Nutrient Equivalence of Plant-Based and Cultured Meat: Gaps, Bioavailability, and Health Perspectives
Abstract
1. Introduction
1.1. Meat as a Source of Essential and Conditionally Essential Nutrients
1.2. Rise of Plant-Based and Cultured Meat Substitutes
1.3. Objectives and Scope of the Review
2. Nutrients Provided by Meat and Their Physiological Importance
2.1. Conditionally Essential Nutrients: Carnitine, Creatine, Taurine
2.2. Key Vitamins: Vitamin B12 and Vitamin D
2.3. Minerals and Trace Elements: Heme Iron, Zinc, Selenium
2.4. Long-Chain Polyunsaturated Fatty Acids: DHA and EPA
2.5. Other Relevant Bioactive Compounds
3. Nutrient Composition of Meat Alternatives
3.1. Plant-Based Meat Analogs: Soy, Pea, Wheat and Emerging Sources
3.2. Cultured Meat: Current Knowledge, Variability, and Technological Challenges
3.3. Fortification, Supplementation, and Formulation Strategies
4. Nutrient Equivalence and Bioavailability
4.1. Comparative Nutrient Profiles Across Traditional, Plant-Based, and Cultured Meats
4.2. Influence of the Food Matrix and Processing on Nutrient Retention
4.3. Anti-Nutritional Factors and Their Impact on Absorption
5. Health Implications of Meat Replacement
5.1. Risks of Nutrient Deficiencies in Plant-Based Diets
5.2. Supplementation and Fortification Strategies
5.3. Potential Advantages of Meat Substitutes
5.4. Long-Term Health Outcomes and Research Gaps
6. Perspectives and Future Directions
6.1. Designing Nutritionally Optimized Meat Alternatives
6.2. Regulatory Frameworks, Labeling, and Consumer Communication
6.3. Consumer Acceptance and Cultural Considerations
6.4. Research Priorities for Nutrient Equivalence and Health Outcomes
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.W.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef]
- Leroy, F.; Cofnas, N. Should dietary guidelines recommend low red meat intake? Crit. Rev. Food Sci. Nutr. 2020, 60, 2763–2772. [Google Scholar] [CrossRef]
- Fielding, R.; Riede, L.; Lugo, J.P.; Bellamine, A. l-Carnitine Supplementation in Recovery after Exercise. Nutrients 2018, 10, 349. [Google Scholar] [CrossRef]
- Demarquoy, J. L-carnitine: Structure and Function. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd.: Chichester, UK, 2011. [Google Scholar]
- Adesogan, A.T.; Havelaar, A.H.; McKune, S.L.; Eilittä, M.; Dahl, G.E. Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Glob. Food Secur. 2020, 25, 100325. [Google Scholar] [CrossRef]
- da Costa, G.G.; da Conceição Nepomuceno, G.; da Silva Pereira, A.; Simões, B.F.T. Worldwide dietary patterns and their association with socioeconomic data: An ecological exploratory study. Glob. Health 2022, 18, 31. [Google Scholar] [CrossRef] [PubMed]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Fekete, M.; Varga, P.; Lehoczki, A.; Munkácsy, G.; Fekete, J.T.; Bianchini, G.; Ocana, A.; Buda, A.; Ungvari, A.; et al. Association between red and processed meat consumption and colorectal cancer risk: A comprehensive meta-analysis of prospective studies. GeroScience 2025, 47, 5123–5140. [Google Scholar] [CrossRef]
- Diakité, M.T.; Diakité, B.; Koné, A.; Balam, S.; Fofana, D.; Diallo, D.; Kassogué, Y.; Traoré, C.B.; Kamaté, B.; Ba, D.; et al. Relationships between gut microbiota, red meat consumption and colorectal cancer. J. Carcinog. Mutagen. 2022, 13, 1000385. [Google Scholar]
- Ekmekcioglu, C.; Wallner, P.; Kundi, M.; Weisz, U.; Haas, W.; Hutter, H.-P. Red meat, diseases, and healthy alternatives: A critical review. Crit. Rev. Food Sci. Nutr. 2018, 58, 247–261. [Google Scholar] [CrossRef]
- Wolk, A. Potential health hazards of eating red meat. J. Intern. Med. 2017, 281, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Lee, D.-W. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. npj Sci. Food 2024, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Curtain, F.; Grafenauer, S. Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1378S–1383S. [Google Scholar] [CrossRef]
- Post, M.J. Cultured meat from stem cells: Challenges and prospects. Meat Sci. 2012, 92, 297–301. [Google Scholar] [CrossRef]
- Bryant, C.; Barnett, J. Consumer acceptance of cultured meat: A systematic review. Meat Sci. 2018, 143, 8–17. [Google Scholar] [CrossRef]
- Stephens, N.; Di Silvio, L.; Dunsford, I.; Ellis, M.; Glencross, A.; Sexton, A. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 2018, 78, 155–166. [Google Scholar] [CrossRef]
- Failla, M.; Hopfer, H.; Wee, J. Evaluation of public submissions to the USDA for labeling of cell-cultured meat in the United States. Front. Nutr. 2023, 10, 1197111. [Google Scholar] [CrossRef]
- Fino, M.A.; Anzà, B.; Bairati, L.; Bertini, I.; Biolatti, B.; Biressi, S.; Cannizzo, F.T.; Cavallarin, L.; Conti, L.; Deriu, M.; et al. Cultivated meat beyond bans: Ten remarks from the Italian case toward a reasoned decision-making process. One Earth 2024, 7, 2108–2111. [Google Scholar] [CrossRef]
- Van der Weele, C.; Feindt, P.; van der Goot, A.J.; van Mierlo, B.; van Boekel, M. Meat alternatives: An integrative comparison. Trends Food Sci. Technol. 2019, 88, 505–512. [Google Scholar] [CrossRef]
- Wu, Q.; Gan, M.; Ma, J.; Zhang, H.; Niu, L.; Zhao, Y.; Chen, L.; Wang, Y.; Zhang, S.; Zhu, L.; et al. Opportunities and challenges ahead of the cultured meat: A review on key technology and mass production process. J. Future Foods 2025, in press. [Google Scholar] [CrossRef]
- Rosenfeld, D.L.; Tomiyama, A.J. Toward consumer acceptance of cultured meat. Trends Cogn. Sci. 2023, 27, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Demarquoy, J.; Georges, B.; Rigault, C.; Royer, M.-C.; Clairet, A.; Soty, M.; Lekounoungou, S.; Le Borgne, F. Radioisotopic determination of l-carnitine content in foods commonly eaten in Western countries. Food Chem. 2004, 86, 137–142. [Google Scholar] [CrossRef]
- Foster, D.W. The role of the carnitine system in human metabolism. Ann. N. Y. Acad. Sci. 2004, 1033, 1–16. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. Creatine: Endogenous metabolite, dietary, and therapeutic supplement. Annu. Rev. Nutr. 2007, 27, 241–261. [Google Scholar] [CrossRef]
- Burke, D.G.; Chilibeck, P.D.; Parise, G.; Candow, D.G.; Mahoney, D.; Tarnopolsky, M. Effect of Creatine and Weight Training on Muscle Creatine and Performance in Vegetarians. Med. Sci. Sports Exerc. 2003, 35, 1946–1955. [Google Scholar] [CrossRef]
- Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011, 40, 1271–1296. [Google Scholar] [CrossRef]
- Huxtable, R.J. Physiological actions of taurine. Physiol. Rev. 1992, 72, 101–163. [Google Scholar] [CrossRef]
- Laidlaw, S.; Shultz, T.D.; Cecchino, J.T.; Kopple, J.D. Plasma and urine taurine levels in vegans. Am. J. Clin. Nutr. 1988, 47, 660–663. [Google Scholar] [CrossRef]
- Watanabe, F. Vitamin B12 sources and bioavailability. Exp. Biol. Med. 2007, 232, 1266–1274. [Google Scholar] [CrossRef]
- Pawlak, R.; Lester, S.E.; Babatunde, T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: A review of literature. Eur. J. Clin. Nutr. 2014, 68, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Czerwonka, M.; Szterk, A.; Waszkiewicz-Robak, B. Vitamin B12 content in raw and cooked beef. Meat Sci. 2014, 96, 1371–1375. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, J.; Christensen, T. Natural Vitamin D in Food: To What Degree Does 25-Hydroxyvitamin D Contribute to the Vitamin D Activity in Food? J. Bone Miner. Res. Plus 2021, 5, e10453. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Gibson, R.S.; Heath, A.L.; Szymlek-Gay, E.A. Is iron and zinc nutrition a concern for vegetarian infants and young children in industrialized countries? Am. J. Clin. Nutr. 2014, 100, 459s–468s. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Brenna, J.T.; Salem, N.; Sinclair, A.J.; Cunnane, S.C. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fat. Acids 2009, 80, 85–91. [Google Scholar]
- Blancquaert, L.; Baba, S.P.; Kwiatkowski, S.; Stautemas, J.; Stegen, S.; Barbaresi, S. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β-alanine transamination. J. Physiol. 2016, 594, 4849–4863. [Google Scholar] [CrossRef]
- Everaert, I.; Taes, Y.; De Heer, E.; Baelde, H.; Zutinic, A.; Yard, B.; Sauerhöfer, S.; Vanhee, L.; Delanghe, J.; Aldini, G.; et al. Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans. Am. J. Physiol. Ren. Physiol. 2012, 302, F1537–F1544. [Google Scholar] [CrossRef]
- van Vliet, S.; Burd, N.A.; van Loon, L.J.C. The Skeletal Muscle Anabolic Response to Plant-versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, E.; Zhang, X.; Li, D.; Wang, Q.; Sun, Y. Nutritional Value and Physicochemical Characteristics of Alternative Protein for Meat and Dairy—A Review. Foods 2022, 11, 3326. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461s–1467s. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.M.; Vicente, A.F. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef]
- Bodiou, V.; Moutsatsou, P.; Post, M.J. Microcarriers for Upscaling Cultured Meat Production. Front. Nutr. 2020, 7, 10. [Google Scholar] [CrossRef]
- Tso, R.; Forde, C.G. Unintended Consequences: Nutritional Impact and Potential Pitfalls of Switching from Animal- to Plant-Based Foods. Nutrients 2021, 13, 2527. [Google Scholar] [CrossRef]
- Albrecht, F.B.; Ahlfeld, T.; Klatt, A.; Heine, S.; Gelinsky, M.; Kluger, P.J. Biofabrication’s Contribution to the Evolution of Cultured Meat. Adv. Healthc. Mater. 2024, 13, 2304058. [Google Scholar] [CrossRef]
- Kadim, I.T.; Mahgoub, O.; Baqir, S.; Faye, B.; Purchas, R. Cultured meat from muscle stem cells: A review of challenges and prospects. J. Integr. Agric. 2015, 14, 222–233. [Google Scholar] [CrossRef]
- Klatt, A.; Wollschlaeger, J.O.; Albrecht, F.B.; Rühle, S.; Holzwarth, L.B.; Hrenn, H.; Melzer, T.; Heine, S.; Kluger, P.J. Dynamically cultured, differentiated bovine adipose-derived stem cell spheroids as building blocks for biofabricating cultured fat. Nat. Commun. 2024, 15, 9107. [Google Scholar] [CrossRef]
- Jeong, I.; Hong, S.; Kim, D.Y.; Song, Y.J.; Seo, B.J.; Hwang, H.; Hong, H.S.; Yoo, K.H. Production of Alternative Fat from Adipose-Derived Stem Cell from Bovine in 3D Culture. Appl. Sci. 2025, 15, 7333. [Google Scholar] [CrossRef]
- Bolmanis, E.; Bogans, J.; Akopjana, I.; Suleiko, A.; Kazaka, T.; Kazaks, A. Production and Purification of Soy Leghemoglobin from Pichia pastoris Cultivated in Different Expression Media. Processes 2023, 11, 3215. [Google Scholar] [CrossRef]
- Devarshi, P.P.; Mao, Q.; Grant, R.W.; Mitmesser, S.H. Comparative Absorption and Bioavailability of Various Chemical Forms of Zinc in Humans: A Narrative Review. Nutrients 2024, 16, 4269. [Google Scholar] [CrossRef] [PubMed]
- Klein, L.; Dawczynski, C.; Schwarz, M.; Maares, M.; Kipp, K.; Haase, H.; Kipp, A.P. Selenium, Zinc, and Copper Status of Vegetarians and Vegans in Comparison to Omnivores in the Nutritional Evaluation (NuEva) Study. Nutrients 2023, 15, 3538. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ren, X.; Fan, C.; Wu, W.; Zhang, W.; Wang, Y. Health Benefits, Food Applications, and Sustainability of Microalgae-Derived n-3 PUFA. Foods 2022, 11, 1883. [Google Scholar] [CrossRef]
- Datar, I.; Betti, M. Possibilities for an in vitro meat production system. Innov. Food Sci. Emerg. Technol. 2010, 11, 13–22. [Google Scholar] [CrossRef]
- Hallberg, L.; Brune, M.; Rossander, L. The role of vitamin C in iron absorption. Int. J. Vitam. Nutr. Res. Suppl. 1989, 30, 103–108. [Google Scholar]
- De Smet, S.; Van Hecke, T. Meat products in human nutrition and health—About hazards and risks. Meat Sci. 2024, 218, 109628. [Google Scholar] [CrossRef]
- Pawlak, R.; Berger, J.; Hines, I. Iron Status of Vegetarian Adults: A Review of Literature. Am. J. Lifestyle Med. 2016, 12, 486–498. [Google Scholar] [CrossRef]
- Haider, L.M.; Schwingshackl, L.; Hoffmann, G.; Ekmekcioglu, C. The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2018, 58, 1359–1374. [Google Scholar] [CrossRef]
- Stadnik, J. Nutritional Value of Meat and Meat Products and Their Role in Human Health. Nutrients 2024, 16, 1446. [Google Scholar] [CrossRef]
- Vila-Clarà, G.; Vila-Martí, A.; Vergés-Canet, L.; Torres-Moreno, M. Exploring the Role and Functionality of Ingredients in Plant-Based Meat Analogue Burgers: A Comprehensive Review. Foods 2024, 13, 1258. [Google Scholar] [CrossRef] [PubMed]
- Fraser, R.Z.; Shitut, M.; Agrawal, P.; Mendes, O.; Klapholz, S. Safety Evaluation of Soy Leghemoglobin Protein Preparation Derived from Pichia pastoris, Intended for Use as a Flavor Catalyst in Plant-Based Meat. Int. J. Toxicol. 2018, 37, 241–262. [Google Scholar] [CrossRef] [PubMed]
- Clarys, P.; Deliens, T.; Huybrechts, I.; Deriemaeker, P.; Vanaelst, B.; De Keyzer, W.; Hebbelinck, M.; Mullie, P. Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. Nutrients 2014, 6, 1318–1332. [Google Scholar] [CrossRef] [PubMed]
- Demarquoy, J. Revisiting the Role of Carnitine in Heart Disease Through the Lens of the Gut Microbiota. Nutrients 2024, 16, 4244. [Google Scholar] [CrossRef]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef]
- Rice, D.; Singh, R.; Priya, H.; Valerozo, J.; Anal, A.K. Transforming plant-based alternatives by harnessing precision fermentation for next-generation ingredients. J. Sci. Food Agric. 2025, 105, 6296–6305. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Liu, W.; Pushparaj, K.; Park, S. The Epic of In Vitro Meat Production—A Fiction into Reality. Foods 2021, 10, 1395. [Google Scholar] [CrossRef]
- Carreño, I. France Bans “Meaty” Terms for Plant-Based Products: Will the European Union Follow? Eur. J. Risk Regul. 2022, 13, 665–669. [Google Scholar] [CrossRef]
- Bakhsh, A.; Kim, B.; Ishamri, I.; Choi, S.; Li, X.; Li, Q.; Hur, S.J.; Park, S. Cell-Based Meat Safety and Regulatory Approaches: A Comprehensive Review. Food Sci. Anim. Resour. 2025, 45, 145–164. [Google Scholar] [CrossRef]
- Heo, S.; Lee, G.; Jeong, D.W. A study on safety evaluation system of cultured foods among alternative proteins. Food Sci. Biotechnol. 2025, 34, 365–371. [Google Scholar] [CrossRef]
- Cutroneo, S.; Angelino, D.; Tedeschi, T.; Pellegrini, N.; Martini, D.; SINU Young Working Group. Nutritional Quality of Meat Analogues: Results from the Food Labelling of Italian Products (FLIP) Project. Front. Nutr. 2022, 9, 852831. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Badar, I.H.; Xia, X.; Kong, B.; Chen, Q. Prospects of artificial meat: Opportunities and challenges around consumer acceptance. Trends Food Sci. Technol. 2021, 116, 434–444. [Google Scholar] [CrossRef]
| Nutrient | Conventional Meat | Plant-Based Meat Analogs (PBMAs) | Cultured Meat (Prototype Data) | Key References |
|---|---|---|---|---|
| Protein (g/100 g) | 18–25 | 15–25 | 18–22 | [41,42] |
| Protein Quality (DIAAS) | >1.0 | 0.7–0.9 (soy/pea isolates) | Expected > 1.0 | [36,37,41,42] |
| Vitamin B12 (µg/100 g) | 0.7–1.5 | 0 (unless fortified) | 0 (must be supplemented in medium) | [31] |
| Iron (mg/100 g) | 2–3 (red meat) | 2–4 | 2–3 (uncertain form) | [35,43] |
| Iron Form | 40–60% heme | Non-heme only | Likely non-heme unless engineered | [35] |
| Zinc (mg/100 g) | 4–6 | 2–4 (lower absorption) | 4–6 (depends on medium) | [15,36] |
| Carnitine (mg/100 g) | 20–200 | 0 | 0 (must be supplemented) | [24,25] |
| Creatine (g/100 g) | ~0.4–0.5 | 0 | 0 (must be supplemented) | [26,27] |
| Taurine (mg/100 g) | 40–400 | 0 | 0 (must be supplemented) | [29] |
| EPA + DHA (mg/100 g) | 20–80 (higher in grass-fed) | 0 (unless algal oil fortified) | 0 (unless engineered) | [7,38] |
| Fiber (g/100 g) | 0 | 2–6 | 0 | [44] |
| Saturated Fat (g/100 g) | 5–9 (beef) | 1–4 | Variable, usually lower than beef | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demarquoy, J. Nutrient Equivalence of Plant-Based and Cultured Meat: Gaps, Bioavailability, and Health Perspectives. Nutrients 2025, 17, 3860. https://doi.org/10.3390/nu17243860
Demarquoy J. Nutrient Equivalence of Plant-Based and Cultured Meat: Gaps, Bioavailability, and Health Perspectives. Nutrients. 2025; 17(24):3860. https://doi.org/10.3390/nu17243860
Chicago/Turabian StyleDemarquoy, Jean. 2025. "Nutrient Equivalence of Plant-Based and Cultured Meat: Gaps, Bioavailability, and Health Perspectives" Nutrients 17, no. 24: 3860. https://doi.org/10.3390/nu17243860
APA StyleDemarquoy, J. (2025). Nutrient Equivalence of Plant-Based and Cultured Meat: Gaps, Bioavailability, and Health Perspectives. Nutrients, 17(24), 3860. https://doi.org/10.3390/nu17243860

