Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Food Analysis
2.3. Assessment of Nutritional Status
2.4. Blood Samples
2.5. Fatty Acid Analysis
2.5.1. Lipid Extraction from Erythrocyte Membranes
2.5.2. Fatty Acid Methyl Ester (FAME) Synthesis
2.5.3. Gas Chromatography Analysis of FAME
2.6. Statistical Analyses
3. Results
Variable | (n = 80) Mean ± SD |
---|---|
Age (Years) | 29.3 ± 5.9 |
SES | |
High (%) | 13.9 |
Medium (%) | 70.9 |
Low (%) | 15.2 |
Preconception Weight (kg) | 65.2 ± 10.9 |
Preconception BMI (kg/m2) | 25.1 ± 3.6 |
Weight (kg) a | 70.07 ± 10.7 |
Height (m) a | 1.60 ± 0.04 |
BMI (kg/m2) a | 26.9 ± 3.4 |
Gestational Age (Weeks) | 22.6 ± 8.4 |
Nutritional Status | |
Underweight (%) | 2.6 |
Normal Weight (%) | 51.2 |
Overweight (%) | 29.5 |
Obese (%) | 16.7 |
3.1. Dietary Intake
Energy/Nutrients | Intake | Requirement/RDA a | Adequacy (%) b | p-Value |
---|---|---|---|---|
Energy (kcal) | 2482.0 ± 670.5 | 1835.8 ± 79.3 | 135 | 0.01 |
Protein (g) | 94.0 ± 29.2 | 59.4 ± 3.4 | 158 | 0.001 |
Carbohydrate (g) | 326.9 ± 106.4 | 238.3 ± 53.1 | 137 | 0.001 |
Fat (g) | 88.8 ± 31.9 | 61.2 ± 2.6 | 145 | 0.001 |
Fiber (g) | 30.5 ± 12.1 | 28 | 108 | 0.07 |
Cholesterol (mg) c | 266.5 ± 104.4 | - | - | - |
Trans Fatty Acid (g) c | 1.3 ± 1.5 | - | - | - |
Iron (mg) | 14.4 ± 6.1 | 27 | 53 | 0.01 |
Folic Acid (μg) d | 408.7 ± 261.9 | 600 | 68 | 0.01 |
Choline (mg) | 217.2 ± 98.5 | 450 | 48 | 0.01 |
Iodine (μg) e | 74.8 ± 67.2 | 220 | 33 | 0.01 |
Calcium (mg) | 1111.9 ± 511.3 | 1000 | 119 | 0.05 |
Vitamin A (RAE) f | 905 ± 513.5 | 770 | 117 | 0.02 |
Thiamin (mg) | 1.2 ± 0.7 | 1.4 | 85 | 0.01 |
Riboflavin (mg) | 1.5 ± 0.7 | 1.4 | 107 | 0.19 |
Niacin (mg) | 11.6 ± 6.0 | 18 | 64 | 0.01 |
Vitamin C (mg) | 196.0 ± 106.7 | 85 | 230 | 0.01 |
Vitamin E (α-tocopherol, mg) | 5.8 ± 3.5 | 15 | 38 | 0.01 |
Vitamin B12 (μg) | 4.3 ± 2.6 | 2.6 | 165 | 0.01 |
Phosphorus (mg) | 985.1 ± 421.8 | 700 | 140 | 0.01 |
Sodium (g) | 2.76 ± 1.9 | 1.5 | 164 | 0.01 |
Potassium (g) | 2.9 ± 1.1 | 4.7 | 61 | 0.01 |
Magnesium (mg) | 214.8 ± 101.8 | 350 | 61 | 0.01 |
Zinc (mg) | 8.4 ± 4.63 | 11 | 76 | 0.01 |
Copper (μg) | 914.4 ± 462.8 | 1000 | 91 | 0.10 |
Nutrients | Intake | RDA a | Adequacy (%) b | p-Value c |
---|---|---|---|---|
Total Fat (g) | 88.8 ± 31.9 | 61.2 ± 2.6 | 145 | 0.001 |
Saturated Fat (g) | 26.7 ± 11.7 | 15.6 ± 1.6 | 171 | 0.001 |
Monounsaturated Fat (g) | 23.3 ± 10.5 | 29.0 ± 1.1 | 80 | 0.001 |
Polyunsaturated Fat (g) | 16.3 ± 9.1 | 22.3 ± 0.8 | 73 | 0.001 |
LA (g) * | 4.4 (2.8–6.7) c | 13.0 | 45 | 0.001 |
ALA (g) * | 0.6 (0.4–1.0) c | 1.4 | 67 | 0.001 |
ARA (mg) * | 60.0 (40–90) c | 800 | 7.5 | 0.001 |
EPA (mg) * | 10.0 (0–50) c | 100 | 31 | 0.001 |
DHA (mg) * | 40.0 (10–100) c | 200 | 33 | 0.001 |
n-6/n-3 Ratio ** | 8.1 ± 6.1 | - | - | - |
Food Groups | Total Fat (g) | Total SAFA (g) | Total MUFA (g) | Total PUFA (g) |
---|---|---|---|---|
Cereals | 9.7 (7.0–12.7) | 1.7 (1.3–2.4) | 1.0 (1.5–2.2) | 1.2 (0.7–1.8) |
Fruits and Vegetables | 1.2 (0.7–1.6) | 0.1 (0.07–0.17) | 0.05 (0.02–0.07) | 0.2 (0.1–0.3) |
Dairy | 8.4 (4.4–18.0) | 4.9 (2.8–10.8) | 1.9 (0.9–4.3) | 0.2 (0.1–0.6) |
Meats and Eggs | 12.5 (8.3–20.4) | 4.4 (2.8–6.7) | 2.8 (1.8–5.7) | 0.9 (0.5–1.2) |
Fish and Seafood | 0.7 (0.2–1.6) | 0.17 (0.008–0.064) | 0.2 (0.01–0.4) | 0.1 (0.01–0.2) |
Legumes | 0.18 (0.4–0.39) | 0.01 (0.006–0.04) | 0.02 (0.007–0.06) | 0.1 (0.02–0.2) |
High-Lipid Foods | 9.9 (3.7–14.4) | 1.2 (0.5–1.8) | 5.0 (2.5–7.6) | 1.6 (0.6–3.7) |
Oils and Fats | 25 (4.9–36.2) | 4.2 (2.2–6.4) | 4.7 (3.2–9.1) | 9.6 (3.9–15.0) |
Sugar, Alcohol and Processed Foods | 3.4 (0.84–8.1) | 0.9 (0.2–3.0) | 0.01 (0–0.02) | 0.004 (0–0.09) |
3.2. Fatty Acid Composition of Erythrocyte Phospholipids
Fatty Acids a | Chilean Women b | Chinese Women c | Belgium Women d | USA Women e |
---|---|---|---|---|
Total SAFA | 52.2 ± 2.8 | 46.4 (44.7–47.2) | 46.0 ± 3.3 | * |
Total MUFA | 13.3 ± 1.5 | 14.5 ± 3.5 | 12.7 ± 1.3 | * |
Total PUFA | 35.4 ± 3.3 | 36.6 (34.1–38.7) | 38.2 ± 3.5 | * |
Total n-6 PUFA | 28.6 ± 3.6 | 26.5 (24.6–28.3) | * | 27.91 ± 5.39 |
Total n-3 PUFA | 6.8 ± 1.0 | 9.8 (8.6–11.8) | * | 6.96 ± 2.27 |
18:2, n-6 (LA) | 14.6 ± 3.4 | 15.0 ± 4.6 | 19.1 ± 3.2 | 9.0 ± 1.49 |
18:3, n-3 (ALA) | 1.2 ± 0.4 | * | 0.22 ± 0.14 | 0.13 ± 0.06 |
20:4, n-6 (AA) | 13.2 ± 1.8 | 7.3 (5.7–8.5) | 8.4 ± 1.8 | 13.09 ± 3.3 |
20:5, n-3 (EPA) | 1.6 ± 0.5 | 1.9 (1.7–2.2) | 0.50 ± 0.31 | 0.30 ± 0.17 |
22:6, n-3 (DHA) | 3.6 ± 0.6 | 5.6 (4.1–8.1) | 4.8 ± 1.3 | 4.74 ± 1.68 |
n-6/n-3 PUFA Ratio | 4.3 ± 1.0 | 2.6 (2.1–3.2) | * | 4.71 ± 2.8 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Michaelsen, K.F.; Jorgensen, M.H. Dietary fat content and energy density during infancy and childhood; the effect on energy intake and growth. Eur. J. Clin. Nutr. 1995, 49, 467–483. [Google Scholar]
- Michaelsen, K.F.; Dewey, K.G.; Perez-Exposito, A.B.; Nurhasan, M.; Lauritzen, L.; Roos, N. Food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6–24 months), and pregnant and lactating women. Matern. Child. Nutr. 2011, 7, 124–140. [Google Scholar]
- Cunnane, S.C. Problems with essential fatty acids: Time for a new paradigm? Prog. Lipid Res. 2003, 42, 544–568. [Google Scholar]
- Nakamura, M.T.; Nara, T.Y. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 2004, 24, 345–376. [Google Scholar]
- Innis, S.M. Essential fatty acids in growth and development. Prog. Lipid Res. 1991, 30, 39–103. [Google Scholar]
- Youdim, K.A.; Martin, A.; Joseph, J.A. Essential fatty acids and the brain: Possible health implications. Int. J. Dev. Neurosci. 2000, 18, 383–399. [Google Scholar]
- OʼBrien, J.S.; Fillerup, D.L.; Mead, J.F. Quantification and fatty acid and fatty aldehyde composition of ethanolamine, choline, and serine glycerophosphatides in human cerebral grey and white matter. J. Lipid Res. 1964, 5, 329–338. [Google Scholar]
- Crawford, M.A.; Hassam, A.G.; Stevens, P.A. Essential fatty acid requirements in pregnancy and lactation with special reference to brain development. Prog. Lipid Res. 1981, 20, 31–40. [Google Scholar]
- Clandinin, M.T.; Chappell, J.E.; Leong, S.; Heim, T.; Swyer, P.R.; Chance, G.W. Intrauterine fatty acid accretion rates in human brain: Implications for fatty acid requirements. Early Hum. Dev. 1980, 4, 121–129. [Google Scholar]
- Martinez, M. Tissue levels of polyunsaturated fatty acids during early human development. J. Pediatr. 1992, 120, S129–S138. [Google Scholar]
- Hibbeln, J.R.; Nieminen, L.R.; Blasbalg, T.L.; Riggs, J.A.; Lands, W.E. Healthy intakes of n-3 and n-6 fatty acids: Estimations considering worldwide diversity. Am. J. Clin. Nutr. 2006, 83, 1483S–1493S. [Google Scholar]
- Carlson, S.E.; Colombo, J.; Gajewski, B.J.; Gustafson, K.M.; Mundy, D.; Yeast, J.; Georgieff, M.K.; Markley, L.A.; Kerling, E.H.; Shaddy, D.J. DHA supplementation and pregnancy outcomes. Am. J. Clin. Nutr. 2013, 97, 808–815. [Google Scholar]
- Dunstan, J.A.; Simmer, K.; Dixon, G.; Prescott, S.L. Cognitive assessment of children at age 2.5 years after maternal fish oil supplementation in pregnancy: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F45–F50. [Google Scholar]
- Birch, E.E.; Carlson, S.E.; Hoffman, D.R.; Fitzgerald-Gustafson, K.M.; Fu, V.L.; Drover, J.R.; Castaneda, Y.S.; Minns, L.; Wheaton, D.K.; Mundy, D.; et al. The diamond (DHA intake and measurement of neural development) study: A double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am. J. Clin. Nutr. 2010, 91, 848–859. [Google Scholar]
- Al, M.D.; van Houwelingen, A.C.; Kester, A.D.; Hasaart, T.H.; de Jong, A.E.; Hornstra, G. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br. J. Nutr. 1995, 74, 55–68. [Google Scholar]
- Brenna, J.T.; Carlson, S.E. Docosahexaenoic acid and human brain development: Evidence that a dietary supply is needed for optimal development. J. Hum. Evol. 2014. [Google Scholar] [CrossRef]
- Innis, S.M. Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J. Pediatr. 2003, 143, S1–S8. [Google Scholar]
- Larque, E.; Gil-Sanchez, A.; Prieto-Sanchez, M.T.; Koletzko, B. Omega 3 fatty acids, gestation and pregnancy outcomes. Br. J. Nutr. 2012, 107, S77–S84. [Google Scholar]
- Burdge, G.C.; Calder, P.C. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar]
- Makrides, M.; Gibson, R.A. Long-chain polyunsaturated fatty acid requirements during pregnancy and lactation. Am. J. Clin. Nutr. 2000, 71, 307S–311S. [Google Scholar]
- Sauerwald, U.C.; Fink, M.M.; Demmelmair, H.; Schoenaich, P.V.; Rauh-Pfeiffer, A.A.; Koletzko, B. Effect of different levels of docosahexaenoic acid supply on fatty acid status and linoleic and alpha-linolenic acid conversion in preterm infants. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 353–363. [Google Scholar]
- Zhang, J.; Wang, C.; Gao, Y.; Li, L.; Man, Q.; Song, P.; Meng, L.; Du, Z.Y.; Miles, E.A.; Lie, O.; et al. Different intakes of n-3 fatty acids among pregnant women in 3 regions of China with contrasting dietary patterns are reflected in maternal but not in umbilical erythrocyte phosphatidylcholine fatty acid composition. Nutr. Res. 2013, 33, 613–621. [Google Scholar]
- Denomme, J.; Stark, K.D.; Holub, B.J. Directly quantitated dietary (n>-3) fatty acid intakes of pregnant canadian women are lower than current dietary recommendations. J. Nutr. 2005, 135, 206–211. [Google Scholar]
- Innis, S.M.; Elias, S.L. Intakes of essential n-6 and n-3 polyunsaturated fatty acids among pregnant canadian women. Am. J. Clin. Nutr. 2003, 77, 473–478. [Google Scholar]
- Meyer, B.J.; Mann, N.J.; Lewis, J.L.; Milligan, G.C.; Sinclair, A.J.; Howe, P.R. Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids 2003, 38, 391–398. [Google Scholar]
- Otto, S.J.; Houwelingen, A.C.; Antal, M.; Manninen, A.; Godfrey, K.; Lopez-Jaramillo, P.; Hornstra, G. Maternal and neonatal essential fatty acid status in phospholipids: An international comparative study. Eur. J. Clin. Nutr. 1997, 51, 232–242. [Google Scholar]
- Makrides, M. Is there a dietary requirement for DHA in pregnancy? Prostaglandins Leukot. Essent. Fatty Acids 2009, 81, 171–174. [Google Scholar]
- European Society for Opinion and Marketing Research. The ESOMAR Standard Demographic Classification; ESOMAR: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Cerda, R.; Barrera, C.; Arena, M.; Bascuñán, K.A.; Jimenez, G. Atlas Fotográfico de Alimentos y Preparaciones Típicas Chilenas. Encuesta Nacional de Consumo Alimentario 2010, 1st ed.; Gobierno de Chile,Ministerio de Salud: Santiago, Chile, 2010. [Google Scholar]
- Atalah, E.; Castillo, C.; Castro, R.; Aldea, A. Proposalof a new standard for the nutritional assessment of pregnant women. Rev. Med. Chil. 1997, 125, 1429–1436. [Google Scholar]
- WHO/FAO/UNU. Human Energy Requirements, Report of a Joint FAO/WHO/UNU Expert Consultation: Rome, Italy, October 2014.
- Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes: Guiding Principles for Nutrition Labeling and Fortification; Institute of Medicine of the National Academies: Washington, DC, USA, 2001; pp. 1–224. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar]
- Ruiz-Gutierrez, V.; Cert, A.; Rios, J.J. Determination of phospholipid fatty acid and triacylglycerol composition of rat caecal mucosa. J. Chromatogr. 1992, 575, 1–6. [Google Scholar]
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride—Methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar]
- De Vriese, S.R.; Matthys, C.; de Henauw, S.; de Backer, G.; Dhont, M.; Christophe, A.B. Maternal and umbilical fatty acid status in relation to maternal diet. Prostaglandins Leukot Essent. Fatty Acids 2002, 67, 389–396. [Google Scholar]
- Donahue, S.M.; Rifas-Shiman, S.L.; Olsen, S.F.; Gold, D.R.; Gillman, M.W.; Oken, E. Associations of maternal prenatal dietary intake of n-3 and n-6 fatty acids with maternal and umbilical cord blood levels. Prostaglandins Leukot Essent. Fatty Acids 2009, 80, 289–296. [Google Scholar]
- Brenna, J.T.; Salem, N., Jr.; Sinclair, A.J.; Cunnane, S.C. Alpha-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent. Fatty Acids 2009, 80, 85–91. [Google Scholar]
- Janssen, C.I.; Kiliaan, A.J. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of LCPUFA on neural development, aging, and neurodegeneration. Prog. Lipid Res. 2014, 53, 1–17. [Google Scholar]
- Coti Bertrand, P.; OʼKusky, J.R.; Innis, S.M. Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain. J. Nutr. 2006, 136, 1570–1575. [Google Scholar]
- Green, P.; Glozman, S.; Kamensky, B.; Yavin, E. Developmental changes in rat brain membrane lipids and fatty acids. The preferential prenatal accumulation of docosahexaenoic acid. J. Lipid Res. 1999, 40, 960–966. [Google Scholar]
- Salem, N., Jr.; Litman, B.; Kim, H.Y.; Gawrisch, K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001, 36, 945–959. [Google Scholar]
- Helland, I.B.; Smith, L.; Saarem, K.; Saugstad, O.D.; Drevon, C.A. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments childrenʼs IQ at 4 years of age. Pediatrics 2003, 111, e39–e44. [Google Scholar]
- Hibbeln, J.R.; Davis, J.M.; Steer, C.; Emmett, P.; Rogers, I.; Williams, C.; Golding, J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study. Lancet 2007, 369, 578–585. [Google Scholar]
- Judge, M.P.; Harel, O.; Lammi-Keefe, C.J. A docosahexaenoic acid-functional food during pregnancy benefits infant visual acuity at four but not six months of age. Lipids 2007, 42, 117–122. [Google Scholar]
- Parra-Cabrera, S.; Moreno-Macias, H.; Mendez-Ramirez, I.; Schnaas, L.; Romieu, I. Maternal dietary omega fatty acid intake and auditory brainstem-evoked potentials in mexican infants born at term: Cluster analysis. Early Hum. Dev. 2008, 84, 51–57. [Google Scholar]
- Parra-Cabrera, S.; Stein, A.D.; Wang, M.; Martorell, R.; Rivera, J.; Ramakrishnan, U. Dietary intakes of polyunsaturated fatty acids among pregnant mexican women. Matern. Child. Nutr. 2011, 7, 140–147. [Google Scholar]
- McCann, J.C.; Ames, B.N. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am. J. Clin. Nutr. 2005, 82, 281–295. [Google Scholar]
- Simopoulos, A.P. Importance of the omega-6/omega-3 balance in health and disease: Evolutionary aspects of diet. World Rev. Nutr. Diet. 2011, 102, 10–21. [Google Scholar]
- Atalah, S.E.; Araya, B.M.; Rosselot, P.G.; Araya, L.H.; Vera, A.G.; Andreu, R.R.; Barba, G.C.; Rodriguez, L. Consumption of a DHA-enriched milk drink by pregnant and lactating women, on the fatty acid composition of red blood cells, breast milk, and in the newborn. Arch. Latinoam. Nutr. 2009, 59, 271–277. [Google Scholar]
- Guesnet, P.; Alessandri, J.M. Docosahexaenoic acid (DHA) and the developing central nervous system (CNS)—Implications for dietary recommendations. Biochimie 2011, 93, 7–12. [Google Scholar]
- Castillo, C.; Balboa, P.; Raimann, X.; Nutrición, R. Modificaciones a la leche del programa nacional de alimentación complementaria (PNAC) en chile. Rev. Chil. Ped. 2009, 80, 508–512. [Google Scholar]
- Contreras, A.; Herrera, Y.; Rodríguez, L.; Pizarro, T.; Atalah, E. Acceptability and consumption of a dairy drink with omega-3 in pregnant and lactating women of the national supplementary food program. Rev. Chil. Nutr. 2011, 38, 313–320. [Google Scholar]
- Hanson, M.; Gluckman, P.; Nutbeam, D.; Hearn, J. Priority actions for the non-communicable disease crisis. Lancet 2011, 378, 566–567. [Google Scholar]
- Zeisel, S.H. Is maternal diet supplementation beneficial? Optimal development of infant depends on motherʼs diet. Am. J. Clin. Nutr. 2009, 89, 685S–687S. [Google Scholar]
- Yang, Z.; Huffman, S.L. Nutrition in pregnancy and early childhood and associations with obesity in developing countries. Matern. Child. Nutr. 2013, 9, 105–119. [Google Scholar]
- Pasquare, F.A.; Bettinetti, R.; Fumagalli, S.; Vignati, D.A. Public health benefits and risks of fish consumption: Current scientific evidence v. mediacoverage. Public Health Nutr. 2013, 16, 1885–1892. [Google Scholar]
- Kim, K.B.; Nam, Y.A.; Kim, H.S.; Hayes, A.W.; Lee, B.M. Alpha-linolenic acid: Nutraceutical, pharmacological and toxicological evaluation. Food Chem. Toxicol. 2014, 70C, 163–178. [Google Scholar]
- Valenzuela, B.R.; Barrera, R.C.; Gonzalez-Astorga, M.; Sanhueza, C.J.; Valenzuela, B.A. Alpha-linolenic acid (ALA) from Rosa canina, sacha inchi and chia oils may increase ALA accretion and its conversion into n-3 LCPUFA in diverse tissues of the rat. Food Funct. 2014, 5, 1564–1572. [Google Scholar]
- Plourde, M.; Cunnane, S.C. Extremely limited synthesis of long chain polyunsaturates in adults: Implications for their dietary essentiality and use as supplements. Appl. Physiol. Nutr. Metab. 2007, 32, 619–634. [Google Scholar]
- Mardones, F.; Urrutia, M.T.; Villarroel, L.; Rioseco, A.; Castillo, O.; Rozowski, J.; Tapia, J.L.; Bastias, G.; Bacallao, J.; Rojas, I. Effects of a dairy product fortified with multiple micronutrients and omega-3 fatty acids on birth weight and gestation duration in pregnant chilean women. Public Health Nutr. 2008, 11, 30–40. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bascuñán, K.A.; Valenzuela, R.; Chamorro, R.; Valencia, A.; Barrera, C.; Puigrredon, C.; Sandoval, J.; Valenzuela, A. Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women. Nutrients 2014, 6, 4918-4934. https://doi.org/10.3390/nu6114918
Bascuñán KA, Valenzuela R, Chamorro R, Valencia A, Barrera C, Puigrredon C, Sandoval J, Valenzuela A. Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women. Nutrients. 2014; 6(11):4918-4934. https://doi.org/10.3390/nu6114918
Chicago/Turabian StyleBascuñán, Karla A., Rodrigo Valenzuela, Rodrigo Chamorro, Alejandra Valencia, Cynthia Barrera, Claudia Puigrredon, Jorge Sandoval, and Alfonso Valenzuela. 2014. "Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women" Nutrients 6, no. 11: 4918-4934. https://doi.org/10.3390/nu6114918
APA StyleBascuñán, K. A., Valenzuela, R., Chamorro, R., Valencia, A., Barrera, C., Puigrredon, C., Sandoval, J., & Valenzuela, A. (2014). Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women. Nutrients, 6(11), 4918-4934. https://doi.org/10.3390/nu6114918