Hydration Strategies and Body Composition Differences in Male and Female Elite Bodybuilders During Competition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.2.1. Anthropometric Measurements
2.2.2. Bioelectrical Impedance Analysis (BIA)
2.2.3. Hydration Status
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Methodological Limitations and Suggestions for Future Research
4.2. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aragon, A.A.; Schoenfeld, B.J.; Wildman, R.; Kleiner, S.; VanDusseldorp, T.; Taylor, L.; Earnest, C.P.; Arciero, P.J.; Wilborn, C.; Kalman, D.S. International Society of Sports Nutrition Position Stand: Diets and Body Composition. J. Int. Soc. Sports Nutr. 2017, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Olshvang, D.; Harris, C.; Chellappa, R.; Santhanam, P. Predictive Modeling of Lean Body Mass, Appendicular Lean Mass, and Appendicular Skeletal Muscle Mass Using Machine Learning Techniques: A Comprehensive Analysis Utilizing NHANES Data and the Look Ahead Study. PLoS ONE 2024, 19, e0309830. [Google Scholar] [CrossRef] [PubMed]
- Gann, J.J.; Andre, T.L.; Gallucci, A.R.; Willoughby, D.S. Effects of Hypohydration on Muscular Strength, Endurance, and Power in Women. J. Strength Cond. Res. 2021, 35, S102–S106. [Google Scholar] [CrossRef] [PubMed]
- Escalante, G.; Stevenson, S.W.; Barakat, C.; Aragon, A.A.; Schoenfeld, B.J. Peak Week Recommendations for Bodybuilders: An Evidence-Based Approach. BMC Sports Sci. Med. Rehabil. 2021, 13, 68. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M. Development of Hydration Strategies to Optimize Performance for Athletes in High-Intensity Sports and in Sports with Repeated Intense Efforts. Scand. J. Med. Sci. Sports 2010, 20, 59–69. [Google Scholar] [CrossRef]
- Casa, D.J.; Stearns, R.L.; Lopez, R.M.; Ganio, M.S.; McDermott, B.P.; Yeargin, S.W.; Yamamoto, L.M.; Mazerolle, S.M.; Roti, M.W.; Armstrong, L.E. Influence of Hydration on Physiological Function and Performance During Trail Running in the Heat. J. Athl. Train. 2010, 45, 147–156. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Alto, A.; Grgic, J.; Tinsley, G.; Haun, C.T.; Campbell, B.I.; Escalante, G.; Sonmez, G.T.; Cote, G.; Francis, A. Alterations in Body Composition, Resting Metabolic Rate, Muscular Strength, and Eating Behavior in Response to Natural Bodybuilding Competition Preparation: A Case Study. J. Strength Cond. Res. 2020, 34, 3124–3138. [Google Scholar] [CrossRef]
- Cataldi, D. Methodological Considerations of Body Composition Assessments and Predicting Athletic Performance: The Da Kine Study. Ph.D. Thesis, University of Hawai’i at Manoa , Honolulu, HI, USA, 2023. [Google Scholar]
- Homer, K.A.; Cross, M.R.; Helms, E.R. Peak Week Carbohydrate Manipulation Practices in Physique Athletes: A Narrative Review. Sports Med.-Open 2024, 10, 8. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Kenefick, R.W. Dehydration: Physiology, Assessment, and Performance Effects. Compr. Physiol. 2011, 4, 257–285. [Google Scholar] [CrossRef]
- Martín-Rodríguez, A.; Belinchón-deMiguel, P.; Rubio-Zarapuz, A.; Tornero-Aguilera, J.F.; Martínez-Guardado, I.; Villanueva-Tobaldo, C.V.; Clemente-Suárez, V.J. Advances in Understanding the Interplay between Dietary Practices, Body Composition, and Sports Performance in Athletes. Nutrients 2024, 16, 571. [Google Scholar] [CrossRef]
- Petri, C.; Micheli, M.L.; Izzicupo, P.; Timperanza, N.; Lastrucci, T.; Vanni, D.; Gulisano, M.; Mascherini, G. Bioimpedance patterns and bioelectrical impedance vector analysis (BIVA) of body builders. Nutrients 2023, 15, 1606. [Google Scholar] [CrossRef] [PubMed]
- Lebiedowska, A.; Hartman-Petrycka, M.; Stolecka-Warzecha, A.; Odrzywołek, W.; Bożek, M.; Wilczyński, S. The Influence of Skin Parameters and Body Composition on the Tolerance of Pain Stimulus Generated During Electrical Muscle Stimulation (EMS) in Women-Pilot Study. Clin. Cosmet. Investig. Dermatol. 2024, 17, 1227–1243. [Google Scholar] [CrossRef] [PubMed]
- Montain, S.J.; Latzka, W.A.; Sawka, M.N. Fluid Replacement Recommendations for Training in Hot Weather. Mil. Med. 1999, 164, 502–508. [Google Scholar] [CrossRef]
- Wilson, P.B. Associations of Urine Specific Gravity with Body Mass Index and Lean Body Mass at the Population Level: Implications for Hydration Monitoring. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 475–481. [Google Scholar] [CrossRef]
- Aburto-Corona, J.A.; Calleja-Núñez, J.J.; Moncada-Jiménez, J.; de Paz, J.A. The Effect of Passive Dehydration on Phase Angle and Body Composition: A Bioelectrical Impedance Analysis. Nutrients 2024, 16, 2202. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M. Bioelectrical Impedance Analysis—Part I: Review of Principles and Methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, O.; Marra, M.; Di Gregorio, A.; Pasanisi, F.; Scalfi, L. Bioelectrical Impedance Analysis (BIA)-Derived Phase Angle in Sarcopenia: A Systematic Review. Clin. Nutr. 2021, 40, 3052–3061. [Google Scholar] [CrossRef]
- Matias, C.N.; Campa, F.; Nunes, C.L.; Francisco, R.; Jesus, F.; Cardoso, M.; Valamatos, M.J.; Mil Homens, P.; Sardinha, L.B.; Martins, P. Phase Angle Is a Marker of Muscle Quantity and Strength in Overweight/Obese Former Athletes. Int. J. Environ. Res. Public Health 2021, 18, 6649. [Google Scholar] [CrossRef]
- Short, T.; Yamada, P. Exploring the Mechanistic Trail Connecting Cellular Function, Health, and Athletic Performance with Phase Angle: A Review on the Physiology of Phase Angle and Exercise-Based Interventions. Top. Exerc. Sci. Kinesiol. 2024, 5, 7. [Google Scholar]
- Catapano, A.; Trinchese, G.; Cimmino, F.; Petrella, L.; D’Angelo, M.; Di Maio, G.; Crispino, M.; Cavaliere, G.; Monda, M.; Mollica, M.P. Impedance Analysis to Evaluate Nutritional Status in Physiological and Pathological Conditions. Nutrients 2023, 15, 2264. [Google Scholar] [CrossRef]
- Almeida, F.N.; Nascimento, D.C.; Moura, R.F.; Peixoto, D.L.; Moraes, W.M.A.M.; Schoenfeld, B.J.; de Sousa Neto, I.V.; Prestes, J. Training, Pharmacological Ergogenic Aids, Dehydration, and Nutrition Strategies During a Peak Week in Competitive Brazilian Bodybuilders: An Observational Cross-Sectional Study in a Non-World Anti-Doping Agency Competitive Environment. Sports 2023, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Gobbo, L.A.; Stagi, S.; Cyrino, L.T.; Toselli, S.; Marini, E.; Coratella, G. Bioelectrical Impedance Analysis Versus Reference Methods in the Assessment of Body Composition in Athletes. Eur. J. Appl. Physiol. 2022, 122, 561–589. [Google Scholar] [CrossRef]
- Lombardo, M.; Feraco, A.; Armani, A.; Camajani, E.; Gorini, S.; Strollo, R.; Padua, E.; Caprio, M.; Bellia, A. Gender Differences in Body Composition, Dietary Patterns, and Physical Activity: Insights from a Cross-Sectional Study. Front. Nutr. 2024, 11, 1414217. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.; Raymond-Pope, C.J. New Frontiers of Body Composition in Sport. Int. J. Sports Med. 2021, 42, 588–601. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; McClung, H.L.; Margolis, L.M.; Murphy, N.E.; Lin, G.G.; Hydren, J.R.; Young, A.J. Human Muscle Protein Synthetic Responses During Weight-Bearing and Non-Weight-Bearing Exercise: A Comparative Study of Exercise Modes and Recovery Nutrition. PLoS ONE 2015, 10, e0140863. [Google Scholar] [CrossRef]
- Macho, J.; Mudrak, J.; Slepicka, P. Enhancing the Self: Amateur Bodybuilders Making Sense of Experiences with Appearance and Performance-Enhancing Drugs. Front. Psychol. 2021, 12, 648467. [Google Scholar] [CrossRef]
- Taniguchi, M.; Yamada, Y.; Yagi, M.; Nakai, R.; Tateuchi, H.; Ichihashi, N. Estimating Thigh Skeletal Muscle Volume Using Multi-Frequency Segmental-Bioelectrical Impedance Analysis. J. Physiol. Anthropol. 2021, 40, 13. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Yi, Y.; Baek, J.Y.; Lee, E.; Jung, H.-W.; Jang, I.-Y. A Comparative Study of High-Frequency Bioelectrical Impedance Analysis and Dual-Energy X-Ray Absorptiometry for Estimating Body Composition. Life 2022, 12, 994. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L.; Graves, J.E.; Mahar, M.T. Reliability and Validity of Bioelectrical Impedance in Determining Body Composition. J. Appl. Physiol. 1988, 64, 529–534. [Google Scholar] [CrossRef]
- Ha, Y.-C.; Kim, S.; Yoo, J.-I. Open, Active-Controlled Clinical Study to Evaluate the Correlation Between Whole Body DEXA and BIA Muscle Measurements. J. Bone Metab. 2024, 31, 219. [Google Scholar] [CrossRef] [PubMed]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef]
- Nunes, J.P.; Araújo, J.P.; Ribeiro, A.S.; Campa, F.; Schoenfeld, B.J.; Cyrino, E.S.; Trindade, M.C. Changes in Intra-to-Extra-Cellular Water Ratio and Bioelectrical Parameters from Day-before to Day-of Competition in Bodybuilders: A Pilot Study. Sports 2022, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.T.E. Eta Squared and Partial Eta Squared as Measures of Effect Size in Educational Research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Jensen, B.; Braun, W.; Pourhassan, M.; Gallagher, D.; Müller, M.J. Quantification of Whole-Body and Segmental Skeletal Muscle Mass Using Phase-Sensitive 8-Electrode Medical Bioelectrical Impedance Devices. Eur. J. Clin. Nutr. 2017, 71, 1061–1067. [Google Scholar] [CrossRef]
- Ramos Campo, D.J.; Martínez Sánchez, F.; Esteban García, P.; Rubio Arias, J.Á.; Bores Cerezal, A.; Clemente Suárez, V.; Jiménez Díaz, J.F. Body Composition Features in Different Playing Position of Professional Team Indoor Players. Int. J. Morphol. 2014, 32, 4. [Google Scholar] [CrossRef]
- Belinchon-deMiguel, P.; Clemente-Suárez, V.J. Psychophysiological, Body Composition, Biomechanical and Autonomic Modulation Analysis Procedures in an Ultraendurance Mountain Race. J. Med. Syst. 2018, 42, 32. [Google Scholar] [CrossRef]
- Barakat, C.; Escalante, G.; Stevenson, S.W.; Bradshaw, J.T.; Barsuhn, A.; Tinsley, G.M.; Walters, J. Can Bodybuilding Peak Week Manipulations Favorably Affect Muscle Size, Subcutaneous Thickness, and Related Body Composition Variables? A Case Study. Sports 2022, 10, 106. [Google Scholar] [CrossRef]
- Bauer, P.; Majisik, A.; Mitter, B.; Csapo, R.; Tschan, H.; Hume, P.; Martínez-Rodríguez, A.; Makivic, B. Body Composition of Competitive Bodybuilders: A Systematic Review of Published Data and Recommendations for Future Work. J. Strength Cond. Res. 2023, 37, 726–732. [Google Scholar] [CrossRef]
Macronutrient | Male (g/kg/day) | Female (g/kg/day) | Notes |
---|---|---|---|
Carbohydrates | 3–7 (up to 10 during carb load) | 2.5–5.5 | Higher intake during carb-loading phase; sometimes up to 10 g/kg |
Protein | 2.2–3.5 | 2–2.8 | High to preserve lean mass during caloric restriction |
Fat | 0.5–1 | 0.5–0.8 | Reduced to allow more carbs/protein within caloric limits |
Descriptives | Females (n = 16) | Males (n = 18) | ∆ | p-value | η2p | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Weight (kg) | 57.0 | 5.7 | 78.0 | 6.5 | 21.0 | <0.001 | 0.714 |
Height (cm) | 159.2 | 6.2 | 171.3 | 3.7 | 12.1 | <0.001 | 0.568 |
Body Mass Index (kg/m2) | 22.5 | 1.6 | 26.5 | 1.8 | 4.0 | <0.001 | 0.522 |
Fat Mass (kg) | 8.1 | 1.9 | 7.0 | 1.7 | 1,1 | 0.085 | 0.094 |
Fat Mass (%) | 14.2 | 3.0 | 8.9 | 1.8 | 5.3 | <0.001 | 0.498 |
Musculoskeletal Mass (kg) | 27.5 | 3.1 | 41.2 | 3.6 | 13.7 | <0.001 | 0.781 |
Musculoskeletal Mass (%) | 48.2 | 2.3 | 52.8 | 1.0 | 4.6 | <0.001 | 0.597 |
Lean Mass (kg) | 46.2 | 4.8 | 67.2 | 5.4 | 21.0 | <0.001 | 0.789 |
Fat Free Mass (kg) | 48.9 | 5.0 | 70.8 | 5.8 | 21.9 | <0.001 | 0.783 |
Right Arm Muscle Mass (kg) | 2.6 | 0.4 | 4.5 | 0.4 | 1.9 | <0.001 | 0.814 |
Left Arm Muscle Mass (kg) | 2.6 | 0.4 | 4.5 | 0.5 | 1.9 | <0.001 | 0.791 |
Trunk Muscle Mass (kg) | 21.7 | 2.4 | 32.3 | 2.5 | 10.6 | <0.001 | 0.803 |
Right Leg Muscle Mass (kg) | 7.2 | 1.0 | 10.0 | 0.9 | 1.8 | <0.001 | 0.655 |
Left Leg Muscle Mass (kg) | 7.2 | 1.0 | 9.9 | 0.9 | 1.7 | <0.001 | 0.662 |
Metabolism (kcal) | 1.426 | 110.4 | 1.903 | 126.4 | 477 | <0.001 | 0.782 |
Waist Hip Ratio | 0.788 | 0.1 | 0.791 | 0.1 | 0.3 | 0.646 | 0.007 |
Total Body Cell Mass | 32.4 | 3.5 | 47.4 | 4.0 | 15.0 | <0.001 | 0.783 |
Musculoskeletal Index | 7.7 | 0.7 | 9.8 | 0.6 | 2.1 | <0.001 | 0.676 |
Descriptives | Females (n = 16) | Males (n = 18) | ∆ | p-value | η2p | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Body Water (L) | 35.9 | 3.7 | 52.0 | 4.2 | 16.1 | <0.001 | 0.784 |
Intracellular Water (L) | 22.6 | 2.5 | 33.1 | 2.8 | 10.5 | <0.001 | 0.782 |
Extracellular Water (L) | 13.2 | 1.3 | 24.5 | 2.4 | 11.3 | 0.069 | 0.144 |
ECW/TBW | 0.369 | 0.1 | 0.363 | 0.1 | 0.6 | 0.180 | 0.032 |
TBW | 35.9 | 3.7 | 52.0 | 4.2 | 16.1 | <0.001 | 0.784 |
ICW | 22.6 | 2.5 | 33.1 | 2.8 | 10.5 | <0.001 | 0.781 |
ECW | 13.2 | 1.3 | 18.9 | 1.5 | 5.7 | <0.001 | 0.770 |
Water Right Arm (L) | 2.0 | 0.3 | 3.5 | 0.3 | 1.5 | <0.001 | 0.814 |
Water Left Arm (L) | 2.0 | 0.3 | 3.5 | 0.4 | 1.5 | <0.001 | 0.791 |
Water Trunk Arm (L) | 16.8 | 1.8 | 25.0 | 1.9 | 8.2 | <0.001 | 0.803 |
Water Right Leg (L) | 5.5 | 0.8 | 7.7 | 0.7 | 2.2 | <0.001 | 0.670 |
Water Left Leg (L) | 5.5 | 0.7 | 7.7 | 0.7 | 2.2 | <0.001 | 0.666 |
TBW/FFM (%) | 73.3 | 0.2 | 73.3 | 0.3 | 0.0 | 0.502 | 0.006 |
Descriptives | Female (n = 16) | Male (n = 18) | ∆ | p-value | η2p | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Total angular phase (50 Khz) | 7.0 | 0.9 | 8.2 | 0.7 | 1.2 | 0.003 | 0.257 |
Angular phase of the right arm (50 Khz) | 6.9 | 0.8 | 8.0 | 0.7 | 1.1 | <0.001 | 0.337 |
Angular phase of the left arm (50 Khz) | 6.7 | 0.9 | 7.9 | 0.6 | 1.2 | <0.001 | 0.330 |
Angular phase of the trunk (50 Khz) | 10.3 | 1.5 | 12.9 | 1.5 | 2.6 | <0.001 | 0.357 |
Angular phase of the right leg (50 Khz) | 7.0 | 1.1 | 8.5 | 0.8 | 1.5 | 0.005 | 0.116 |
Angular phase of the left leg (50 Khz) | 6.9 | 1.2 | 7.9 | 0.9 | 1.0 | 0.007 | 0.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giakoni-Ramírez, F.; Muñoz-Strale, C.; de Souza-Lima, J.; Aránguiz Dote, L.; López-Gil, J.F.; Clemente-Suárez, V.J.; Yáñez-Sepúlveda, R. Hydration Strategies and Body Composition Differences in Male and Female Elite Bodybuilders During Competition. Nutrients 2025, 17, 1554. https://doi.org/10.3390/nu17091554
Giakoni-Ramírez F, Muñoz-Strale C, de Souza-Lima J, Aránguiz Dote L, López-Gil JF, Clemente-Suárez VJ, Yáñez-Sepúlveda R. Hydration Strategies and Body Composition Differences in Male and Female Elite Bodybuilders During Competition. Nutrients. 2025; 17(9):1554. https://doi.org/10.3390/nu17091554
Chicago/Turabian StyleGiakoni-Ramírez, Frano, Catalina Muñoz-Strale, Josivaldo de Souza-Lima, Luis Aránguiz Dote, José Francisco López-Gil, Vicente Javier Clemente-Suárez, and Rodrigo Yáñez-Sepúlveda. 2025. "Hydration Strategies and Body Composition Differences in Male and Female Elite Bodybuilders During Competition" Nutrients 17, no. 9: 1554. https://doi.org/10.3390/nu17091554
APA StyleGiakoni-Ramírez, F., Muñoz-Strale, C., de Souza-Lima, J., Aránguiz Dote, L., López-Gil, J. F., Clemente-Suárez, V. J., & Yáñez-Sepúlveda, R. (2025). Hydration Strategies and Body Composition Differences in Male and Female Elite Bodybuilders During Competition. Nutrients, 17(9), 1554. https://doi.org/10.3390/nu17091554