Clinical Implementation of Sustainable Functional Foods and Nutraceuticals in Metabolic Health: A Feasibility Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Product Development and Testing
2.2. Phytochemical Characterization and Bioactive Compound Analysis of Functional Foods
2.3. Cell Culture Conditions and Safety Evaluation of Functional Food-Derived Extracts
2.4. Sensory Evaluation and Palatability Assessment
2.5. Bioavailability
2.6. Subjects
2.7. Study Design
- A total of 200 mL of Calabrian tomato sauce or juice naturally rich in lycopene;
- A total of 200 mL of blueberry juice (rich in antioxidants and polyphenols);
- A total of 200 mL of pomegranate and bergamot juice (antioxidant-rich);
- A total of 30 g of bergamot marmalade (high in polyphenols);
- A total of 30 g of hazelnut cream made with Calabrian hazelnuts (rich in antioxidants);
- A total of 50 g of Senatore Cappelli ancient grain pasta;
- A total of 1 sachet/day of Nutraceutical 2, containing whey proteins, vitamins, minerals, and antioxidants.
- A total of 1 sachet/day of Nutraceutical 1, based on essential amino acids;
- The Senatore Cappelli pasta was consumed four times per week.
2.8. Adherence of Treatments
2.9. Anthropometry and Body Composition
2.10. Muscle Strength and Sarcopenia
2.11. Assessment of the Hepatic Parenchyma
2.12. Assessment of Bone Health Status
2.13. Adverse Events
2.14. Statistical Analysis
3. Results
3.1. Carotenoids Quantification and Formulation from Tomato Juice and Sauce
3.2. Polyphenol and Flavonoid Profiles and Antioxidant Capacity of Bergamot, Pomegranate, Blueberry, and Hazelnut Extracts
3.3. Food-Derived Extracts Show a Safe Profile In Vitro
3.4. Palatability and Bioavailability Assessments
3.5. Clinical Characteristics of Participants According to the Treatments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ASMM | Appendicular Skeletal Muscle Mass |
| BCAAs | Branched-Chain Amino Acids |
| BIA | Bioelectrical Impedance Analysis |
| BMD | Bone Mineral Density |
| BMI | Body Mass Index |
| BPF | Bergamot Polyphenolic Fraction |
| BUA | Broadband Ultrasound Attenuation |
| CAP | Controlled Attenuation Parameter |
| CAGR | Compound Annual Growth Rate |
| CO2-Ceq | Carbon Dioxide–Equivalent |
| DMSO | Dimethyl Sulfoxide |
| DMEM | Dulbecco’s Modified Eagle Medium |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
| EWGSOP2 | European Working Group on Sarcopenia in Older People 2 |
| FBS | Fetal Bovine Serum |
| FFM | Fat-Free Mass / Free Fat Mass |
| FM | Fat Mass |
| GAE | Gallic Acid Equivalent |
| GHG | Greenhouse Gas |
| HC | Hip Circumference |
| HGS | Handgrip Strength |
| HPLC | High-Performance Liquid Chromatography |
| HS | Horse Serum |
| IQR | Interquartile Range |
| IQR/M | Interquartile Range to Median Ratio |
| LDL | Low-Density Lipoprotein |
| MEM | Minimum Essential Medium |
| MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
| NAD+ | Nicotinamide Adenine Dinucleotide (oxidized form) |
| NCDs | Non-Communicable Diseases |
| P/S | Penicillin/Streptomycin |
| QUS | Quantitative Ultrasound |
| R | Resistance |
| RMR | Resting Metabolic Rate |
| SD | Standard Deviation |
| SMM | Skeletal Muscle Mass |
| SOS | Speed of Sound |
| TBW | Total Body Water |
| TFC | Total Flavonoid Content |
| TPC | Total Phenolic Content |
| UV-Vis | Ultraviolet–Visible (Spectrophotometry) |
| WC | Waist Circumference |
| WHR | Waist-to-Hip Ratio |
| WP/WPs | Whey Proteins |
| Xc | Reactance |
References
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land use, Water use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar]
- Kopp, W. How Western Diet and Lifestyle Drive the Pandemic of Obesity and Civilization Diseases. Diabetes Metab. Syndr. Obes. 2019, 12, 2221–2236. [Google Scholar]
- World Health Organization (WHO). Healthy Diet; World Health Organization: Geneva, Switzerland, 2025. [Google Scholar]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global Nutrition Transition and the Pandemic of Obesity in Developing Countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef]
- GBD 2021 Adolescent BMI Collaborators. Global, Regional, and National Prevalence of Child and Adolescent Overweight and Obesity, 1990–2021, with Forecasts to 2050: A Forecasting Study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 785–812. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease Across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.; Koo, D.; Lee, W. Insulin Resistance, Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: Clinical and Experimental Perspective. Diabetes Metab. J. 2024, 48, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Melchiorre, M.G.; Socci, M.; Quattrini, S.; Lamura, G.; D’Amen, B. Frail Older People Ageing in Place in Italy: Use of Health Services and Relationship with General Practitioner. Int. J. Environ. Res. Public Health 2022, 19, 9063. [Google Scholar] [CrossRef]
- Ricciardi, W.; Tarricone, R. The Evolution of the Italian National Health Service. Lancet 2021, 398, 2193–2206. [Google Scholar] [CrossRef]
- GBD 2021 Forecasting Collaborators. Burden of Disease Scenarios for 204 Countries and Territories, 2022–2050: A Forecasting Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2204–2256. [Google Scholar] [CrossRef]
- Fanzo, J.; Miachon, L. Harnessing the Connectivity of Climate Change, Food Systems and Diets: Taking Action to Improve Human and Planetary Health. Anthropocene 2023, 42, 100381. [Google Scholar] [CrossRef]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and Valuation of the Health and Climate Change Cobenefits of Dietary Change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [PubMed]
- Vision, I. 2050—A Strategy to Decarbonize the Global Transport Sector by Mid-Century; International Council on Clean Transportation: Washington, DC, USA, 2020. [Google Scholar]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste; Food and Agriculture Organization: Rome, Italy, 2011. [Google Scholar]
- Demichelis, F.; Lenzuni, M.; Converti, A.; Del Borghi, A.; Freyria, F.S.; Gagliano, E.; Mancini, M.; Toscano, G.; Mazzoni, E.; Reguzzi, M.C.; et al. Agro-Food Waste Conversion into Valuable Products in the Italian Scenario: Current Practices and Innovative Approaches. J. Environ. Chem. Eng. 2025, 13, 115458. [Google Scholar] [CrossRef]
- Ghadiri, M.; Krawchenko, T.; Newell, R. Applying a Climate-Biodiversity-Health Framework to Support Integrated Food Systems Planning and Policy. J. Environ. Manag. 2024, 358, 120769. [Google Scholar]
- Fanzo, J.; Rudie, C.; Sigman, I.; Grinspoon, S.; Benton, T.G.; Brown, M.E.; Covic, N.; Fitch, K.; Golden, C.D.; Grace, D.; et al. Sustainable Food Systems and Nutrition in the 21st Century: A Report from the 22nd Annual Harvard Nutrition Obesity Symposium. Am. J. Clin. Nutr. 2022, 115, 18–33. [Google Scholar] [PubMed]
- Change, F.C. Biodiversity and Nutrition Nexus: Evidence and Emerging Policy and Programming Opportunities; FAO: Rome, Italy, 2021. [Google Scholar]
- Nelson, M.E.; Hamm, M.W.; Hu, F.B.; Abrams, S.A.; Griffin, T.S. Alignment of Healthy Dietary Patterns and Environmental Sustainability: A Systematic Review. Adv. Nutr. 2016, 7, 1005–1025. [Google Scholar]
- Leydon, C.L.; Leonard, U.M.; McCarthy, S.N.; Harrington, J.M. Aligning Environmental Sustainability, Health Outcomes, and Affordability in Diet Quality: A Systematic Review. Adv. Nutr. 2023, 14, 1270–1296. [Google Scholar]
- Chang, M.C.; Choo, Y.J. Effects of Whey Protein, Leucine, and Vitamin D Supplementation in Patients with Sarcopenia: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 521. [Google Scholar] [CrossRef]
- Bo, Y.; Liu, C.; Ji, Z.; Yang, R.; An, Q.; Zhang, X.; You, J.; Duan, D.; Sun, Y.; Zhu, Y.; et al. A High Whey Protein, Vitamin D and E Supplement Preserves Muscle Mass, Strength, and Quality of Life in Sarcopenic Older Adults: A Double-Blind Randomized Controlled Trial. Clin. Nutr. 2019, 38, 159–164. [Google Scholar] [CrossRef]
- Moberg, M.; Apro, W.; Ekblom, B.; van Hall, G.; Holmberg, H.; Blomstrand, E. Activation of mTORC1 by Leucine is Potentiated by Branched-Chain Amino Acids and Even More so by Essential Amino Acids Following Resistance Exercise. Am. J. Physiol. Cell. Physiol. 2016, 310, 874. [Google Scholar]
- AlAli, M.; Alqubaisy, M.; Aljaafari, M.N.; AlAli, A.O.; Baqais, L.; Molouki, A.; Abushelaibi, A.; Lai, K.; Lim, S.E. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021, 26, 2540. [Google Scholar] [CrossRef]
- Varzakas, T.; Zakynthinos, G.; Verpoort, F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods 2016, 5, 88. [Google Scholar] [CrossRef]
- Chhabra, N.; Shiriskar, J.; Srinivasan, G. Current and Future Market of the Dietary Supplements and Nutraceuticals in the Global Economy. In Dietary Supplements and Nutraceuticals; Mukherjee, B., Ed.; Springer Nature: Singapore, 2025; pp. 1–48. [Google Scholar]
- Maurotti, S.; Pujia, R.; Ferro, Y.; Mare, R.; Russo, R.; Coppola, A.; Gazzaruso, C.; Montalcini, T.; Pujia, A.; Paone, S.; et al. A Nutraceutical with Citrus Bergamia and Cynara Cardunculus Improves Endothelial Function in Adults with Non-Alcoholic Fatty Liver Disease. Nutrition 2024, 118, 112294. [Google Scholar]
- Ferro, Y.; Maurotti, S.; Mazza, E.; Pujia, R.; Sciacqua, A.; Musolino, V.; Mollace, V.; Pujia, A.; Montalcini, T. Citrus Bergamia and Cynara Cardunculus Reduce Serum Uric Acid in Individuals with Non-Alcoholic Fatty Liver Disease. Medicina 2022, 58, 1728. [Google Scholar] [CrossRef]
- Mazzola, G.; Rondanelli, M.; Baron, G.; Zupo, R.; Castellana, F.; Clodoveo, M.L.; Gasparri, C.; Barrile, G.C.; Seniga, M.; Schiavi, L.M.; et al. Bergamot (Citrus bergamia), a (Poly)Phenol-Rich Source for Improving Osteosarcopenic Obesity: A Systematic Review. Foods 2024, 13, 3422. [Google Scholar] [CrossRef]
- Baron, G.; Altomare, A.; Mol, M.; Garcia, J.L.; Correa, C.; Raucci, A.; Mancinelli, L.; Mazzotta, S.; Fumagalli, L.; Trunfio, G.; et al. Analytical Profile and Antioxidant and Anti-Inflammatory Activities of the Enriched Polyphenol Fractions Isolated from Bergamot Fruit and Leave. Antioxidants 2021, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Cordiano, R.; Gammeri, L.; Di Salvo, E.; Gangemi, S.; Minciullo, P.L. Pomegranate (Punica granatum L.) Extract Effects on Inflammaging. Molecules 2024, 29, 4174. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar]
- Alasalvar, C.; Shahidi, F. Compositional Characteristics and Health Effects of Hazelnut (Corylus avellana L.): An Overview. In Tree Nuts; CRC Press: Boca Raton, FL, USA, 2008; pp. 199–228. [Google Scholar]
- Ferro, Y.; Mazza, E.; Angotti, E.; Pujia, R.; Mirarchi, A.; Salvati, M.A.; Terracciano, R.; Savino, R.; Romeo, S.; Scuteri, A.; et al. Effect of a Novel Functional Tomato Sauce (OsteoCol) from Vine-Ripened Tomatoes on Serum Lipids in Individuals with Common Hypercholesterolemia: Tomato Sauce and Hypercholesterolemia. J. Transl. Med. 2021, 19, 19. [Google Scholar]
- Hayhoe, R.P.G.; Lentjes, M.A.H.; Mulligan, A.A.; Luben, R.N.; Khaw, K.; Welch, A.A. Carotenoid Dietary Intakes and Plasma Concentrations are Associated with Heel Bone Ultrasound Attenuation and Osteoporotic Fracture Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Cohort. Br. J. Nutr. 2017, 117, 1439–1453. [Google Scholar] [CrossRef]
- Silva, A.N.; Nunes, G.P.; Domingues, D.V.; Toninatto Alves De Toledo, P.; Akinsomisoye, O.S.; Florencio-Silva, R.; Cerri, P.S. Effects of Lycopene Supplementation on Bone Tissue: A Systematic Review of Clinical and Preclinical Evidence. Pharmaceuticals 2025, 18, 1172. [Google Scholar] [CrossRef]
- Russo, C.; Ferro, Y.; Maurotti, S.; Salvati, M.A.; Mazza, E.; Pujia, R.; Terracciano, R.; Maggisano, G.; Mare, R.; Giannini, S.; et al. Lycopene and Bone: An in Vitro Investigation and a Pilot Prospective Clinical Study. J. Transl. Med. 2020, 18, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Spilmont, M.; Léotoing, L.; Davicco, M.; Lebecque, P.; Mercier, S.; Miot-Noirault, E.; Pilet, P.; Rios, L.; Wittrant, Y.; Coxam, V. Pomegranate and its Derivatives can Improve Bone Health through Decreased Inflammation and Oxidative Stress in an Animal Model of Postmenopausal Osteoporosis. Eur. J. Nutr. 2014, 53, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Parafati, M.; La Russa, D.; Lascala, A.; Crupi, F.; Riillo, C.; Fotschki, B.; Mollace, V.; Janda, E. Dramatic Suppression of Lipogenesis and no Increase in Beta-Oxidation Gene Expression are among the Key Effects of Bergamot Flavonoids in Fatty Liver Disease. Antioxidants 2024, 13, 766. [Google Scholar] [CrossRef] [PubMed]
- Gliozzi, M.; Maiuolo, J.; Oppedisano, F.; Mollace, V. The Effect of Bergamot Polyphenolic Fraction in Patients with Non Alcoholic Liver Steato-Hepatitis and Metabolic Syndrome. PharmaNutrition 2016, 4, S27–S31. [Google Scholar] [CrossRef]
- Brown, R.; Ware, L.; Tey, S.L. Effects of Hazelnut Consumption on Cardiometabolic Risk Factors and Acceptance: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 2880. [Google Scholar] [CrossRef]
- Sacks, D.; Baxter, B.; Campbell, B.C.V.; Carpenter, J.S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J.A.; et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke 2018, 13, 612–632. [Google Scholar] [CrossRef]
- Boirie, Y. Chapter 16—Whey Protein and Muscle Protection. In Nutrition and Skeletal Muscle; Walrand, S., Ed.; Academic Press: Amsterdam, The Netherlands, 2019; pp. 271–281. [Google Scholar]
- Ferrando, A.A.; Wolfe, R.R.; Hirsch, K.R.; Church, D.D.; Kviatkovsky, S.A.; Roberts, M.D.; Stout, J.R.; Gonzalez, D.E.; Sowinski, R.J.; Kreider, R.B.; et al. International Society of Sports Nutrition Position Stand: Effects of Essential Amino Acid Supplementation on Exercise and Performance. J. Int. Soc. Sports Nutr. 2023, 20, 2263409. [Google Scholar] [CrossRef]
- Mare, R.; Maurotti, S.; Ferro, Y.; Galluccio, A.; Arturi, F.; Romeo, S.; Procopio, A.; Musolino, V.; Mollace, V.; Montalcini, T.; et al. A Rapid and Cheap Method for Extracting and Quantifying Lycopene Content in Tomato Sauces: Effects of Lycopene Micellar Delivery on Human Osteoblast-Like Cells. Nutrients 2022, 14, 717. [Google Scholar] [CrossRef]
- Mare, R.; Pujia, R.; Maurotti, S.; Greco, S.; Cardamone, A.; Coppoletta, A.R.; Bonacci, S.; Procopio, A.; Pujia, A. Assessment of Mediterranean Citrus Peel Flavonoids and their Antioxidant Capacity using an Innovative UV-Vis Spectrophotometric Approach. Plants 2023, 12, 4046. [Google Scholar] [CrossRef]
- de la Torre, R.; González, C.; Mangut, V.; Latorre, A.; Rodríguez, A. Sensory Evaluation of Tomato Paste Samples from Two Different Concentration Methods. In VII International Symposium on the Processing Tomato 542; ISHS: Leuven, Belgium, 2001; pp. 283–288. [Google Scholar]
- Kavaya, R.I.; Omwamba, M.N.; Chikamai, B.N.; Mahungu, S.M. Sensory Evaluation of Syneresis Reduced Jam and Marmalade Containing Gum Arabic from Acacia Senegal Var. Kerensis. Food Nutr. Sci. 2019, 10, 1334–1343. [Google Scholar] [CrossRef]
- Almoselhy, R. Formulation and Evaluation of Novel Nutraceuticals Rich in Protein, Vitamins, Minerals, Natural Flavors, and Steviol Glycosides for Improving Quality of Life. Food Sci. Appl. Biotechnol. 2023, 6, 357–371. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Liu, R.; Sun, J.; Bi, K.; Guo, D. Identification and Determination of Major Flavonoids in Rat Serum by HPLC-UV and HPLC-MS Methods Following Oral Administration of Dalbergiaodorifera Extract. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2005, 829, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-López, I.; Pérez, M.; Lamuela-Raventós, R.M. Total (Poly)Phenol Analysis by the Folin-Ciocalteu Assay as an Anti-Inflammatory Biomarker in Biological Samples. Crit. Rev. Food Sci. Nutr. 2024, 64, 10048–10054. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [PubMed]
- Ferro, Y.; Pujia, R.; Mazza, E.; Lascala, L.; Lodari, O.; Maurotti, S.; Pujia, A.; Montalcini, T. A New Nutraceutical (Livogen Plus®) Improves Liver Steatosis in Adults with Non-Alcoholic Fatty Liver Disease. J. Transl. Med. 2022, 20, 377. [Google Scholar] [CrossRef]
- Lamprinoudi, T.; Mazza, E.; Ferro, Y.; Brogneri, S.; Foti, D.; Gulletta, E.; Iocco, M.; Gazzaruso, C.; Romeo, S.; Pujia, A.; et al. The Link between Nutritional Parameters and Bone Mineral Density in Women: Results of a Screening Programme for Osteoporosis. J. Transl. Med. 2014, 12, 46. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. Bioactivity and Protective Effects of Natural Carotenoids. Biochim. Biophys. Acta 2005, 1740, 101–107. [Google Scholar] [CrossRef]
- Beecher, G.R. Nutrient Content of Tomatoes and Tomato Products. Proc. Soc. Exp. Biol. Med. 1998, 218, 98–100. [Google Scholar]
- Agarwal, A.; Shen, H.; Agarwal, S.; Rao, A.V. Lycopene Content of Tomato Products: Its Stability, Bioavailability and in Vivo Antioxidant Properties. J. Med. Food 2001, 4, 9–15. [Google Scholar] [CrossRef]
- Crupi, P.; Faienza, M.F.; Naeem, M.Y.; Corbo, F.; Clodoveo, M.L.; Muraglia, M. Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants 2023, 12, 1069. [Google Scholar] [CrossRef]
- Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a Natural Antioxidant used to Prevent Human Health Disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef]
- Tzulker, R.; Glazer, I.; Bar-Ilan, I.; Holland, D.; Aviram, M.; Amir, R. Antioxidant Activity, Polyphenol Content, and Related Compounds in Different Fruit Juices and Homogenates Prepared from 29 Different Pomegranate Accessions. J. Agric. Food Chem. 2007, 55, 9559–9570. [Google Scholar] [CrossRef]
- Scalbert, A.; Williamson, G. Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, Dietary Sources and Bioavailability. Ann. Ist. Super. Sanita 2007, 43, 348–361. [Google Scholar]
- Oliveira, I.; Sousa, A.; Morais, J.S.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Chemical Composition, and Antioxidant and Antimicrobial Activities of Three Hazelnut (Corylus avellana L.) Cultivars. Food Chem. Toxicol 2008, 46, 1801–1807. [Google Scholar] [CrossRef]
- Emanet, M.; Sen, O.; Pignatelli, F.; Lavarello, C.; Petretto, A.; Ciofani, G. Hazelnut Extract-Loaded Nanostructured Lipid Carriers and Evaluation of their Antioxidant Properties. Front. Bioeng. Biotechnol. 2022, 10, 953867. [Google Scholar] [CrossRef]
- Sanjay, L.R.; Ashokbhai, M.K.; Ghatole, S.; Roy, S.; Kashinath, K.P.; Kaity, S. Strategies for Beating the Bitter Taste of Pharmaceutical Formulations Towards Better Therapeutic Outcomes. RSC Pharm. 2025, 2, 59–81. [Google Scholar] [CrossRef]
- Lin, C.; Shih, M.; Chen, C.; Yeh, S. Effects of Adequate Dietary Protein with Whey Protein, Leucine, and Vitamin D Supplementation on Sarcopenia in Older Adults: An Open-Label, Parallel-Group Study. Clin. Nutr. 2021, 40, 1323–1329. [Google Scholar]
- Kaminska, M.S.; Rachubinska, K.; Grochans, S.; Skonieczna-Zydecka, K.; Cybulska, A.M.; Grochans, E.; Karakiewicz, B. The Impact of Whey Protein Supplementation on Sarcopenia Progression among the Elderly: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2039. [Google Scholar] [CrossRef]
- Karpouzos, A.; Diamantis, E.; Farmaki, P.; Savvanis, S.; Troupis, T. Nutritional Aspects of Bone Health and Fracture Healing. J. Osteoporos 2017, 2017, 4218472. [Google Scholar] [CrossRef]
- Ranneh, Y.; Bedir, A.S.; Abu-Elsaoud, A.M.; Al Raish, S. Polyphenol Intervention Ameliorates Non-Alcoholic Fatty Liver Disease: An Updated Comprehensive Systematic Review. Nutrients 2024, 16, 4150. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.Y.; Wang, N.; Cheung, F.; Hong, M.; Feng, Y. The Potential and Action Mechanism of Polyphenols in the Treatment of Liver Diseases. Oxid Med. Cell. Longev. 2018, 2018, 8394818. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, J.; Pilling, D. The State of the World’s Biodiversity for Food and Agriculture; FAO: Rome, Italy, 2019. [Google Scholar]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Mazza, E.; Maurotti, S.; Ferro, Y.; Castagna, A.; Pujia, C.; Sciacqua, A.; Pujia, A.; Montalcini, T. Magnesium: Exploring Gender Differences in its Health Impact and Dietary Intake. Nutrients 2025, 17, 2226. [Google Scholar] [CrossRef]
- Mazza, E.; Troiano, E.; Ferro, Y.; Lisso, F.; Tosi, M.; Turco, E.; Pujia, R.; Montalcini, T. Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts. Nutrients 2024, 16, 1629. [Google Scholar] [CrossRef] [PubMed]
- Corella, D.; Coltell, O.; Portoles, O.; Sotos-Prieto, M.; Fernandez-Carrion, R.; Ramirez-Sabio, J.B.; Zanon-Moreno, V.; Mattei, J.; Sorli, J.V.; Ordovas, J.M. A Guide to Applying the Sex-Gender Perspective to Nutritional Genomics. Nutrients 2018, 11, 4. [Google Scholar] [CrossRef]




| Sample Name | TPC (GAE mg/mL ± SD) | TFC (mg/mL ± SD) |
| Pomegranate and bergamot juice | 0.478 ± 0.010 | 1.16 ± 0.03 mg/mL |
| Bergamot marmalade | 0.503 ± 0.065 | 0.657 ± 0.001 mg/mL |
| Blueberry juice | 0.586 ± 0.015 | 0.886 ± 0.098 mg/mL |
| Hazelnuts * | 0.228 ± 0.012 | - |
| Antioxidant power of functional food | ||
| Sample | I (%) ± SD | |
| Pomegranate and bergamot juice | 53.91 ± 1.23 | |
| Bergamot marmalade | 39.33 ± 0.37 | |
| Blueberry juice | 0.586 ± 0.015 | |
| Hazelnuts * | 26.96 ± 0.75 | |
| Variables | Population (n = 19) |
|---|---|
| Age (years) | 66 ± 6 |
| Weight (kg) | 77 ± 13 |
| BMI (kg/m2) | 29.1 ± 4.0 |
| WC (cm) | 99 ± 13 |
| HC (cm) | 107 ± 9 |
| WHR | 0.93 ± 0.1 |
| Mid-arm (cm) circumference | 32 ± 3 |
| Triceps skinfold (mm) | 2.6 ± 1.0 |
| Handgrip (kg) | 27.1 ± 8.0 |
| Body composition | |
| TBW (%) | 50 ± 7 |
| FFM (%) | 68 ± 10 |
| FM (%) | 32 ± 10 |
| SMM (kg) | 33 ± 7 |
| ASMM (kg) | 19 ± 4 |
| RMR (kcal) | 1533 ± 172 |
| BUA BMD (g/cm2) | 0.439 ± 0.1 |
| BUA T-score (SD) | −1.27 ± 1.0 |
| CAP score (dB/m) | 245 ± 45 |
| CAP score SD (%) | 10 ± 5 |
| Stiffness (kPa) | 4.8 ± 1.0 |
| Stiffness IQR | 15 ± 6 |
| Prevalence | |
| Gender (Female, %) | 68 |
| Obesity (%) | 47 |
| Low Handgrip (%) | 0 |
| Sarcopenia (%) | 0 |
| Osteopenia (%) | 37 |
| Osteoporosis (%) | 16 |
| Liver steatosis S0 (%) | 53 |
| Liver steatosis S1 (%) | 11 |
| Liver steatosis S2 (%) | 5 |
| Liver steatosis S3 (%) | 32 |
| Liver Fibrosis (%) | 0 |
| Functional Products | Adherence to Treatment (%) |
|---|---|
| Tomato sauce/tomato juice naturally rich in lycopene | 92 |
| Blueberry juice rich in antioxidants and polyphenols | 96 |
| Pomegranate and bergamot juice rich in antioxidants | 95 |
| Bergamot marmalade rich in antioxidants and polyphenols | 94 |
| Hazelnut cream rich in antioxidants and polyphenols | 92 |
| Nutraceutical 1 with essential amino acids | 94 |
| Nutraceutical 2 with whey proteins, vitamins, minerals, and antioxidants | 96 |
| Variables | Basal | Follow-Up | p-Value |
|---|---|---|---|
| Weight (kg) | 77 ± 13 | 77 ± 13 | 0.77 |
| BMI (kg/m2) | 29.1 ± 4.0 | 29.2 ± 4.0 | 0.60 |
| WC (cm) | 99 ± 13 | 101 ± 13 | 0.07 |
| HC (cm) | 107 ± 9 | 108 ± 9 | 0.12 |
| WHR | 0.93 ± 0.1 | 0.93 ± 0.1 | 0.42 |
| Mid-arm circumference (cm) | 32 ± 3 | 33 ± 4 | 0.020 |
| Triceps skinfold (mm) | 2.6 ± 1.0 | 2.3 ± 1.0 | 0.021 |
| Handgrip (kg) | 27.1 ± 8.0 | 27.8 ± 7.0 | 0.14 |
| Body composition | |||
| TBW (%) | 50 ± 7 | 51 ± 8 | 0.023 |
| FFM (%) | 68 ± 10 | 68 ± 9 | 0.60 |
| FM (%) | 32 ± 10 | 32 ± 9 | 0.60 |
| SMM (kg) | 33 ± 7 | 33 ± 7 | 0.12 |
| ASMM (kg) | 19 ± 4 | 20 ± 4 | 0.20 |
| RMR (kcal) | 1533 ± 172 | 1512 ± 181 | 0.08 |
| BUA BMD (g/cm2) | 0.439 ± 0.1 | 0.452 ± 0.1 | 0.733 |
| BUA T-score (SD) | −1.27 ± 1.0 | −1.14 ± 0.9 | 0.042 |
| CAP score (dB/m) | 245 ± 45 | 234 ± 43 | 0.12 |
| Stiffness (kPa) | 4.8 ± 1.0 | 4.6 ± 1.0 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scionti, F.; Maurotti, S.; Mazza, E.; Mirarchi, A.; Russo, R.; Doria, P.; Mare, R.; Marafioti, G.; Ferro, Y.; Montalcini, T.; et al. Clinical Implementation of Sustainable Functional Foods and Nutraceuticals in Metabolic Health: A Feasibility Study. Nutrients 2025, 17, 3858. https://doi.org/10.3390/nu17243858
Scionti F, Maurotti S, Mazza E, Mirarchi A, Russo R, Doria P, Mare R, Marafioti G, Ferro Y, Montalcini T, et al. Clinical Implementation of Sustainable Functional Foods and Nutraceuticals in Metabolic Health: A Feasibility Study. Nutrients. 2025; 17(24):3858. https://doi.org/10.3390/nu17243858
Chicago/Turabian StyleScionti, Francesca, Samantha Maurotti, Elisa Mazza, Angela Mirarchi, Raffaella Russo, Paola Doria, Rosario Mare, Giuseppe Marafioti, Yvelise Ferro, Tiziana Montalcini, and et al. 2025. "Clinical Implementation of Sustainable Functional Foods and Nutraceuticals in Metabolic Health: A Feasibility Study" Nutrients 17, no. 24: 3858. https://doi.org/10.3390/nu17243858
APA StyleScionti, F., Maurotti, S., Mazza, E., Mirarchi, A., Russo, R., Doria, P., Mare, R., Marafioti, G., Ferro, Y., Montalcini, T., & Pujia, A. (2025). Clinical Implementation of Sustainable Functional Foods and Nutraceuticals in Metabolic Health: A Feasibility Study. Nutrients, 17(24), 3858. https://doi.org/10.3390/nu17243858

