Evaluation of the 10&10,000 Change Challenge Program
Abstract
1. Introduction
The 10 & 10,000 Change Challenge Program
2. Methods
2.1. Aims
2.2. Participants
2.3. Design and Procedures
2.4. Measures
2.4.1. Health
2.4.2. Self-Efficacy
2.5. Statistical Analysis
3. Results
3.1. Participant Demographics
3.2. Changes in Self-Efficacy, Weight, and Health Perception of Program Graduates
3.3. Differences Based on Weight Group and Completion Status
4. Discussion
4.1. Program Outcomes and Implications
4.2. Program Drop Out
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
10&10K | 10&10,000 Change Challenge program |
AgriLife Extension | Texas A&M AgriLife Extension Service |
ANOVA | Analysis of variance |
BMI | Body mass index |
BRFSS | Behavioral risk factor surveillance system |
CDC | Center for disease control and prevention |
FV | Fruit and vegetable |
M | Mean |
PA | Physical activity |
STEM | Science, technology, engineering, and mathematics |
References
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/chronic-disease/?CDC_AAref_Val=https://www.cdc.gov/chronicdisease/prevention/index.html (accessed on 24 October 2024).
- Bray, G.A.; Kim, K.K.; Wilding, J.P.; World Obesity Federation. Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017, 18, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Fruh, S.M. Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. J. Am. Assoc. Nurse Pract. 2017, 29, S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [PubMed]
- Gadde, K.M.; Martin, C.K.; Berthoud, H.R.; Heymsfield, S.B. Obesity: Pathophysiology and management. J. Am. Coll. Cardiol. 2018, 71, 69–84. [Google Scholar] [CrossRef]
- Jakicic, J.M.; Otto, A.D. Physical activity considerations for the treatment and prevention of obesity. Am. J. Clin. Nutr. 2005, 82, 226S–229S. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/nchs/products/databriefs/db443.htm#Data%20source%20and%20methods (accessed on 24 October 2024).
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/mmwr/volumes/71/wr/mm7101a1.htm#:~:text=In%02019%2C%2012.3%25%20and%2010.0,lowest%20among%20male%20(10.1%25) (accessed on 24 October 2024).
- Salmi, L.; Hasanen, E.; Simula, M.; Virmasalo, I.; Muukkonen, P. Perceived barriers to physical activity in the social spaces of low socioeconomic status suburbs. Wellbeing Space Soc. 2023, 5, 100164. [Google Scholar] [CrossRef]
- Sequeira, S.; Cruz, C.; Pinto, D.; Santos, L.; Marques, A. Prevalence of barriers for physical activity in adults according to gender and socioeconomic status. Br. J. Sports Med. 2011, 45, A18–A19. [Google Scholar] [CrossRef]
- Morris, J.N.; Hardman, A.E. Walking to health. Sports Med. 1997, 23, 306–332. [Google Scholar] [CrossRef]
- Mutrie, N.; Hannah, M.K. Some work hard while others play hard: The achievement of current recommendations for physical activity levels at work, at home, and in leisure time in the West of Scotland. Int. J. Health Promot. Educ. 2004, 42, 109–117. [Google Scholar] [CrossRef]
- Department of Health and Human Services. Available online: https://health.gov/sites/default/files/201909/PAG_Advisory_Committee_Report.pdf (accessed on 24 October 2024).
- Tudor-Locke, C.; Craig, C.L.; Brown, W.J.; Clemes, S.A.; De Cocker, K.; Giles-Corti, B.; Hatano, Y.; Inoue, S.; Matsudo, S.M.; Mutrie, N.; et al. How many steps/day are enough? For adults. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 1–7. [Google Scholar] [CrossRef]
- Wattanapisit, A.; Thanamee, S. Evidence behind 10,000 steps walking. J. Health Res. 2017, 31, 241–248. [Google Scholar]
- Soroush, A.; Der Ananian, C.; Ainsworth, B.E.; Belyea, M.; Poortvliet, E.; Swan, P.D.; Walker, J.; Yngve, A. Effects of a 6-month walking study on blood pressure and cardiorespiratory fitness in US and Swedish adults: ASUKI step study. Asian J. Sports Med. 2013, 4, 114. [Google Scholar] [CrossRef] [PubMed]
- Tully, M.A.; Cupples, M.E. UNISTEP (university students exercise and physical activity) study: A pilot study of the effects of accumulating 10,000 steps on health and fitness among university students. J. Phys. Act. Health 2011, 8, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Boyer, K.A.; Kiratli, B.J.; Andriacchi, T.P.; Beaupre, G.S. Maintaining femoral bone density in adults: How many steps per day are enough? Osteoporos. Int. 2011, 22, 2981–2988. [Google Scholar] [CrossRef]
- Butcher, L.R.; Thomas, A.; Backx, K.; Roberts, A.; Webb, R.; Morris, K. Low-intensity exercise exerts beneficial effects on plasma lipids via PPARγ. Med. Sci. Sports Exerc. 2008, 40, 1263–1270. [Google Scholar] [CrossRef]
- Ewald, B.; Attia, J.; McElduff, P. How many steps are enough? Dose–Response curves for Pedometer steps and multiple health markers in a community-based sample of older Australians. J. Phys. Act. Health 2014, 11, 509–518. [Google Scholar] [CrossRef]
- Schneider, P.L.; Bassett, D.R., Jr.; Thompson, D.L.; Pronk, N.P.; Bielak, K.M. Effects of a 10,000 steps per day goal in overweight adults. Am. J. Health Promot. 2006, 21, 85–89. [Google Scholar] [CrossRef]
- Kanders, B.; Peterson, F.J.; Lavin, P.; Norton, D.E.; Istfan, N.W.; Blackburn, G.L. Long term health effects associated with significant weight loss: A study of the dose response effect. Obes. Pathophysiol. Psychol. Treat. 1994, 167–181. [Google Scholar]
- Whelton, P.K.; Appel, L.; Charleston, J.; Dalcin, A.T.; Ewart, C.; Fried, L.; Kaidy, D.; Klag, M.J.; Kumanyika, S.; Steffen, L.; et al. The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels: Results of the Trials of Hypertension Prevention, phase I. JAMA 1992, 267, 1213–1220. [Google Scholar] [CrossRef]
- Schwartz, R.S. The independent effects of dietary weight loss and aerobic training on high density lipoproteins and apolipoprotein AI concentrations in obese men. Metabolism 1987, 36, 165–171. [Google Scholar] [CrossRef]
- Seim, H.C.; Holtmeier, K.B. Effects of a six-week, low-fat diet on serum cholesterol, body weight, and body measurements. Fam. Pract. Res. J. 1992, 12, 411–419. [Google Scholar] [PubMed]
- Knip, M.; Nuutinen, O. Long-term effects of weight reduction on serum lipids and plasma insulin in obese children. Am. J. Clin. Nutr. 1993, 57, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Dietary Guidelines for Americans. Available online: https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials (accessed on 24 October 2024).
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, C.M.; Sauer, H.A.; Schoonover, J.J.; Lapp, M.M.; Leone, L.A. Barriers and facilitators to fruit and vegetable consumption among lower-income families: Matching preferences with stakeholder resources. J. Hunger Environ. Nut. 2021, 16, 490–508. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Burton, M.; Brown, A.K.; McNaughton, S.A. Exploring barriers to meeting recommendations for fruit and vegetable intake among adults in regional areas: A mixed-methods analysis of variations across socio-demographics. Appetite 2020, 153, 104750. [Google Scholar] [CrossRef]
- Kanfer, F.H.; Karoly, P. Self-control: A behavioristic excursion into the lion’s den. Behav. Ther. 1972, 3, 398–416. [Google Scholar] [CrossRef]
- Hennessy, E.A.; Johnson, B.T.; Acabchuk, R.L.; McCloskey, K.; Stewart-James, J. Self-regulation mechanisms in health behavior change: A systematic meta-review of meta-analyses, 2006–2017. Health Psychol. Rev. 2020, 14, 6–42. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy: The Exercise of Control; Macmillan: New York, NY, USA, 1997. [Google Scholar]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action, 1st ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1986; p. 2. [Google Scholar]
- Lippke, S.; Fleig, L.; Pomp, S.; Schwarzer, R. Validity of a stage algorithm for physical activity in participants recruited from orthopedic and cardiac rehabilitation clinics. Rehabil. Psychol. 2010, 55, 398. [Google Scholar] [CrossRef]
- Sheeran, P.; Maki, A.; Montanaro, E.; Avishai-Yitshak, A.; Bryan, A.; Klein, W.M.; Miles, E.; Rothman, A.J. The impact of changing attitudes, norms, and self-efficacy on health-related intentions and behavior: A meta-analysis. Health Psychol. 2016, 35, 1178. [Google Scholar] [CrossRef]
- Young, M.D.; Plotnikoff, R.C.; Collins, C.E.; Callister, R.; Morgan, P.J. Social cognitive theory and physical activity: A systematic review and meta-analysis. Obes. Rev. 2014, 15, 983–995. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Social cognitive theory of self-regulation. Organ. Behav. Hum. Decis. Process. 1991, 50, 248–287. [Google Scholar] [CrossRef]
- Lo, B.K.; Loui, C.; Folta, S.C.; Flickinger, A.; Connor, L.M.; Liu, E.; Megiel, S.; Seguin, R.A. Self-efficacy and cooking confidence are associated with fruit and vegetable intake in a cross-sectional study with rural women. Eat. Behav. 2019, 33, 34–39. [Google Scholar] [CrossRef]
- De Menezes, M.C.; Roux, V.; Lopes, A.C. Fruit and vegetable intake: Influence of perceived food environment and self-efficacy. Appetite 2018, 127, 249–256. [Google Scholar] [CrossRef]
- Williams, S.L.; French, D.P. What are the most effective intervention techniques for changing physical activity self-efficacy and physical activity behaviour—And are they the same? Health Educ. Res. 2011, 26, 308–322. [Google Scholar] [CrossRef]
- Texas A&M AgriLife Extension Services. Available online: https://agrilifeextension.tamu.edu/ (accessed on 24 October 2024).
- Marcus, B.H.; Selby, V.C.; Niaura, R.S.; Rossi, J.S. Self-efficacy and the stages of exercise behavior change. Res. Q. Exerc. Sport 1992, 63, 60–66. [Google Scholar] [CrossRef]
- Deci, E.L.; Ryan, R.M. Self-determination theory. In Handbook of Theories of Social Psychology; Sage: Los Angeles, CA, USA, 2012; Volume 1, pp. 416–436. [Google Scholar]
- Gillison, F.B.; Rouse, P.; Standage, M.; Sebire, S.J.; Ryan, R.M. A meta-analysis of techniques to promote motivation for health behaviour change from a self-determination theory perspective. Health Psychol. Rev. 2019, 13, 110–130. [Google Scholar] [CrossRef]
- Behavioral Risk Factor Surveillance System. Center for Disease Control and Prevention. 1984. Available online: https://www.cdc.gov/brfss/index.html (accessed on 1 April 2020).
- Zahran, H.S.; Kobau, R.; Moriarty, D.G.; Zack, M.M.; Holt, J.; Donehoo, R. Centers for Disease Control and Prevention (CDC). Health-related quality of life surveillance—United States, 1993–2002. MMWR Surveill. Summ. 2005, 54, 1–35. [Google Scholar]
- Bandura, A. Social Learning Theory, 1st ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1977. [Google Scholar]
- Bandura, A. Guide for constructing self-efficacy scales. In Self-Efficacy Beliefs of Adolescents; IAP–Information Age Publishing: Charlotte, NC, USA, 2006; Volume 5, pp. 307–337. [Google Scholar]
- Centers for Disease and Prevention. Available online: https://www.cdc.gov/nccdphp/dnpao/index.html (accessed on 24 October 2024).
- Gomez-Marcos, M.A.; Patino-Alonso, M.C.; Recio-Rodriguez, J.I.; Agudo-Conde, C.; Romaguera-Bosch, M.; Magdalena-Gonzalez, O.; Gomez-Arranz, A.; Mendizabal-Gallastegui, N.; Angel Fernandez-Diez, J.; Gomez-Sanchez, L.; et al. Short-and long-term effectiveness of a smartphone application for improving measures of adiposity: A randomised clinical trial–EVIDENT II study. Eur. J. Cardiovasc. Nurs. 2018, 17, 552–562. [Google Scholar] [CrossRef]
- Brindal, E.; Hendrie, G.A.; Freyne, J.; Noakes, M. A mobile phone app designed to support weight loss maintenance and well-being (MotiMate): Randomized controlled trial. JMIR mHealth uHealth 2019, 7, e12882. [Google Scholar] [CrossRef]
- Milne-Ives, M.; Lam, C.; De Cock, C.; Van Velthoven, M.H.; Meinert, E. Mobile apps for health behavior change in physical activity, diet, drug and alcohol use, and mental health: Systematic review. JMIR mHealth uHealth 2020, 8, e17046. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Fukuoka, Y.; Mintz, Y.; Goldberg, K.; Kaminsky, P.; Flowers, E.; Aswani, A. Evaluating machine learning–based automated personalized daily step goals delivered through a mobile phone app: Randomized controlled trial. JMIR mHealth uHealth 2018, 6, e9117. [Google Scholar] [CrossRef] [PubMed]
- Glynn, L.G.; Hayes, P.S.; Casey, M.; Glynn, F.; Alvarez-Iglesias, A.; Newell, J.; ÓLaighin, G.; Heaney, D.; O’Donnell, M.; Murphy, A.W. Effectiveness of a smartphone application to promote physical activity in primary care: The SMART MOVE randomised controlled trial. Br. J. Gen. Pract. 2014, 64, e384–e391. [Google Scholar] [CrossRef] [PubMed]
- Kliemann, N.; Croker, H.; Johnson, F.; Beeken, R.J. Development of the top tips habit-based weight loss app and preliminary indications of its usage, effectiveness, and acceptability: Mixed-methods pilot study. JMIR mHealth uHealth 2019, 7, e12326. [Google Scholar] [CrossRef]
- Lally, P.; Van Jaarsveld, C.H.; Potts, H.W.; Wardle, J. How are habits formed: Modelling habit formation in the real world. Eur. J. Soc. Psychol. 2010, 40, 998–1009. [Google Scholar] [CrossRef]
- Voth, E.C.; Oelke, N.D.; Jung, M.E. A theory-based exercise app to enhance exercise adherence: A pilot study. JMIR mHealth uHealth 2016, 4, e4997. [Google Scholar] [CrossRef]
- Warziski, M.T.; Sereika, S.M.; Styn, M.A.; Music, E.; Burke, L.E. Changes in self-efficacy and dietary adherence: The impact on weight loss in the PREFER study. J. Behav. Med. 2008, 31, 81–92. [Google Scholar] [CrossRef]
- Mutsaerts, M.A.; Kuchenbecker, W.K.; Mol, B.W.; Land, J.A.; Hoek, A. Dropout is a problem in lifestyle intervention programs for overweight and obese infertile women: A systematic review. Hum. Reprod. 2013, 28, 979–986. [Google Scholar] [CrossRef]
- Franz, M.J.; Boucher, J.L.; Rutten-Ramos, S.; VanWormer, J.J. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: A systematic review and meta-analysis of randomized clinical trials. J. Acad. Nutr. Diet. 2015, 115, 1447–1463. [Google Scholar] [CrossRef]
- Falco, L.D.; Summers, J.J. Improving career decision self-efficacy and STEM self-efficacy in high school girls: Evaluation of an intervention. J. Career Dev. 2019, 46, 62–76. [Google Scholar] [CrossRef]
- Picha, K.J.; Howell, D.M. A model to increase rehabilitation adherence to home exercise programmes in patients with varying levels of self-efficacy. Musculoskelet. Care 2018, 16, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Flores, I.M. Preservice Teachers as Investigative Science Mentors: Advancing Self-Efficacy through School-Based Professional Development. J. Instr. Pedagog. 2015, 17, 1–27. [Google Scholar]
- Bandura, A.; Adams, N.E.; Beyer, J. Cognitive processes mediating behavioral change. J. Pers. Soc. Psychol. 1977, 35, 125. [Google Scholar] [CrossRef] [PubMed]
Measured Parameters | Graduates (N = 213) | Dropouts (N = 965) | t (p-Value) |
---|---|---|---|
Sex (%) Female Male | 86.9 13.1 | 86.7 13.3 | |
Age (M, SD; years) | 50.0 (9.8) | 48.0 (12.8) | |
Pre-BMI (M, SD) | 31.9 (7.3) | 32.8 (11.6) | |
Post-BMI (M, SD) | 30.8 (7.0) | ||
Pre-Weight (M, SD; lbs) | 196.6 (45.9) | 198.5 (88.5) | −0.3 (0.76) |
Post-Weight (M, SD; lbs) | 189.8 (44.3) | ||
Pre-Health (M, SD) | 3.0 (0.9) | 2.8 (0.9) | 2.1 (0.04) * |
Post-Health (M, SD) | 3.3 (0.8) | ||
Pre-Confidence (M, SD) Feet Fork | 3.9 (1.1) 3.8 (1.0) | 3.5 (1.3) 3.3 (1.2) | 4.6 (0.00) * 6.3 (0.00) * |
Post-Confidence (M, SD) Feet Fork | 4.4 (0.9) 4.5 (0.7) |
Measured Parameters | Mean Difference (SD) | t | p-Value |
---|---|---|---|
Weight (lbs; M, SD) | −6.0 (14.2) | −6.0 | <0.001 |
Health (M, SD) | 0.3 (0.7) | 5.9 | <0.001 |
Confidence (M, SD) Feet Fork | 0.5 (1.1) 0.7 (1.1) | 6.3 9.4 | <0.001 <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McClendon Pynckel, M.; Venkatesh, S.; Faries, M.D. Evaluation of the 10&10,000 Change Challenge Program. Nutrients 2025, 17, 1494. https://doi.org/10.3390/nu17091494
McClendon Pynckel M, Venkatesh S, Faries MD. Evaluation of the 10&10,000 Change Challenge Program. Nutrients. 2025; 17(9):1494. https://doi.org/10.3390/nu17091494
Chicago/Turabian StyleMcClendon Pynckel, Megan, Sumathi Venkatesh, and Mark D. Faries. 2025. "Evaluation of the 10&10,000 Change Challenge Program" Nutrients 17, no. 9: 1494. https://doi.org/10.3390/nu17091494
APA StyleMcClendon Pynckel, M., Venkatesh, S., & Faries, M. D. (2025). Evaluation of the 10&10,000 Change Challenge Program. Nutrients, 17(9), 1494. https://doi.org/10.3390/nu17091494