | 168 | 567 | 1117 |
Via BACCHUS | 17 | 19 | 103 | 106 |
Fruit | Composition Data | Beneficial Bioeffects Data | ||||
---|---|---|---|---|---|---|
No. Inputs | No. Compounds | No. Refs | No. Inputs | No. Compounds | No. Refs | |
Apple | 2329 | 95 | 70 | 13 | 7 | 13 |
Blackberry | 460 | 92 | 33 | 2 | 2 | 2 |
Cacao | 132 | 32 | 14 | 28 | 8 | 22 |
Chokeberry | 491 | 53 | 40 | 10 | 5 | 10 |
Cloudberry | 70 | 42 | 12 | 2 | 2 | 2 |
Mandarin | 154 | 34 | 24 | 3 | 3 | 2 |
Orange, Seville | 316 | 47 | 25 | 1 | 1 | 1 |
Orange, sweet | 1032 | 114 | 75 | 6 | 3 | 6 |
Pomegranate | 1112 | 73 | 29 | 27 | 6 | 25 |
Raspberry | 1087 | 143 | 55 | 4 | 3 | 4 |
Strawberry | 2380 | 141 | 70 | 14 | 5 | 14 |
Walnut | 105 | 34 | 13 | 23 | 2 | 23 |
Animal | No. Inputs | No. Compounds | No. Refs |
---|---|---|---|
Bovine (beef and other bovine animals/meats, e.g., ox, buffalo) | 111 | 4 | 11 |
Equine (horse and other equine animals/meats) | 2 | 2 | 1 |
Leporine (rabbit or hare) | 2 | 2 | 1 |
Other game mammals (e.g., moose, reindeer) | 18 | 3 | 2 |
Ovine (lamb, mutton and other ovine animals/meats) | 22 | 2 | 1 |
Porcine (pork, ham, bacon and other porcine animals/meats, e.g., wild boar) | 77 | 3 | 9 |
Poultry (e.g., chicken, turkey) | 376 | 3 | 20 |
Food and Compound | Ireland | UK | Spain | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | P95 | SE | Mean | SE | P95 | SE | Mean | SE | P95 | SE | |
Apple intake g/day | 28 | 1.2 | 120 | 4.9 | 21 | 0.9 | 88 | 5.7 | 40 | 1.1 | 169 | 11 |
Cyanidin-3-galactoside (Anthocyanins) | 0.66 | 0.1 | 4.48 | 0.3 | 0.55 | 0 | 3.83 | 0.1 | 0.91 | 0 | 5.16 | 0.9 |
Epicatechin (Flavanols) | 3.96 | 0.2 | 20.7 | 1.4 | 3.16 | 0.2 | 15.3 | 0.96 | 6.06 | 0.2 | 30.7 | 1.3 |
Procyanidin (Pro(antho)cyanidins) | 2.52 | 0.1 | 11.8 | 0.53 | 2.01 | 0.1 | 8.83 | 0.47 | 3.8 | 0.1 | 18.1 | 0.4 |
Quercetin glycosides (Flavonols) | 11.58 | 1.1 | 118 | 14.3 | 9.35 | 0.9 | 112 | 16.7 | 16.86 | 1.2 | 151 | 51 |
Orange juice intake g/day | 29.89 | 1.7 | 165 | 8.7 | 35 | 2 | 200 | 14 | 35.36 | 1.4 | 200 | 0 |
Cyanidin-3-glucoside (Anthocyanins) | 0.96 | 0.1 | 5.86 | 0.33 | 1.06 | 0.1 | 6.58 | 0.39 | 1.17 | 0.1 | 7.73 | 0.3 |
Epicatechin (Flavanols) | 0.9 | 0.1 | 5.16 | 0.25 | 1.07 | 0.1 | 5.47 | 0.4 | 1.08 | 0 | 6.08 | 0.3 |
Hesperidin (Flavanones) | 10.2 | 0.7 | 59.2 | 3.43 | 11.75 | 0.9 | 65.4 | 4.85 | 12.33 | 0.6 | 66.7 | 3 |
Neohesperidin (Flavanones) | 0.67 | 0.1 | 2.79 | 1.39 | 0.79 | 0.1 | 3.92 | 1.58 | 0.81 | 0.1 | 1.99 | 0.4 |
Tea intake g/day | 446 | 11 | 1130 | 31.1 | 438 | 10 | 1200 | 27.1 | 20.19 | 1.4 | 133 | 6.5 |
Catechin gallate (Flavanols) | 310 | 7.7 | 825 | 29 | 309.3 | 7.8 | 924 | 19.1 | 14.9 | 1.2 | 93.6 | 5.8 |
Epicatechin (Flavanols) | 12.96 | 0.3 | 35.6 | 1.5 | 12.9 | 0.3 | 38.2 | 0.96 | 0.6 | 0.05 | 4.7 | 0.4 |
Kaempferol glycosides (Flavonols) | 18.8 | 0.5 | 57 | 2.04 | 18 | 0.5 | 57.8 | 1.39 | 0.87 | 0.1 | 2.9 | 0.6 |
Procyanidin B1 (Pro(antho)cyanidins) | 6.78 | 0.2 | 18 | 0.71 | 6.7 | 0.2 | 19 | 0.4 | 0.31 | 0 | 2.1 | 0.2 |
Chocolate intake g/day | 3.38 | 0.2 | 18.5 | 1.8 | 7.6 | 0.4 | 35 | 1.7 | 4.27 | 0.2 | 23.2 | 1.4 |
Epicatechin (Flavanols) | 3.36 | 0.3 | 23.8 | 1.21 | 6.71 | 0.4 | 35.5 | 2.4 | 3.88 | 0.3 | 22.6 | 1.8 |
Catechin (Flavanols) | 0.88 | 0.1 | 5.01 | 0.52 | 1.85 | 0.1 | 10.1 | 0.5 | 1.18 | 0.1 | 7.02 | 0.4 |
Procyanidin B2 (Pro(antho)cyanidins) | 2.11 | 0.2 | 13.3 | 0.8 | 4.58 | 0.3 | 24.4 | 1.39 | 2.7 | 0.2 | 14.8 | 1.1 |
Procyanidin polymers (Pro(antho)cyanidins) | 14.72 | 1 | 91.9 | 6.99 | 34.66 | 1.8 | 170 | 6.4 | 19.3 | 1.2 | 109 | 8.2 |
Epicatechin Intakes (mg/Day), N = 2083 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Intake Scenario | Probability of Consumption | Mean | SE | P25 | SE | Median | SE | P95 | SE |
Baseline Diet | - | 17.3 | 0.4 | 5.1 | 0.4 | 14.7 | 0.5 | 44.8 | 0.7 |
Plus Epicatechin Capsule 70 mg | 0.5 | 27 | 0.6 | 7.2 | 0.5 | 19.5 | 0.7 | 75.5 | 1.6 |
0.75 | 30.8 | 0.7 | 7.1 | 0.5 | 19.9 | 0.7 | 89.2 | 1.6 | |
1 | 35.4 | 0.8 | 7.2 | 0.5 | 20.7 | 0.7 | 103.2 | 1.4 | |
Plus Epicatechin Capsule 140 mg | 0.5 | 36.1 | 1 | 6.9 | 0.6 | 20.2 | 0.9 | 122.7 | 2.3 |
0.75 | 44.6 | 1.2 | 7.1 | 0.6 | 20.6 | 0.9 | 154.9 | 1.7 | |
1 | 53.5 | 1.5 | 7.4 | 0.6 | 20.9 | 0.8 | 173.8 | 1.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plumb, J.; Pigat, S.; Bompola, F.; Cushen, M.; Pinchen, H.; Nørby, E.; Astley, S.; Lyons, J.; Kiely, M.; Finglas, P. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe. Nutrients 2017, 9, 320. https://doi.org/10.3390/nu9040320
Plumb J, Pigat S, Bompola F, Cushen M, Pinchen H, Nørby E, Astley S, Lyons J, Kiely M, Finglas P. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe. Nutrients. 2017; 9(4):320. https://doi.org/10.3390/nu9040320
Chicago/Turabian StylePlumb, Jenny, Sandrine Pigat, Foteini Bompola, Maeve Cushen, Hannah Pinchen, Eric Nørby, Siân Astley, Jacqueline Lyons, Mairead Kiely, and Paul Finglas. 2017. "eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and the Development of a Probabilistic Model to Assess Intakes in Europe" Nutrients 9, no. 4: 320. https://doi.org/10.3390/nu9040320