Dietary Bioactive Compounds and Their Role in Allergy Prevention: A Comprehensive Review
Abstract
1. Introduction
2. Materials and Methods
3. Bioactive Compounds with Preventive Potential in Allergic Diseases
3.1. Omega-3 Polyunsaturated Fatty Acids
3.1.1. Structure and Dietary Sources
3.1.2. Preclinical and Clinical Evidence
Preclinical Evidence
Clinical Evidence
3.1.3. Bioavailability, Safety, and Dosage Considerations
3.2. Vitamin D
3.2.1. Structure and Dietary Sources
3.2.2. Preclinical and Clinical Evidence
Preclinical Evidence
Clinical Evidence
3.2.3. Bioavailability, Safety, and Dosage Considerations
3.3. Curcumin
3.3.1. Structure and Dietary Sources
3.3.2. Preclinical and Clinical Evidence
Preclinical Evidence
Clinical Evidence
3.3.3. Bioavailability, Safety, and Dosage Considerations
3.4. Ginger
3.4.1. Chemical Structure and Dietary Sources
3.4.2. Preclinical and Clinical Evidence
Preclinical Studies
Clinical Studies
3.4.3. Bioavailability, Safety, and Dosage Considerations
Pharmacokinetics and Formulations
Safety and Drug Interactions
3.5. Quercetin
3.5.1. Chemical Structure and Dietary Sources
3.5.2. Preclinical and Clinical Evidence
Preclinical Evidence
Clinical Evidence
3.5.3. Bioavailability, Safety, and Dosage Considerations
3.6. Epigallocatechin Gallate
3.6.1. Chemical Structure and Dietary Sources of Epigallocatechin Gallate
3.6.2. Preclinical and Clinical Evidence
Preclinical Evidence
Clinical Evidence
3.6.3. Bioavailability, Safety, and Dosage Considerations
3.7. Mechanisms of Action of Dietary Bioactive Compounds in Allergy Prevention
3.7.1. General Immunological Mechanisms
3.7.2. Omega-3 Polyunsaturated Fatty Acids (PUFAs)
3.7.3. Vitamin D
3.7.4. Curcumin
3.7.5. Ginger
3.7.6. Quercetin
3.7.7. Epigallocatechin Gallate (EGCG)
4. Conclusions and Future Research Lines
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACT | Asthma Control Test |
| ACD | Allergic Contact Dermatitis |
| AD | Atopic Dermatitis |
| AMPK | AMP-Activated Protein Kinase |
| AR | Allergic Rhinitis |
| cAMP | Cyclic Adenosine Monophosphate |
| COX | Cyclooxygenase |
| CRP | C-Reactive Protein |
| CQAB | Curcumin and Ashwagandha Bioactive Complex |
| EASI | Eczema Area and Severity Index |
| EGCG | Epigallocatechin Gallate |
| ERK1/2 | Extracellular Signal-Regulated Kinases 1/2 |
| FDA | Food and Drug Administration |
| FcεRI | High-Affinity IgE Receptor |
| FeNO | Fractional Exhaled Nitric Oxide |
| FOXO | Forkhead Box O |
| HDAC | Histone Deacetylase |
| IL | Interleukin |
| JAK/STAT | Janus Kinase/Signal Transducer and Activator of Transcription |
| Lyn | Lyn tyrosine kinase |
| MAPK | Mitogen-Activated Protein Kinase |
| NF-κB | Nuclear Factor Kappa B |
| Nrf2/HO-1 | Nuclear Factor Erythroid 2–Related Factor 2/Heme Oxygenase-1 |
| OVA | Ovalbumin |
| PCA | Passive Cutaneous Anaphylaxis |
| PI3K/Akt | Phosphoinositide 3-Kinase/Protein Kinase B |
| PLCγ | Phospholipase C gamma |
| QCS | Quercetin-Loaded Chitosan Nanoparticles |
| RA | Retinoic Acid |
| RQLQ | Rhinoconjunctivitis Quality of Life Questionnaire |
| ROS | Reactive Oxygen Species |
| SAD | Stearidonic Acid |
| SCORAD | Scoring Atopic Dermatitis |
| Th1/Th2 | T Helper Cells Type 1/Type 2 |
| TNF-α | Tumor Necrosis Factor Alpha |
| TNSS | Total Nasal Symptom Score |
| Treg | Regulatory T Cell |
| UVB | Ultraviolet B |
| VDR | Vitamin D receptor |
References
- Dierick, B.J.H.; van der Molen, T.; Flokstra-de Blok, B.M.J.; Muraro, A.; Postma, M.J.; Kocks, J.W.H.; van Boven, J.F.M. Burden and Socioeconomics of Asthma, Allergic Rhinitis, Atopic Dermatitis and Food Allergy. Expert Rev. Pharmacoecon. Outcomes Res. 2020, 20, 437–453. [Google Scholar] [CrossRef]
- Murrison, L.B.; Brandt, E.B.; Myers, J.B.; Hershey, G.K.K. Environmental Exposures and Mechanisms in Allergy and Asthma Development. J. Clin. Investig. 2019, 129, 1504–1515. [Google Scholar] [CrossRef]
- Hage, G.; Sacre, Y.; Haddad, J.; Hajj, M.; Sayegh, L.N.; Fakhoury-Sayegh, N. Food Hypersensitivity: Distinguishing Allergy from Intolerance, Main Characteristics, and Symptoms—A Narrative Review. Nutrients 2025, 17, 1359. [Google Scholar] [CrossRef]
- Shin, Y.H.; Hwang, J.; Kwon, R.; Lee, S.W.; Kim, M.S.; Shin, J.I.; Yon, D.K.; Abate, Y.H.; Abbasi-Kangevari, M.; Abbasi-Kangevari, Z.; et al. Global, Regional, and National Burden of Allergic Disorders and Their Risk Factors in 204 Countries and Territories, from 1990 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Allergy Eur. J. Allergy Clin. Immunol. 2023, 78, 2232–2254. [Google Scholar] [CrossRef]
- Bartha, I.; Almulhem, N.; Santos, A.F. Feast for Thought: A Comprehensive Review of Food Allergy 2021-2023. J. Allergy Clin. Immunol. 2024, 153, 576–594. [Google Scholar] [CrossRef]
- Spolidoro, G.C.I.; Ali, M.M.; Amera, Y.T.; Nyassi, S.; Lisik, D.; Ioannidou, A.; Rovner, G.; Khaleva, E.; Venter, C.; van Ree, R.; et al. Prevalence Estimates of Eight Big Food Allergies in Europe: Updated Systematic Review and Meta-Analysis. Allergy Eur. J. Allergy Clin. Immunol. 2023, 78, 2361–2417. [Google Scholar] [CrossRef]
- Falcon, R.M.G.; Caoili, S.E.C. Immunologic, Genetic, and Ecological Interplay of Factors Involved in Allergic Diseases. Front. Allergy 2023, 4, 1215616. [Google Scholar] [CrossRef] [PubMed]
- Batmaz, S.B.; Birinci, G.; Aslan, E.A. Quality of Life of Children with Allergic Disease: The Effect of Depression and Anxiety of Children and Their Mothers. J. Asthma 2022, 59, 1776–1786. [Google Scholar] [CrossRef]
- Di Agosta, E.; Salvati, L.; Corazza, M.; Baiardini, I.; Ambrogio, F.; Angileri, L.; Antonelli, E.; Belluzzo, F.; Bonamonte, D.; Bonzano, L.; et al. Quality of Life in Patients with Allergic and Immunologic Skin Diseases: In the Eye of the Beholder. Clin. Mol. Allergy 2021, 19, 26. [Google Scholar] [CrossRef]
- Calvani, M.; Anania, C.; Caffarelli, C.; Martelli, A.; Del Giudice, M.M.; Cravidi, C.; Duse, M.; Manti, S.; Tosca, M.A.; Cardinale, F.; et al. Food Allergy: An Updated Review on Pathogenesis, Diagnosis, Prevention and Management. Acta Bio Medica Atenei Parm. 2020, 91, e2020012. [Google Scholar] [CrossRef]
- Klimek, L.; Mullol, J.; Ellis, A.K.; Izquierdo-Domínguez, A.; Hagemann, J.; Casper, I.; Davis, A.; Becker, S. Current Management of Allergic Rhinitis. J. Allergy Clin. Immunol. Pract. 2024, 12, 1399–1412. [Google Scholar] [CrossRef]
- May, J.R.; Dolen, W.K. Management of Allergic Rhinitis: A Review for the Community Pharmacist. Clin. Ther. 2017, 39, 2410–2419. [Google Scholar] [CrossRef]
- Trincianti, C.; Tosca, M.A.; Ciprandi, G. Updates in the Diagnosis and Practical Management of Allergic Rhinitis. Expert. Rev. Clin. Pharmacol. 2023, 16, 669–676. [Google Scholar] [CrossRef]
- Jasiak-Panek, N.M.; Le, K.T.; Moran, T.; Mudahar, S. Pharmacologic Management of Allergic Disease and Sleep. In Allergy and Sleep: Basic Principles and Clinical Practice; Springer International Publishing: Cham, Switzerland, 2019; pp. 385–407. [Google Scholar] [CrossRef]
- Paris, J.L.; de la Torre, P.; Flores, A.I. New Therapeutic Approaches for Allergy: A Review of Cell Therapy and Bio- or Nano-Material-Based Strategies. Pharmaceutics 2021, 13, 2149. [Google Scholar] [CrossRef]
- Farhan, M.; Rizvi, A.; Aatif, M.; Muteeb, G.; Khan, K.; Siddiqui, F.A. Dietary Polyphenols, Plant Metabolites, and Allergic Disorders: A Comprehensive Review. Pharmaceuticals 2024, 17, 670. [Google Scholar] [CrossRef]
- Dębińska, A.; Sozańska, B. Dietary Polyphenols—Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients 2023, 15, 4823. [Google Scholar] [CrossRef]
- Benvenuto, M.; Focaccetti, C.; Ciuffa, S.; Fazi, S.; Bei, A.; Miele, M.T.; Albonici, L.; Cifaldi, L.; Masuelli, L.; Bei, R. Polyphenols Affect the Humoral Response in Cancer, Infectious and Allergic Diseases and Autoimmunity by Modulating the Activity of TH1 and TH2 Cells. Curr. Opin. Pharmacol. 2021, 60, 315–330. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; Apostolopoulos, V.; Platat, C.; Al Dhaheri, A.S.; Ali, H.I.; Ismail, L.C.; Bosevski, M.; Stojanovska, L. Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021, 13, 728. [Google Scholar] [CrossRef]
- Sobhani, M.; Farzaei, M.H.; Kiani, S.; Khodarahmi, R. Immunomodulatory; Anti-Inflammatory/Antioxidant Effects of Polyphenols: A Comparative Review on the Parental Compounds and Their Metabolites. Food Rev. Int. 2021, 37, 759–811. [Google Scholar] [CrossRef]
- Ferreira, C.; Vieira, P.; Sá, H.; Malva, J.; Castelo-Branco, M.; Reis, F.; Viana, S. Polyphenols: Immunonutrients Tipping the Balance of Immunometabolism in Chronic Diseases. Front. Immunol. 2024, 15, 1360065. [Google Scholar] [CrossRef]
- Perrone, P.; D’Angelo, S. Hormesis and Health: Molecular Mechanisms and the Key Role of Polyphenols. Food Chem. Adv. 2025, 7, 101030. [Google Scholar] [CrossRef]
- Medoro, A.; Davinelli, S.; Colletti, A.; Di Micoli, V.; Grandi, E.; Fogacci, F.; Scapagnini, G.; Cicero, A.F.G. Nutraceuticals as Modulators of Immune Function: A Review of Potential Therapeutic Effects. Prev. Nutr. Food Sci. 2023, 28, 89. [Google Scholar] [CrossRef]
- Kaag, S.; Lorentz, A. Effects of Dietary Components on Mast Cells: Possible Use as Nutraceuticals for Allergies? Cells 2023, 12, 2602. [Google Scholar] [CrossRef]
- Schunck, W.H.; Konkel, A.; Fischer, R.; Weylandt, K.H. Therapeutic Potential of Omega-3 Fatty Acid-Derived Epoxyeicosanoids in Cardiovascular and Inflammatory Diseases. Pharmacol. Ther. 2018, 183, 177–204. [Google Scholar] [CrossRef]
- Sartorio, M.U.A.; Pendezza, E.; Coppola, S.; Paparo, L.; D’auria, E.; Zuccotti, G.V.; Berni Canani, R. Potential Role of Omega-3 Polyunsaturated Fatty Acids in Pediatric Food Allergy. Nutrients 2021, 14, 152. [Google Scholar] [CrossRef]
- Jia, Y.; Huang, Y.; Wang, H.; Jiang, H. A Dose-Response Meta-Analysis of the Association between the Maternal Omega-3 Long-Chain Polyunsaturated Fatty Acids Supplement and Risk of Asthma/Wheeze in Offspring. BMC Pediatr. 2022, 22, 422. [Google Scholar] [CrossRef]
- Briceno Noriega, D.; Savelkoul, H.F.J. Vitamin D and Allergy Susceptibility during Gestation and Early Life. Nutrients 2021, 13, 1015. [Google Scholar] [CrossRef]
- Umehara, Y.; Trujillo-Paez, J.V.; Yue, H.; Peng, G.; Nguyen, H.L.T.; Okumura, K.; Ogawa, H.; Niyonsaba, F. Calcitriol, an Active Form of Vitamin D3, Mitigates Skin Barrier Dysfunction in Atopic Dermatitis NC/Nga Mice. Int. J. Mol. Sci. 2023, 24, 9347. [Google Scholar] [CrossRef] [PubMed]
- Brustad, N.; Chawes, B. Vitamin D Primary Prevention of Respiratory Infections and Asthma in Early Childhood: Evidence and Mechanisms. J. Allergy Clin. Immunol. Pract. 2024, 12, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, P.E.; Hawrylowicz, C.M. Vitamin D in Asthma: Mechanisms of Action and Considerations for Clinical Trials. Chest 2018, 153, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xu, Q.; Zhu, R. Vitamin D and Allergic Diseases. Front. Immunol. 2024, 15, 1420883. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.; Martineau, A.R.; Sheikh, A.; Jolliffe, D.; Griffiths, C.J. Vitamin D for the Management of Asthma. Cochrane Database Syst. Rev. 2023, 2, CD011511. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Q.; Zhang, G.; Tian, X.; Li, Y.; Wang, Z.; Zhao, Y.; Chen, Y.; Luo, Z. Vitamin D Supplementation and Allergic Diseases during Childhood: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3947. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its’ Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Wu, S.; Xiao, D. Effect of Curcumin on Nasal Symptoms and Airflow in Patients with Perennial Allergic Rhinitis. Ann. Allergy Asthma Immunol. 2016, 117, 697–702.e1. [Google Scholar] [CrossRef]
- K, M.; Aryan, M.K.; Prabhakaran, P.; Mulakal, J.N.; Das, S.S.; IM, K.; Parameswara Panicker, S. Short-Term Influence of ImmufenTM on Mild Allergic Rhinitis: A Randomized, Double-Blind, Placebo-Controlled Study. Front. Allergy 2024, 5, 1390813. [Google Scholar] [CrossRef]
- Shin, H.S.; See, H.J.; Jung, S.Y.; Choi, D.W.; Kwon, D.A.; Bae, M.J.; Sung, K.S.; Shon, D.H. Turmeric (Curcuma longa) Attenuates Food Allergy Symptoms by Regulating Type 1/Type 2 Helper T Cells (Th1/Th2) Balance in a Mouse Model of Food Allergy. J. Ethnopharmacol. 2015, 175, 21–29. [Google Scholar] [CrossRef]
- Quan, M.; Alismail, A.; Daher, N.; Cleland, D.; Chavan, S.; Tan, L.D. Randomized, Placebo Controlled, Double Blinded Pilot Superiority Phase 2 Trial to Evaluate the Effect of Curcumin in Moderate to Severe Asthmatics. BMC Pulm. Med. 2021, 21, 268. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Singh, D.K.; Dash, D.; Singh, R. Intranasal Curcumin Regulates Chronic Asthma in Mice by Modulating NF-ĸB Activation and MAPK Signaling. Phytomedicine 2018, 51, 29–38. [Google Scholar] [CrossRef]
- Jayasinghe, A.M.K.; Kirindage, K.G.I.S.; Kim, S.H.; Lee, S.; Kim, K.N.; Kim, E.A.; Heo, S.J.; Ahn, G. Leaves and Pseudostems Extract of Curcuma longa Attenuates Immunoglobulin E/Bovine Serum Albumin-Stimulated Bone Marrow-Derived Cultured Mast Cell Activation and Passive Cutaneous Anaphylaxis in BALB/c Mice. J. Ethnopharmacol. 2024, 321, 117529. [Google Scholar] [CrossRef]
- Razali, N.A.; Nazarudin, N.A.; Lai, K.S.; Abas, F.; Ahmad, S. Curcumin Derivative, 2,6-Bis(2-Fluorobenzylidene)Cyclohexanone (MS65) Inhibits Interleukin-6 Production through Suppression of NF-ΚB and MAPK Pathways in Histamine-Induced Human Keratinocytes Cell (HaCaT). BMC Complement. Altern. Med. 2018, 18, 217. [Google Scholar] [CrossRef]
- Nagata, Y.; Yamamoto, T.; Kadowaki, M. Ginger Increases ALDH1A1 Expression and Enhances Retinoic Acid Signaling in a Human Colonic Epithelial Cell Line. J. Nutr. Sci. Vitaminol. 2020, 66, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Abdelmawgood, I.; Sayed, A.M.; Mohamed, O.A.; Ali Ramadan, S.; Waleed Farg, J.; Saad, W.; Sayed Hamdy, R.; Sharaf, B.; Ashry, H.; Kotb, M.A. Ginger and Its Constituents in Asthma: A Mini-Review. J. Asthma 2024, 61, 1392–1401. [Google Scholar] [CrossRef]
- Najaf Najafi, N.; Armide, N.; Akbari, A.; Baradaran Rahimi, V.; Askari, V.R. Quercetin a Promising Functional Food Additive against Allergic Diseases: A Comprehensive and Mechanistic Review. J. Funct. Foods 2024, 116, 106152. [Google Scholar] [CrossRef]
- Okumo, T.; Furuta, A.; Kimura, T.; Yusa, K.; Asano, K.; Sunagawa, M. Inhibition of Angiogenic Factor Productions by Quercetin In Vitro and In Vivo. Medicines 2021, 8, 22. [Google Scholar] [CrossRef]
- Sagit, M.; Polat, H.; Gurgen, S.G.; Berk, E.; Guler, S.; Yasar, M. Effectiveness of Quercetin in an Experimental Rat Model of Allergic Rhinitis. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 3087–3095. [Google Scholar] [CrossRef]
- Joskova, M.; Sadlonova, V.; Nosalova, G.; Novakova, E.; Franova, S. Polyphenols and Their Components in Experimental Allergic Asthma. Adv. Exp. Med. Biol. 2013, 756, 91–98. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, N.; Wang, C.; Yuan, Y.; Du, H.; Ding, Y.; An, H. Quercetin Alleviates Chronic Urticaria by Negatively Regulating IgE-Mediated Mast Cell Activation Through CD300f. Phytother. Res. 2025, 39, 3033–3045. [Google Scholar] [CrossRef]
- Makino, T.; Kanemaru, M.; Okuyama, S.; Shimizu, R.; Tanaka, H.; Mizukami, H. Anti-Allergic Effects of Enzymatically Modified Isoquercitrin (α-Oligoglucosyl Quercetin 3-O-Glucoside), Quercetin 3-O-Glucoside, α-Oligoglucosyl Rutin, and Quercetin, When Administered Orally to Mice. J. Nat. Med. 2013, 67, 881–886. [Google Scholar] [CrossRef]
- Mu, D.; Zhou, L.; Shi, L.; Liu, T.; Guo, Y.; Chen, H.; Luo, H.; Ma, J.; Zhang, H.; Xiong, P.; et al. Quercetin-Crosslinked Chitosan Nanoparticles: A Potential Treatment for Allergic Rhinitis. Sci. Rep. 2024, 14, 4021. [Google Scholar] [CrossRef]
- Deng, Y.; Shen, L.; Zhu, H.; Zhou, Y.; Hu, X. Network Pharmacology Analysis of the Huangqi-Gancao Herb Pair Reveals Quercetin as a Therapeutics for Allergic Rhinitis via the RELA-Regulated IFNG/IRF1 Axis Response. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 1597–1612. [Google Scholar] [CrossRef]
- Di Pierro, F.; Iqtadar, S.; Khan, A.; Ullah Mumtaz, S.; Masud Chaudhry, M.; Bertuccioli, A.; Derosa, G.; Maffioli, P.; Togni, S.; Riva, A.; et al. Potential Clinical Benefits of Quercetin in the Early Stage of COVID-19: Results of a Second, Pilot, Randomized, Controlled and Open-Label Clinical Trial. Int. J. Gen. Med. 2021, 14, 2807–2816. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Hur, G.; Lee, S.W.; Lee, S.J.; Lee, S.; Kim, S.H.; Rho, M.C. AGK2 Ameliorates Mast Cell-Mediated Allergic Airway Inflammation and Fibrosis by Inhibiting FcεRI/TGF-β Signaling Pathway. Pharmacol. Res. 2020, 159, 105027. [Google Scholar] [CrossRef]
- Mokra, D.; Adamcakova, J.; Mokry, J. Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants 2022, 11, 1566. [Google Scholar] [CrossRef]
- Islam, M.M.; Azman, N.S.N.; Das, S.K.; Gousuddin, M.; Rasel, M.A.H.; Islam, M.R.; Bini, N.I. Stabilizing Effect of Green Tea Extract and Epigallocatechin-3-Gallate (EGCG) on Mast Cell: An in Vivo Study. Inflammopharmacology 2025, 33, 4685–4701. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Hao, J.; Yang, Z.; Ma, C.; Gao, L.; Chen, Y.; Li, G.; Li, J. Anti-Allergic Effect of Dietary Polyphenols Curcumin and Epigallocatechin Gallate via Anti-Degranulation in IgE/Antigen-Stimulated Mast Cell Model: A Lipidomics Perspective. Metabolites 2023, 13, 628. [Google Scholar] [CrossRef]
- Hossen, I.; Kaiqi, Z.; Hua, W.; Junsong, X.; Mingquan, H.; Yanping, C. Epigallocatechin Gallate (EGCG) Inhibits Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophage Cells via Modulating Nuclear Factor Kappa-Light-Chain Enhancer of Activated B Cells (NF- κ B) Signaling Pathway. Food Sci. Nutr. 2023, 11, 4634–4650. [Google Scholar] [CrossRef]
- Han, M.; Wang, X.; Wang, J.; Lang, D.; Xia, X.; Jia, Y.; Chen, Y. Ameliorative Effects of Epigallocatechin-3-Gallate Nanoparticles on 2,4-Dinitrochlorobenzene Induced Atopic Dermatitis: A Potential Mechanism of Inflammation-Related Necroptosis. Front. Nutr. 2022, 9, 953646. [Google Scholar] [CrossRef]
- Kim, T.E.; Ha, N.; Kim, Y.; Kim, H.; Lee, J.W.; Jeon, J.Y.; Kim, M.G. Effect of Epigallocatechin-3-Gallate, Major Ingredient of Green Tea, on the Pharmacokinetics of Rosuvastatin in Healthy Volunteers. Drug Des. Devel Ther. 2017, 11, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018, 10, 345–381. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Soares, V.M.; da Silva, T.C.; Dos Santos, P.P. Role of Omega-3 and Omega-6 on Cardiovascular Risk Factors: Importance of Dietary Sources and Lipid Structure. Arq. Bras. Cardiol. 2023, 120, e20230753. [Google Scholar] [CrossRef]
- Patted, P.G.; Masareddy, R.S.; Patil, A.S.; Kanabargi, R.R.; Bhat, C.T. Omega-3 Fatty Acids: A Comprehensive Scientific Review of Their Sources, Functions and Health Benefits. Future J. Pharm. Sci. 2024, 10, 94. [Google Scholar] [CrossRef]
- Tewari, S.; Vaishnav, S.; Biswas, S.; Khalua, R.K.; Chakraborty, R.; Chakraborty, A. Fish Liver Oil: Omega-3 Fatty Acid And Human Health. Uttar Pradesh J. Zool. 2022, 43, 307–310. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Naidu, K.A.; Shang, X.; Keum, Y.S. Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef]
- Baker, E.J. Alternative Sources of Bioactive Omega-3 Fatty Acids: What Are the Options? Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 106–115. [Google Scholar] [CrossRef]
- Miyata, J.; Arita, M. Role of Omega-3 Fatty Acids and Their Metabolites in Asthma and Allergic Diseases. Allergol. Int. 2015, 64, 27–34. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Cao, Z.; Wu, J. The Causal Association of Polyunsaturated Fatty Acids with Allergic Disease: A Two-Sample Mendelian Randomization Study. Front. Nutr. 2022, 9, 962787. [Google Scholar] [CrossRef] [PubMed]
- Foiles, A.M.; Kerling, E.H.; Wick, J.A.; Scalabrin, D.M.F.; Colombo, J.; Carlson, S.E. Formula with Long-Chain Polyunsaturated Fatty Acids Reduces Incidence of Allergy in Early Childhood. Pediatr. Allergy Immunol. 2016, 27, 156–161. [Google Scholar] [CrossRef]
- Bärebring, L.; Nwaru, B.I.; Lamberg-Allardt, C.; Thorisdottir, B.; Ramel, A.; Söderlund, F.; Arnesen, E.K.; Dierkes, J.; Åkesson, A. Supplementation with Long Chain N-3 Fatty Acids during Pregnancy, Lactation, or Infancy in Relation to Risk of Asthma and Atopic Disease during Childhood: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Food Nutr. Res. 2022, 66, 10-29219. [Google Scholar] [CrossRef]
- Alijani, S.; Hahn, A.; Harris, W.S.; Schuchardt, J.P. Bioavailability of EPA and DHA in Humans—A Comprehensive Review. Prog. Lipid Res. 2025, 97, 101318. [Google Scholar] [CrossRef] [PubMed]
- Vosskötter, F.; Burhop, M.; Hahn, A.; Schuchardt, J.P. Equal Bioavailability of Omega-3 PUFA from Calanus Oil, Fish Oil and Krill Oil: A 12-Week Randomized Parallel Study. Lipids 2023, 58, 129–138. [Google Scholar] [CrossRef]
- Homroy, S.; Chopra, R.; Singh, P.K.; Dhiman, A.; Chand, M.; Talwar, B. Role of Encapsulation on the Bioavailability of Omega-3 Fatty Acids. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13272. [Google Scholar] [CrossRef]
- Pham, T.P.T.; Hoang, T.V.; Cao, P.T.N.; Le, T.T.D.; Ho, V.T.N.; Vu, T.M.H.; Le, T.H.T.; Pham, H.T.X.; Tran, T.T.; Mafruhah, O.R.; et al. Comparison of Omega-3 Polyunsaturated Fatty Acids Bioavailability in Fish Oil and Krill Oil: Network Meta-Analyses. Food Chem. X 2024, 24, 101880. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, L.; Vachon, A.; Plourde, M.D.S. Pharmacokinetics of Supplemental Omega-3 Fatty Acids Esterified in Monoglycerides, Ethyl Esters, or Triglycerides in Adults in a Randomized Crossover Trial. J. Nutr. 2021, 151, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.P.C.; Tseng, P.T.; Zeng, B.S.; Chang, C.H.; Su, H.; Chou, P.H.; Su, K.P. Safety of Supplementation of Omega-3 Polyunsaturated Fatty Acids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 1326–1336. [Google Scholar] [CrossRef]
- Khan, S.U.; Lone, A.N.; Khan, M.S.; Virani, S.S.; Blumenthal, R.S.; Nasir, K.; Miller, M.; Michos, E.D.; Ballantyne, C.M.; Boden, W.E.; et al. Effect of Omega-3 Fatty Acids on Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. EClinicalMedicine 2021, 38, 100997. [Google Scholar] [CrossRef]
- Markozannes, G.; Ntzani, E.E.; Tsapas, A.; Mantzoros, C.S.; Tsiara, S.; Xanthos, T.; Karpettas, N.; Patrikios, I.; Rizos, E.C. Dose-Related Meta-Analysis for Omega-3 Fatty Acids Supplementation on Major Adverse Cardiovascular Events. Clin. Nutr. 2022, 41, 923–930. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; et al. Marine N−3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med. 2019, 380, 23–32. [Google Scholar] [CrossRef]
- Guo, X.F.; Li, K.L.; Li, J.M.; Li, D. Effects of EPA and DHA on Blood Pressure and Inflammatory Factors: A Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2019, 59, 3380–3393. [Google Scholar] [CrossRef] [PubMed]
- AbuMweis, S.; Abu Omran, D.; Al-Shami, I.; Jew, S. The Ratio of Eicosapentaenoic Acid to Docosahexaenoic Acid as a Modulator for the Cardio-Metabolic Effects of Omega-3 Supplements: A Meta-Regression of Randomized Clinical Trials. Complement. Ther. Med. 2021, 57, 102662. [Google Scholar] [CrossRef]
- Mavar, M.; Sorić, T.; Bagarić, E.; Sarić, A.; Matek Sarić, M. The Power of Vitamin D: Is the Future in Precision Nutrition through Personalized Supplementation Plans? Nutrients 2024, 16, 1176. [Google Scholar] [CrossRef]
- Del Valle, H.B.; Yaktine, A.L.; Taylor, C.L.; Ross, A.C. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Starck, C.; Cassettari, T.; Wright, J.; Petocz, P.; Beckett, E.; Fayet-Moore, F. Mushrooms: A Food-Based Solution to Vitamin D Deficiency to Include in Dietary Guidelines. Front. Nutr. 2024, 11, 1384273. [Google Scholar] [CrossRef]
- Cashman, K.D.; O’Neill, C.M. Strategic Food Vehicles for Vitamin D Fortification and Effects on Vitamin D Status: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. J. Steroid Biochem. Mol. Biol. 2024, 238, 106448. [Google Scholar] [CrossRef]
- Nyakundi, P.N.; Némethné Kontár, Z.; Kovács, A.; Járomi, L.; Zand, A.; Lohner, S. Fortification of Staple Foods for Household Use with Vitamin D: An Overview of Systematic Reviews. Nutrients 2023, 15, 3742. [Google Scholar] [CrossRef]
- Alnafisah, R.Y.; Alragea, A.S.; Alzamil, M.K.; Alqahtani, A.S. The Impact and Efficacy of Vitamin D Fortification. Nutrients 2024, 16, 4322. [Google Scholar] [CrossRef]
- Moyersoen, I.; Devleesschauwer, B.; Dekkers, A.; Verkaik-Kloosterman, J.; De Ridder, K.; Vandevijvere, S.; Tafforeau, J.; Van Oyen, H.; Lachat, C.; Van Camp, J. A Novel Approach to Optimize Vitamin D Intake in Belgium through Fortification Based on Representative Food Consumption Data. J. Nutr. 2019, 149, 1852–1862. [Google Scholar] [CrossRef]
- Dunlop, E.; Lawrence, A.S.; Neo, B.; Kiely, M.; Rangan, A.; Nowson, C.; Adorno, P.; Atyeo, P.; Tescari, E.; Russo-Batterham, D.; et al. Modeling Vitamin D Fortification Scenarios for the Australian Population. J. Nutr. 2025, 155, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Benetti, C.; Comberiati, P.; Capristo, C.; Boner, A.; Peroni, D. Therapeutic Effects of Vitamin D in Asthma and Allergy. Mini Rev. Med. Chem. 2015, 15, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Suaini, N.H.A.; Zhang, Y.; Vuillermin, P.J.; Allen, K.J.; Harrison, L.C. Immune Modulation by Vitamin D and Its Relevance to Food Allergy. Nutrients 2015, 7, 6088–6108. [Google Scholar] [CrossRef]
- Alosaimi, N.S.; Ahmad, M.A.A.S.; Alkreathy, H.M.; Ali, A.S.; Khan, L.M. Pharmacological Basis of the Putative Therapeutic Effect of Topical Vitamin D3 on the Experimental Model of Atopic Dermatitis in Mice. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6827–6836. [Google Scholar] [CrossRef]
- Lu, R.; Peng, Z.; Lian, P.; Wazir, J.; Gu, C.; Ma, C.; Wei, L.; Li, L.; Pu, W.; Liu, J.; et al. Vitamin D Attenuates DNCB-Induced Atopic Dermatitis-like Skin Lesions by Inhibiting Immune Response and Restoring Skin Barrier Function. Int. Immunopharmacol. 2023, 122, 110558. [Google Scholar] [CrossRef] [PubMed]
- Bukvić Mokos, Z.; Tomić Krsnik, L.; Harak, K.; Marojević Tomić, D.; Tešanović Perković, D.; Vukojević, M. Vitamin D in the Prevention and Treatment of Inflammatory Skin Diseases. Int. J. Mol. Sci. 2025, 26, 5005. [Google Scholar] [CrossRef]
- Grieco, T.; Paolino, G.; Moliterni, E.; Chello, C.; Sernicola, A.; Egan, C.G.; Morelli, M.; Nannipieri, F.; Battaglia, S.; Accoto, M.; et al. Differential Expression of Proteins Involved in Skin Barrier Maintenance and Vitamin D Metabolism in Atopic Dermatitis: A Cross-Sectional, Exploratory Study. Int. J. Mol. Sci. 2024, 26, 211. [Google Scholar] [CrossRef]
- Kim, G.; Bae, J.H. Vitamin D and Atopic Dermatitis: A Systematic Review and Meta-Analysis. Nutrition 2016, 32, 913–920. [Google Scholar] [CrossRef]
- Przechowski, K.; Krawczyk, M.N.; Krasowski, R.; Pawliczak, R.; Kleniewska, P. Vitamin D and Atopic Dermatitis-A Mere Correlation or a Real Supportive Treatment Option? Nutrients 2025, 17, 2582. [Google Scholar] [CrossRef] [PubMed]
- Litonjua, A.A. Vitamin D and Childhood Asthma: Causation and Contribution to Disease Activity. Curr. Opin. Allergy Clin. Immunol. 2019, 19, 126–131. [Google Scholar] [CrossRef]
- Patchen, B.K.; Best, C.M.; Boiteau, J.; Solvik, B.S.; Vonderschmidt, A.; Xu, J.; Cohen, R.T.; Cassano, P.A. Vitamin D Supplementation in Pregnant or Breastfeeding Women or Young Children for Preventing Asthma. Cochrane Database Syst. Rev. 2025, 8, CD013396. [Google Scholar] [CrossRef]
- Mailhot, G.; White, J.H. Vitamin D and Immunity in Infants and Children. Nutrients 2020, 12, 1233. [Google Scholar] [CrossRef]
- Koplin, J.J.; Suaini, N.H.A.; Vuillermin, P.; Ellis, J.A.; Panjari, M.; Ponsonby, A.L.; Peters, R.L.; Matheson, M.C.; Martino, D.; Dang, T.; et al. Polymorphisms Affecting Vitamin D-Binding Protein Modify the Relationship between Serum Vitamin D (25[OH]D3) and Food Allergy. J. Allergy Clin. Immunol. 2016, 137, 500–506.e4. [Google Scholar] [CrossRef]
- Zeng, R.; Li, Y.; Shen, S.; Qiu, X.; Chang, C.L.; Koplin, J.J.; Perrett, K.P.; Dharmage, S.C.; Lodge, C.J.; Lowe, A.J. Is Antenatal or Early-Life Vitamin D Associated with Eczema or Food Allergy in Childhood? A Systematic Review. Clin. Exp. Allergy 2023, 53, 511–525. [Google Scholar] [CrossRef]
- Luo, C.; Sun, Y.; Zeng, Z.; Liu, Y.; Peng, S. Vitamin D Supplementation in Pregnant Women or Infants for Preventing Allergic Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Chin. Med. J. 2022, 135, 276–284. [Google Scholar] [CrossRef]
- Rueter, K.; Jones, A.P.; Siafarikas, A.; Lim, E.M.; Prescott, S.L.; Palmer, D.J. In “High-Risk” Infants with Sufficient Vitamin D Status at Birth, Infant Vitamin D Supplementation Had No Effect on Allergy Outcomes: A Randomized Controlled Trial. Nutrients 2020, 12, 1747. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, X.; Liu, Y.; Yin, S.; Hu, Q.; Ji, Q.; Zhong, Y.; Zhu, F. The Effects of Prenatal Vitamin D Supplementation on Respiratory and Allergy-Related Outcomes in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. World Allergy Organ. J. 2025, 18, 101075. [Google Scholar] [CrossRef]
- Hattangdi-Haridas, S.R.; Lanham-New, S.A.; Sang Wong, W.H.; Hok Kung Ho, M.; Darling, A.L. Vitamin D Deficiency and Effects of Vitamin D Supplementation on Disease Severity in Patients with Atopic Dermatitis: A Systematic Review and Meta-Analysis in Adults and Children. Nutrients 2019, 11, 1854. [Google Scholar] [CrossRef]
- Camargo, C.A.; Ganmaa, D.; Sidbury, R.; Erdenedelger, K.; Radnaakhand, N.; Khandsuren, B. Randomized Trial of Vitamin D Supplementation for Winter-Related Atopic Dermatitis in Children. J. Allergy Clin. Immunol. 2014, 134, 831–835.e1. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Armendáriz, K.; García-Gil, A.; Romero, C.A.; Contreras-Ruiz, J.; Karam-Orante, M.; Balcazar-Antonio, D.; Domínguez-Cherit, J. Oral Vitamin D3 5000 IU/Day as an Adjuvant in the Treatment of Atopic Dermatitis: A Randomized Control Trial. Int. J. Dermatol. 2018, 57, 1516–1520. [Google Scholar] [CrossRef]
- Cabalín, C.; Pérez-Mateluna, G.; Iturriaga, C.; Camargo, C.A.; Borzutzky, A. Oral Vitamin D Modulates the Epidermal Expression of the Vitamin D Receptor and Cathelicidin in Children with Atopic Dermatitis. Arch. Dermatol. Res. 2023, 315, 761–770. [Google Scholar] [CrossRef]
- Nielsen, A.Y.; Høj, S.; Thomsen, S.F.; Meteran, H. Vitamin D Supplementation for Treating Atopic Dermatitis in Children and Adults: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 4128. [Google Scholar] [CrossRef]
- Solnier, J.; Chang, C.; Zhang, Y.; Kuo, Y.C.; Du, M.; Roh, Y.S.; See, J.; Brix, J.; Gahler, R.J.; Green, T.; et al. A Comparison and Safety Evaluation of Micellar versus Standard Vitamin D3 Oral Supplementation in a Randomized, Double-Blind Human Pilot Study. Nutrients 2024, 16, 1573. [Google Scholar] [CrossRef]
- Bano, A.; Abrar, S.; Brilli, E.; Tarantino, G.; Bugti, A.A.; Fabbrini, M.; Conti, G.; Turroni, S.; Bugti, M.; Afridi, F.; et al. A Comparative Absorption Study of Sucrosomial® Orodispersible Vitamin D3 Supplementation vs. a Reference Chewable Tablet and Soft Gel Capsule Vitamin D3 in Improving Circulatory 25(OH)D Levels in Healthy Adults with Vitamin D Deficiency-Results from a Prospective Randomized Clinical Trial. Front. Nutr. 2023, 10, 1221685. [Google Scholar] [CrossRef]
- Deepika; Kumari, A.; Singh, S.; Ahmad, M.F.; Chaki, D.; Poria, V.; Kumar, S.; Saini, N.; Yadav, N.; Sangwan, N.; et al. Vitamin D: Recent Advances, Associated Factors, and Its Role in Combating Non-Communicable Diseases. NPJ Sci. Food 2025, 9, 100. [Google Scholar] [CrossRef]
- Kim, H.G.; Gater, D.L.; Kim, Y.C. Development of Transdermal Vitamin D3 (VD3) Delivery System Using Combinations of PLGA Nanoparticles and Microneedles. Drug Deliv. Transl. Res. 2018, 8, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Bilezikian, J.P.; Adler, R.A.; Banfi, G.; Bikle, D.D.; Binkley, N.C.; Bollerslev, J.; Bouillon, R.; Brandi, M.L.; Casanueva, F.F.; et al. Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. Endocr. Rev. 2024, 45, 625–654. [Google Scholar] [CrossRef]
- Pludowski, P.; Grant, W.B.; Karras, S.N.; Zittermann, A.; Pilz, S. Vitamin D Supplementation: A Review of the Evidence Arguing for a Daily Dose of 2000 International Units (50 Μg) of Vitamin D for Adults in the General Population. Nutrients 2024, 16, 391. [Google Scholar] [CrossRef]
- Grant, W.B.; Wimalawansa, S.J.; Pludowski, P.; Cheng, R.Z. Vitamin D: Evidence-Based Health Benefits and Recommendations for Population Guidelines. Nutrients 2025, 17, 277. [Google Scholar] [CrossRef]
- Choi, R.; Chun, G.; Cho, S.E.; Ahn, S.; Lee, S.G.; Lee, E.H. Increasing Prevalence of Potential Vitamin D Toxicity and Its Risk Factors in Korea: A Large Population-Based Study. Nutrients 2025, 17, 2614. [Google Scholar] [CrossRef]
- Maugeri, A.; Russo, C.; Patanè, G.T.; Barreca, D.; Mandalari, G.; Navarra, M. The Inhibition of Mitogen-Activated Protein Kinases (MAPKs) and NF-ΚB Underlies the Neuroprotective Capacity of a Cinnamon/Curcumin/Turmeric Spice Blend in Aβ-Exposed THP-1 Cells. Molecules 2023, 28, 7949. [Google Scholar] [CrossRef]
- Waghray, P.; Waghray, K.; Waghray, J. Curcumin in the Patient with Perennial Allergic Rhinitis with Chronic Episodic Allergic Asthma. Int. J. Res. Med. Sci. 2022, 10, 1545. [Google Scholar] [CrossRef]
- Vaughn, A.R.; Branum, A.; Sivamani, R.K. Effects of Turmeric (Curcuma longa) on Skin Health: A Systematic Review of the Clinical Evidence. Phytother. Res. 2016, 30, 1243–1264. [Google Scholar] [CrossRef]
- De, A.; Pal, S.; Singh, S.; Chakroborty, D.; Godse, K. An Open-Label, Investigator-Initiated, Single-Centre Pilot Study to Determine the Safety and Efficacy of Tofacitinib in Resistant Chronic Spontaneous Urticaria. Indian J. Dermatol. 2024, 69, 312–316. [Google Scholar] [CrossRef]
- Rawal, R.C.; Shah, B.J.; Jayaraaman, A.M.; Jaiswal, V. Clinical Evaluation of an Indian Polyherbal Topical Formulation in the Management of Eczema. J. Altern. Complement. Med. 2009, 15, 669–672. [Google Scholar] [CrossRef]
- Palaniappan, V.; Karthikeyan, K. Turmeric: The Yellow Allergen. Indian Dermatol. Online J. 2022, 14, 459–464. [Google Scholar] [CrossRef]
- Chembolli, L.; Chembolli, L. Cultural Dermatoses: Turmeric Allergy (Mangalsutra Dermatitis and Kumkum Dermatitis)—A Case Report. J. Ski. Sex. Transm. Dis. 2020, 2, 49–51. [Google Scholar] [CrossRef]
- Wu, M.Y.; Yen, H.; Wang, C.W.; Chung, W.H. Curcumin-Induced Acute Generalized Exanthematous Pustulosis. Indian J. Dermatol. Venereol. Leprol. 2020, 86, 571. [Google Scholar] [CrossRef]
- FDA Investigates Two Serious Adverse Events Associated with ImprimisRx’s Compounded Curcumin Emulsion Product for Injection|FDA. Available online: https://www.fda.gov/drugs/human-drug-compounding/fda-investigates-two-serious-adverse-events-associated-imprimisrxs-compounded-curcumin-emulsion (accessed on 21 September 2025).
- Shaji, M.; Merin, K.A.; Kameswaran, R. A Review on Cosmetics Causing Conatct Urticaria. Indian J. Dermatol. 2022, 67, 392–398. [Google Scholar] [CrossRef]
- Di Lorenzo, R.; Forgione, F.; Bernardi, A.; Sacchi, A.; Laneri, S.; Greco, G. Clinical Studies on Topical Curcumin. Ski. Pharmacol. Physiol. 2023, 36, 235–248. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H. Bin Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef]
- Srinivasan, K. Ginger Rhizomes (Zingiber officinale): A Spice with Multiple Health Beneficial Potentials. PharmaNutrition 2017, 5, 18–28. [Google Scholar] [CrossRef]
- Jiang, X. Biological Mechanisms, Pharmacological and Pathological Activities, and Quality Optimization of Gingerols and Shogaols. J. Funct. Foods 2025, 127, 106773. [Google Scholar] [CrossRef]
- Shaukat, M.N.; Nazir, A.; Fallico, B. Ginger Bioactives: A Comprehensive Review of Health Benefits and Potential Food Applications. Antioxidants 2023, 12, 2015. [Google Scholar] [CrossRef] [PubMed]
- Borgonetti, V.; Governa, P.; Morozzi, M.; Sasia, C.; Videtta, G.; Biagi, M.; Galeotti, N. A Standardized Extract of Zingiber officinale Roscoe Regulates Clinical and Biological Outcomes in Two Different EAE Mouse Models. Biomedicines 2025, 13, 278. [Google Scholar] [CrossRef] [PubMed]
- Yücel, Ç.; Karatoprak, G.Ş.; Açıkara, Ö.B.; Akkol, E.K.; Barak, T.H.; Sobarzo-Sánchez, E.; Aschner, M.; Shirooie, S. Immunomodulatory and Anti-Inflammatory Therapeutic Potential of Gingerols and Their Nanoformulations. Front. Pharmacol. 2022, 13, 902551. [Google Scholar] [CrossRef]
- Attallah, K.A.; El-Dessouki, A.M.; Abd-Elmawla, M.A.; Ghaiad, H.R.; Abo-Elghiet, F.; Mustafa, A.M.; El-Shiekh, R.A.; Elosaily, H. The Therapeutic Potential of Naturally Occurring 6-Shogaol: An Updated Comprehensive Review. Inflammopharmacology, 2025; ahead of print. [Google Scholar] [CrossRef]
- Plana, L.; Marhuenda, J.; Arcusa, R.; García-Muñoz, A.M.; Ballester, P.; Cerdá, B.; Victoria-Montesinos, D.; Zafrilla, P. Characterization, Antioxidant Capacity, and In Vitro Bioaccessibility of Ginger (Zingiber officinale Roscoe) in Different Pharmaceutical Formulations. Antioxidants 2025, 14, 873. [Google Scholar] [CrossRef]
- Kim, E.; Jang, S.; Yi, J.; Kim, H.; Kwon, H.; Im, H.; Huang, H.; Zhang, H.; Cho, N.; Sung, Y.; et al. Ginger-derived Compounds Exert in Vivo and in Vitro Anti-asthmatic Effects by Inhibiting the T-helper 2 Cell-mediated Allergic Response. Exp. Ther. Med. 2021, 23, 49. [Google Scholar] [CrossRef]
- Yocum, G.T.; Yocum, G.T.; Hwang, J.J.; Mikami, M.; Danielsson, J.; Kuforiji, A.S.; Emala, C.W. Ginger and Its Bioactive Component 6-Shogaol Mitigate Lung Inflammation in a Murine Asthma Model. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 318, L296–L303. [Google Scholar] [CrossRef]
- Shen, C.L.; Wang, R.; Santos, J.M.; Elmassry, M.M.; Stephens, E.; Kim, N.; Neugebauer, V. Ginger Alleviates Mechanical Hypersensitivity and Anxio-Depressive Behavior in Rats with Diabetic Neuropathy through Beneficial Actions on Gut Microbiome Composition, Mitochondria, and Neuroimmune Cells of Colon and Spinal Cord. Nutr. Res. 2024, 124, 73–84. [Google Scholar] [CrossRef]
- Shen, C.L.; Santos, J.M.; Elmassry, M.M.; Chen, F.; Ji, G.; Presto, P.; Kiritoshi, T.; Liu, X.; Neugebauer, V. Crosstalk Among Gut Microbiota, Fecal Metabolites, and Amygdala Neuropathology Genes After Ginger Polyphenol Administration in Female Rats with Neuropathic Pain: Evidence for Microbiota–Gut–Brain Connection. Nutrients 2025, 17, 1444. [Google Scholar] [CrossRef]
- Neubauer, C.; Kragl, M.; Braun, T.; Filipek, P.; Bonyadi Rad, E.; Grander, J.; Mähler, N.; Moritz, K.; Hoch, S.; Ziegler, R.; et al. An Oil-in-Water Emulsion Containing a Combination of Ginger Extract and Synthetic Cannabidiol with Potent in Vitro Anti-Inflammatory Effects Alleviates Symptoms of Atopic Dermatitis in a Clinical Trial. Eur. J. Dermatol. 2024, 34, 416–424. [Google Scholar] [CrossRef]
- Yatoo, M.I.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Anti-Inflammatory Drugs and Herbs with Special Emphasis on Herbal Medicines for Countering Inflammatory Diseases and Disorders—A Review. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 39–58. [Google Scholar] [CrossRef]
- Upadhyay, S.; Shrivastava, S.; Jeengar, M.K. Molecular Insights into Anti-Inflammatory Activities of Selected Indian Herbs. J. Ayurveda Integr. Med. 2025, 16, 101081. [Google Scholar] [CrossRef]
- Yamprasert, R.; Chanvimalueng, W.; Mukkasombut, N.; Itharat, A. Ginger Extract versus Loratadine in the Treatment of Allergic Rhinitis: A Randomized Controlled Trial. BMC Complement. Med. Ther. 2020, 20, 119. [Google Scholar] [CrossRef]
- Emala, C.W.; Saroya, T.K.; Miao, Y.; Wang, S.; Sang, S.; DiMango, E.A. Low-Dose Oral Ginger Improves Daily Symptom Scores in Asthma. Pharmaceuticals 2024, 17, 1651. [Google Scholar] [CrossRef]
- Zhang, S.; Dimango, E.; Zhu, Y.; Saroya, T.K.; Emala, C.W.; Sang, S. Pharmacokinetics of Gingerols, Shogaols, and Their Metabolites in Asthma Patients. J. Agric. Food Chem. 2022, 70, 9674–9683. [Google Scholar] [CrossRef]
- Li, J.; Hu, J.; Zhuo, D.; Yang, L.; Wang, L.; Yang, B. Ginger-Processed Magnoliae Officinalis Cortex Ameliorates Ovalbumin-Induced Asthma by Alleviating Inflammation via the Gut-Lung Axis. Phytomedicine 2025, 145, 156971. [Google Scholar] [CrossRef] [PubMed]
- Khaki Vaighan, M.; Shams, M.H.; Tatari, F.; Jafari, R.; Sohrabi, S.M.; Eskandari, N.; Mohammadi, M. Ameliorative Effects of Ginger on Allergic Diseases: An Updated Review. Mol. Nutr. Food Res. 2024, 68, e2300899. [Google Scholar] [CrossRef]
- Zhu, W.; Dai, Y.; Huang, M.; Li, J. Efficacy of Ginger in Preventing Postoperative Nausea and Vomiting: A Systematic Review and Meta-Analysis. J. Nurs. Scholarsh. 2021, 53, 671–679. [Google Scholar] [CrossRef]
- Servey, J.; Chang, J. Over-the-Counter Medications in Pregnancy. Am. Fam. Physician 2014, 90, 548–555. [Google Scholar]
- Ulusoy, H.G.; Sanlier, N. A Minireview of Quercetin: From Its Metabolism to Possible Mechanisms of Its Biological Activities. Crit. Rev. Food Sci. Nutr. 2020, 60, 3290–3303. [Google Scholar] [CrossRef]
- Naso, M.; Trincianti, C.; Tosca, M.A.; Ciprandi, G. Quercetin and Its Lecithin-Based Formulation: Potential Applications for Allergic Diseases Based on a Narrative Review. Nutrients 2025, 17, 1476. [Google Scholar] [CrossRef]
- Vollmannová, A.; Bojňanská, T.; Musilová, J.; Lidiková, J.; Cifrová, M. Quercetin as One of the Most Abundant Represented Biological Valuable Plant Components with Remarkable Chemoprotective Effects—A Review. Heliyon 2024, 10, e33342. [Google Scholar] [CrossRef]
- Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and Its Anti-Allergic Immune Response. Molecules 2016, 21, 623. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Liang, D.; Zou, Y.; Li, P.; Ma, F. Phenolic Compounds and Antioxidant Activity in Red-Fleshed Apples. J. Funct. Foods 2015, 18, 1086–1094. [Google Scholar] [CrossRef]
- Juríková, T.; Balla, S.; Sochor, J.; Pohanka, M.; Mlcek, J.; Baron, M. Flavonoid Profile of Saskatoon Berries (Amelanchier alnifolia Nutt.) and Their Health Promoting Effects. Molecules 2013, 18, 12571–12586. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; Abd El-Hack, M.E.; Taha, A.E.; Algammal, A.M.; Ali Elewa, Y.H. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 2020, 9, 374. [Google Scholar] [CrossRef]
- Ding, Y.; Li, C.; Zhang, Y.; Ma, P.; Zhao, T.; Che, D.; Cao, J.; Wang, J.; Liu, R.; Zhang, T.; et al. Quercetin as a Lyn Kinase Inhibitor Inhibits IgE-Mediated Allergic Conjunctivitis. Food Chem. Toxicol. 2020, 135, 110924. [Google Scholar] [CrossRef]
- Yamada, S.; Shirai, M.; Inaba, Y.; Takara, T. Effects of Repeated Oral Intake of a Quercetin-Containing Supplement on Allergic Reaction: A Randomized, Placebo-Controlled, Double-Blind Parallel-Group Study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4331–4345. [Google Scholar] [CrossRef]
- Ding, Y.; Che, D.; Li, C.; Cao, J.; Wang, J.; Ma, P.; Zhao, T.; An, H.; Zhang, T. Quercetin Inhibits Mrgprx2-Induced Pseudo-Allergic Reaction via PLCγ-IP3R Related Ca2+ Fluctuations. Int. Immunopharmacol. 2019, 66, 185–197. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Almeida, A.F.; Borge, G.I.A.; Piskula, M.; Tudose, A.; Tudoreanu, L.; Valentová, K.; Williamson, G.; Santos, C.N. Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Compr. Rev. Food Sci. Food Saf. 2018, 17, 714–731. [Google Scholar] [CrossRef]
- Guo, Y.; Bruno, R.S. Endogenous and Exogenous Mediators of Quercetin Bioavailability. J. Nutr. Biochem. 2015, 26, 201–210. [Google Scholar] [CrossRef]
- Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol. Nutr. Food Res. 2018, 62, 1700447. [Google Scholar] [CrossRef]
- Williamson, G.; Clifford, M.N. A Critical Examination of Human Data for the Biological Activity of Quercetin and Its Phase-2 Conjugates. Crit. Rev. Food Sci. Nutr. 2025, 65, 1669–1705. [Google Scholar] [CrossRef]
- Pinheiro, R.G.R.; Pinheiro, M.; Neves, A.R. Nanotechnology Innovations to Enhance the Therapeutic Efficacy of Quercetin. Nanomaterials 2021, 11, 2658. [Google Scholar] [CrossRef]
- Kerna, N.A.; Ngwu, D.C.; Akuma, O.M.; Holets, H.M.; Chawla, S.; Flores, J.V.; Pruitt, K.D.; Carsrud, N.D.V.; McKee, D.; Okpo, N.C.; et al. Quercetin: Exploring Its Unique Flavonol Properties, Bioavailability, Safety Profile, and Therapeutic Potential in High-Impact Medical Conditions. Eur. J. Med. Health Res. 2024, 2, 178–198. [Google Scholar] [CrossRef]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Hernández-Lorca, M.; Timón, I.M.; Ballester, P.; Henarejos-Escudero, P.; García-Muñoz, A.M.; Victoria-Montesinos, D.; Barcina-Pérez, P. Dietary Modulation of CYP3A4 and Its Impact on Statins and Antidiabetic Drugs: A Narrative Review. Pharmaceuticals 2025, 18, 1351. [Google Scholar] [CrossRef]
- Cione, E.; La Torre, C.; Cannataro, R.; Caroleo, M.C.; Plastina, P.; Gallelli, L. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation. Molecules 2020, 25, 63. [Google Scholar] [CrossRef]
- Mokra, D.; Joskova, M.; Mokry, J. Therapeutic Effects of Green Tea Polyphenol (—)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int. J. Mol. Sci. 2022, 24, 340. [Google Scholar] [CrossRef]
- Rodríguez-Carrasco, Y.; Gaspari, A.; Graziani, G.; Santini, A.; Ritieni, A. Fast Analysis of Polyphenols and Alkaloids in Cocoa-Based Products by Ultra-High Performance Liquid Chromatography and Orbitrap High Resolution Mass Spectrometry (UHPLC-Q-Orbitrap-MS/MS). Food Res. Int. 2018, 111, 229–236. [Google Scholar] [CrossRef]
- Mukai, R.; Fukuda, T.; Ohnishi, A.; Nikawa, T.; Furusawa, M.; Terao, J. Chocolate as a Food Matrix Reduces the Bioavailability of Galloylated Catechins from Green Tea in Healthy Women. Food Funct. 2021, 12, 408–416. [Google Scholar] [CrossRef]
- Śladowska, K.; Moćko, P.; Brzostek, T.; Malinowska-Lipień, I.; Owca, M.; Kawalec, P. Efficacy and Safety of Epigallocatechin Gallate in the Treatment and Prevention of Dermatitis: A Systematic Review. Biomedicines 2025, 13, 1458. [Google Scholar] [CrossRef]
- Rana, T.S.; Bansode, R.R.; Williams, L.L. Anti-Allergic and Anti-Inflammatory Signaling Mechanisms of Natural Compounds/Extracts in In Vitro System of RBL-2H3 Cell: A Systematic Review. Cells 2024, 13, 1389. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, S.; Di Salvo, M.; Ventre, A.; Dato, E.; Casciaro, M.; Gangemi, S. Nutraceuticals Against Oxidative Stress in Allergic Diseases. Biomolecules 2025, 15, 1347. [Google Scholar] [CrossRef]
- Li, G.Z.; Chai, O.H.; Song, C.H. Inhibitory Effects of Epigallocatechin Gallate on Compound 48/80-Induced Mast Cell Activation and Passive Cutaneous Anaphylaxis. Exp. Mol. Med. 2005, 37, 290–296. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, H.; Cai, X.; Shang, Y. Epigallocatechin-3-Gallate Inhibits Inflammation and Epithelial-mesenchymal Transition through the PI3K/AKT Pathway via Upregulation of PTEN in Asthma. Int. J. Mol. Med. 2018, 41, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zeng, M.; Tie, Q.; Wang, R.; Wang, M.; Wu, Y.; Zheng, X.; Feng, W. (−)-Epigallocatechin-3-Gallate (EGCG) Ameliorates Ovalbumin-Induced Asthma by Inhibiting Inflammation via the TNF-α/TNF-R1/NLRP3 Signaling Pathway. Int. Immunopharmacol. 2025, 144, 113708. [Google Scholar] [CrossRef]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Scientific Opinion on the Safety of Green Tea Catechins. EFSA J. 2018, 16, e05239. [Google Scholar] [CrossRef]
- Alam, M.; Gulzar, M.; Akhtar, M.S.; Rashid, S.; Shamsi, A.; Hassan, M.I. Epigallocatechin-3-Gallate Therapeutic Potential in Human Diseases: Molecular Mechanisms and Clinical Studies. Mol. Biomed. 2024, 5, 73. [Google Scholar] [CrossRef]
- Capasso, L.; De Masi, L.; Sirignano, C.; Maresca, V.; Basile, A.; Nebbioso, A.; Rigano, D.; Bontempo, P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025, 30, 654. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2018, 11, 39. [Google Scholar] [CrossRef]
- Fernández, V.A.; Toledano, L.A.; Lozano, N.P.; Tapia, E.N.; Roig, M.D.G.; Fornell, R.D.L.T.; Algar, Ó.G. Bioavailability of Epigallocatechin Gallate Administered with Different Nutritional Strategies in Healthy Volunteers. Antioxidants 2020, 9, 440. [Google Scholar] [CrossRef]
- Wong, C.N.; Lim, Y.M.; Liew, K.B.; Chew, Y.L.; Chua, A.L.; Lee, S.K. EGCG as a Therapeutic Agent: A Systematic Review of Recent Advances and Challenges in Nanocarrier Strategies. J. Zhejiang Univ. Sci. B 2025, 26, 633–656. [Google Scholar] [CrossRef]
- Mehmood, S.; Maqsood, M.; Mahtab, N.; Khan, M.I.; Sahar, A.; Zaib, S.; Gul, S. Epigallocatechin Gallate: Phytochemistry, Bioavailability, Utilization Challenges, and Strategies. J. Food Biochem. 2022, 46, e14189. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Bodur, M.; Yilmaz, B.; Ağagündüz, D.; Ozogul, Y. Immunomodulatory Effects of Omega-3 Fatty Acids: Mechanistic Insights and Health Implications. Mol. Nutr. Food Res. 2025, 69, e202400752. [Google Scholar] [CrossRef]
- Sawada, Y.; Saito-Sasaki, N.; Nakamura, M. Omega 3 Fatty Acid and Skin Diseases. Front. Immunol. 2021, 11, 623052. [Google Scholar] [CrossRef]
- Feketea, G.; Kostara, M.; Bumbacea, R.S.; Vassilopoulou, E.; Tsabouri, S. Vitamin D and Omega-3 (Fatty Acid) Supplementation in Pregnancy for the Primary Prevention of Food Allergy in Children-Literature Review. Children 2023, 10, 468. [Google Scholar] [CrossRef]
- Sassi, F.; Tamone, C.; D’amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Lipińska-Opałka, A.; Tomaszewska, A.; Kubiak, J.Z.; Kalicki, B. Vitamin D and Immunological Patterns of Allergic Diseases in Children. Nutrients 2021, 13, 177. [Google Scholar] [CrossRef]
- Argano, C.; Torres, A.; Orlando, V.; Cangialosi, V.; Maggio, D.; Pollicino, C.; Corrao, S. Molecular Insight into the Role of Vitamin D in Immune-Mediated Inflammatory Diseases. Int. J. Mol. Sci. 2025, 26, 4798. [Google Scholar] [CrossRef]
- Kurup, V.P.; Barrios, C.S. Immunomodulatory Effects of Curcumin in Allergy. Mol. Nutr. Food Res. 2008, 52, 1031–1039. [Google Scholar] [CrossRef]
- Ghosh, S.S.; He, H.; Wang, J.; Gehr, T.W.; Ghosh, S. Curcumin-Mediated Regulation of Intestinal Barrier Function: The Mechanism Underlying Its Beneficial Effects. Tissue Barriers 2018, 6, e1425085. [Google Scholar] [CrossRef]
- Bright, J.J. Curcumin and Autoimmune Disease. Adv. Exp. Med. Biol. 2007, 595, 425–451. [Google Scholar] [CrossRef]
- Oh, S.W.; Cha, J.Y.; Jung, J.E.; Chang, B.C.; Kwon, H.J.; Lee, B.R.; Kim, D.Y. Curcumin Attenuates Allergic Airway Inflammation and Hyper-Responsiveness in Mice through NF-ΚB Inhibition. J. Ethnopharmacol. 2011, 136, 414–421. [Google Scholar] [CrossRef]
- Han, S.J.; Kim, M.; D’Agati, V.D.; Lee, H.T. 6-Shogaol Protects against Ischemic Acute Kidney Injury by Modulating NF-ΚB and Heme Oxygenase-1 Pathways. Am. J. Physiol. Renal Physiol. 2019, 317, F743. [Google Scholar] [CrossRef]
- Habiballah, D.N.; Li, F.; Jiang, L. Immune Metabolic Restoration in Systemic Lupus Erythematosus: The Impact of Gut Microbiota, Probiotics, and Nutritional Synergy. Front. Immunol. 2025, 16, 1602235. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, M.M.; Allegorico, A. The Role of Vitamin D in Allergic Diseases in Children. J. Clin. Gastroenterol. 2016, 50, S133–S135. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, J.; Wu, G.; Hu, Z.; Ying, P.; Bao, Z.; Ding, Z.; Tan, X. 6-Gingerol Alleviates Ferroptosis and Inflammation of Diabetic Cardiomyopathy via the Nrf2/HO-1 Pathway. Oxid. Med. Cell Longev. 2022, 2022, 3027514. [Google Scholar] [CrossRef]
- Lu, D.L.; Li, X.Z.; Dai, F.; Kang, Y.F.; Li, Y.; Ma, M.M.; Ren, X.R.; Du, G.W.; Jin, X.L.; Zhou, B. Influence of Side Chain Structure Changes on Antioxidant Potency of the [6]-Gingerol Related Compounds. Food Chem. 2014, 165, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Farombi, E.O.; Ajayi, B.O.; Ajeigbe, O.F.; Maruf, O.R.; Anyebe, D.A.; Opafunso, I.T.; Adedara, I.A. Mechanistic Exploration of 6-Shogaol’s Preventive Effects on Azoxymethane and Dextran Sulfate Sodium-Induced Colorectal Cancer: Involvement of Cell Proliferation, Apoptosis, Carcinoembryonic Antigen, Wingless-Related Integration Site Signaling, and Oxido-Inflammation. Toxicol. Mech. Methods 2025, 35, 1–10. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Ueno, Y.; Nakahashi, E.; Obayashi, M.; Sugihara, K.; Qiao, S.; Iida, M.; Kumasaka, M.Y.; Yajima, I.; Goto, Y.; et al. Prevention of Allergic Rhinitis by Ginger and the Molecular Basis of Immunosuppression by 6-Gingerol through T Cell Inactivation. J. Nutr. Biochem. 2016, 27, 112–122. [Google Scholar] [CrossRef]
- Umar, T.; Yin, B.; He, L.; Feng, W.; Yuan, Y.; Umer, S.; Feng, H.; Huang, Z.; Umar, Z.; Liu, W.; et al. 6-Gingerol via Overexpression of MiR-322-5p Impede Lipopolysaccharide-Caused Inflammatory Response in RAW264.7 Cells. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 3797–3807. [Google Scholar] [CrossRef]
- Ferreira, F.C.S.; Clementino, M.; Rodrigues, F.A.P.; Veras, H.N.; Martins, D.S.; Queiroga, M.L.; Lima, M.A.; Silva, D.O.; de Freitas, T.M.; Ribeiro, S.A.; et al. [8] and [10]-Gingerol Reduces Urothelial Damage in Ifosfamide-Induced Hemorrhagic Cystitis via JAK/STAT/FOXO Signaling Pathway via IL-10. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 1773–1786. [Google Scholar] [CrossRef]
- Luettig, J.; Rosenthal, R.; Lee, I.F.M.; Krug, S.M.; Schulzke, J.D. The Ginger Component 6-Shogaol Prevents TNF-α-Induced Barrier Loss via Inhibition of PI3K/Akt and NF-ΚB Signaling. Mol. Nutr. Food Res. 2016, 60, 2576–2586. [Google Scholar] [CrossRef]
- Li, X.; Ao, M.; Zhang, C.; Fan, S.; Chen, Z.; Yu, L. Zingiberis Rhizoma Recens: A Review of Its Traditional Uses, Phytochemistry, Pharmacology, and Toxicology. Evid. Based Complement. Alternat Med. 2021, 2021, 6668990. [Google Scholar] [CrossRef]
- Ke, X.; Chen, Z.; Wang, X.; Kang, H.; Hong, S. Quercetin Improves the Imbalance of Th1/Th2 Cells and Treg/Th17 Cells to Attenuate Allergic Rhinitis. Autoimmunity 2023, 56, 2189133. [Google Scholar] [CrossRef]
- Inoue, T.; Suzuki, Y.; Ra, C. Epigallocatechin-3-Gallate Induces Cytokine Production in Mast Cells by Stimulating an Extracellular Superoxide-Mediated Calcium Influx. Biochem. Pharmacol. 2011, 82, 1930–1939. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Li, X.M.; Liang, J.P.; Xiang, L.P.; Wang, K.R.; Shi, Y.L.; Yang, R.; Shi, M.; Ye, J.H.; Lu, J.L.; et al. Bioavailability of Tea Catechins and Its Improvement. Molecules 2018, 23, 2346. [Google Scholar] [CrossRef]

| Compound | Chemical Class/Main Structure | Dietary Sources | Typical Intake or Supplementation Range | Bioavailability | Main Molecular Targets and Pathways | Key Immunological Effects | References |
|---|---|---|---|---|---|---|---|
| Omega-3 fatty acids (ALA, EPA, DHA, DPA, SDA) | Polyunsaturated fatty acids (C18–C22, cis double bonds) | Oily fish, fish/krill oil, microalgae, flaxseed, chia, walnuts | 250–500 mg/day EPA + DHA for general health; ≥1200 mg/day in prevention trials | Moderate; higher for triglyceride/phospholipid forms than ethyl esters; improved with emulsions or nanoformulations | Inhibition of NF-κB and MAPK pathways, activation of PPAR-γ, generation of SPMs | Reduction in Th2 cytokines (IL-4, IL-5, IL-13), increase in regulatory T cells, production of specialized pro-resolving mediators, lower IgE | [25,26,27] |
| Vitamin D (D2, D3) | Fat-soluble secosteroids | Sun exposure, oily fish, eggs, fortified foods, UV-treated mushrooms | 1000–2000 IU/day commonly recommended; up to 5000 IU/day tested | Variable; influenced by fat intake, obesity, genetics; improved with micellar or nanoemulsion forms | Activation of VDR signaling, induction of tolerogenic dendritic cells, inhibition of NF-κB and MAPK pathways | Promotes tolerogenic dendritic cells, increases IL-10, enhances Treg activity, reduces IgE synthesis, improves epithelial barrier | [28,29,30,31,32,33,34] |
| Curcumin | Polyphenolic curcuminoid (diferuloylmethane) | Turmeric rhizome, curry powders, standardized extracts | 500–2000 mg/day in supplements | Very low orally; improved with piperine, phospholipid complexes, nanoparticles | Inhibition of NF-κB and MAPK pathways, activation of Nrf2/HO-1 signaling, stabilization of mast cells | Inhibition of NF-κB and MAPK, reduction in Th2 cytokines, stabilization of mast cells, improvement of barrier integrity | [35,36,37,38,39,40,41,42] |
| Ginger bioactives (6-gingerol, 6-shogaol) | Phenolic alkanones | Fresh or dried ginger, powdered rhizome, teas, extracts | 500 mg–2 g/day standardized extract (≥5% gingerols) | Moderate; metabolism to gingerdiols and conjugates; improved with liposomal or self-emulsifying systems | Inhibition of NF-κB signaling, modulation of cAMP pathways, activation of Nrf2/HO-1, regulation of HDAC2 and HDAC3 | Reduction in Th2 and Th1 cytokines, inhibition of mast-cell degranulation, activation of Nrf2/HO-1, increase in IL-10 | [43,44] |
| Quercetin | Flavonol (3,3′,4′,5,7-pentahydroxyflavone) | Onions, apples, kale, berries, tea, wine | 100–1000 mg/day in trials | Low; glycosylated forms more bioavailable; improved in phytosome formulations | Inhibition of NF-κB, blockade of Lyn/PLCγ/ERK1/2 signaling, downregulation of PI3K-AKT pathway, stabilization of mast cells | Mast-cell stabilization, inhibition of histamine and TNF-α release, blockade of Lyn/PLCγ/ERK1/2 pathways, rebalancing of Th1/Th2 responses, enhancement of Treg activity | [45,46,47,48,49,50,51,52,53] |
| Epigallocatechin gallate (EGCG) | Flavan-3-ol catechin | Green tea, supplements | 150–800 mg/day (as tea catechins or capsules) | Limited due to metabolism; improved with encapsulation or phospholipid complexes | Inhibition of NF-κB and MAPK pathways, suppression of FcεRI signaling, modulation of lipid mediators | Mast-cell stabilization, inhibition of FcεRI signaling, attenuation of airway inflammation, reduction in oxidative stress | [54,55,56,57,58,59,60] |
| Fatty Acid | Molecular Formula | Carbon Atoms and Double Bonds | Key Characteristics |
|---|---|---|---|
| ALA | C18:3n-3 | 18 carbons, 3 double bonds (cis) | Essential; the human body cannot synthesize it. |
| EPA | C20:5n-3 | 20 carbons, 5 double bonds | Well-known for its anti-inflammatory properties. |
| DHA | C22:6n-3 | 22 carbons, 6 double bonds | Longest-chain fatty acid, crucial for the nervous system and retina. |
| SDA | C18:4n-3 | 18 carbons, 4 double bonds | Intermediate in EPA biosynthesis; an alternative to marine sources. |
| DPA | C22:5n-3 | 22 carbons, 5 double bonds | Present in mammalian tissues; has unique functions. |
| Study Type | Model/Population | Target Condition | Main Outcomes | Effect Direction | Quality | References |
|---|---|---|---|---|---|---|
| Clinical (RCTs, meta-analyses, epidemiological studies) | Pregnant/lactating women, infants, children | Eczema, food allergy, asthma, allergic rhinitis | ↓ Risk of eczema, food sensitization, and IgE-mediated allergies (not consistent across all studies); modest reduction in allergic sensitization; stronger effects with high-dose or long-duration supplementation (≥1200 mg/day). | Positive/Mixed | Moderate | [27,69,70,71] |
| Preclinical (in vivo/in vitro) | Animal models (mice, rats), in vitro immune cell assays (dendritic, T, B, mast cells) | Food allergy, asthma, airway inflammation | ↓ IgE, IL-4, IL-5, TNF-α, prostaglandins, leukotrienes; ↑ SPMs (resolvins, protectins); Th2 modulation; reduced airway eosinophilia and allergic symptoms. Mechanistic evidence of immune regulation and anti-inflammatory activity. | Positive | High | [25,26,68] |
| Study Type | Model/Population | Target Condition | Main Outcomes | Effect Direction | Quality | References |
|---|---|---|---|---|---|---|
| Clinical | Children, adults, pregnant women, infants (RCTs, meta-analyses, cohort studies) | Asthma, rhinitis, recurrent wheezing, atopic dermatitis, food allergy | Mild benefit in asthma and rhinitis only in severe deficiency (<10 ng/mL); ↑ IL-10, no effect on IgE/eosinophils/FeNO. In atopic dermatitis, ↓ SCORAD/EASI (−0.41 to −0.50), ↑ VDR and LL-37, improved barrier integrity. No consistent reduction in food allergy risk; possible modulation by VDBP polymorphisms. | Neutral to positive | Low–Moderate to Moderate–High | [28,30,31,32,33,34,92,97,99,100,101,102,103,104,105,106,107,108,109,110,111] |
| Preclinical (in vitro) | Dendritic, T and B lymphocytes, epithelial and keratinocyte cell lines | Immunomodulation and epithelial defense | Activation of VDR → tolerogenic dendritic phenotype; ↑ IL-10 and Treg; ↓ Th2/Th17 cytokines (IL-4, IL-13, IL-22); ↓ IgE synthesis; ↑ antimicrobial peptides and barrier proteins (tight junctions, cathelicidin). | Positive | High | [28,91,92] |
| Preclinical (in vivo—allergic models) | Murine models of OVA-induced asthma, DNCB/OVA-induced dermatitis, and dietary antigen–sensitized food allergy (BALB/c, NC/Nga mice) | Airway, skin, and intestinal allergic inflammation; epithelial barrier dysfunction | Vitamin D or calcifediol supplementation attenuated allergic inflammation (↓ eosinophilia, IL-4, IL-5, IL-13, IL-33); enhanced tolerance (↑ Treg, IL-10); inhibited NF-κB and STAT3/AKT/mTOR; restored epithelial integrity (normalized VDR and VDBP, ↓ aquaporin-3, improved barrier function). | Positive | High | [93,98] |
| Study Type | Model/Population | Target Condition | Main Outcomes | Effect Direction | Quality | References |
|---|---|---|---|---|---|---|
| Clinical | Adults with perennial allergic rhinitis; patients with mild AR; AD patients (topical/oral); chronic urticaria (pilot); moderate–severe asthma (pilot) | Allergic rhinitis, atopic dermatitis, chronic spontaneous urticaria, asthma | AR: Reduce TNSS, sneezing, rhinorrhea; Reduce IL-4, IL-8, TNF-α; increase IL-10, sICAM; improved nasal airflow. AD/eczema: Reduce erythema, scaling, pruritus; good tolerability. Urticaria: Reduce wheals and pruritus (pilot). Asthma: pilot RCT underway/reported with symptom and biomarker endpoints | Positive | Moderate Consistent symptom improvements in AR and AD; evidence in urticaria/asthma is preliminary and heterogeneous | [35,37,39,121,122] |
| Preclinical (in vivo) | Mice (OVA-induced asthma); murine AD models | Asthma, atopic dermatitis | Reduce IgE and Th2 cytokines (IL-4, IL-13); inhibition of NF-κB/STAT6/MAPK; reduced airway eosinophilia and skin inflammation; improved barrier-related outcomes | Positive | High reproducible anti-allergic and anti-inflammatory effects across murine models | [38,40] |
| Preclinical (in vitro) | Mast cells, keratinocytes, airway epithelial cells | Mast-cell activation, cytokine release, epithelial barrier | Reduce Histamine/β-hexosaminidase release; Reduce IL-6/IL-8; inhibition of NF-κB/AP-1; antioxidant and barrier-supportive effects | Positive | Moderate Strong mechanistic support; translational impact depends on formulation/bioavailability | [42,120] |
| Study Type | Model/Population | Target Condition | Main Outcomes | Effect Direction | Quality (Justification) | References |
|---|---|---|---|---|---|---|
| Clinical | Patients with atopic dermatitis (n = 44), allergic rhinitis (n = 80), asthma (n = 32), and pharmacokinetic studies in asthma patients | Atopic dermatitis, allergic rhinitis, asthma | ↓ NF-κB and cytokine release; ↓ pruritus (55%) and improved skin barrier; ↓ TNSS and RQLQ, ↑ nasal airflow; ↑ ACT score and QoL; defined pharmacokinetics of gingerols/shogaols in humans. | Positive or neutral–supportive | High (randomized controlled trials, human PK studies, consistent evidence) | [143,146,147,148] |
| Preclinical | Caco-2 intestinal epithelial cells; OVA- and HDM-induced murine asthma models; diabetic and neuropathic rat models | Asthma, allergic inflammation, gut–brain/immune axis | ↓ HDAC2/3 and NF-κB; ↑ ALDH1A1, RA signaling, and Treg activation; reduced Th2 cytokines, eosinophilia, and mucus; enhanced antioxidant defenses; modulation of gut microbiota, mitochondrial metabolism, and gut–lung axis. | Positive | High to moderate (in vivo and in vitro, mechanistic data replicated across models) | [43,139,140,141,142,149] |
| Study Type | Model/Population | Target Condition | Main Outcomes | Effect Direction | Quality | References |
|---|---|---|---|---|---|---|
| Clinical | Adults with allergic rhinitis and mild allergic reactions (RCTs and pilot trials) | Allergic rhinitis, allergic reactions, early allergy prevention | ↓ Nasal and ocular symptom scores, ↓ serum histamine, ↓ IL-8 and TNF-α; improved quality of life. Quercetin-containing supplements and bioavailable formulations (e.g., EMIQ) were well tolerated and effective. | Positive | Moderate | [53,161] |
| Preclinical (in vivo) | Mice and rats (OVA-induced allergic rhinitis, asthma, conjunctivitis models) | Allergic rhinitis, asthma, conjunctivitis | ↓ IgE, IL-4, IL-5, TNF-α, IL-17, VEGF, bFGF; inhibition of NF-κB, Lyn kinase, COX-2 and RELA pathways; reduced sneezing, nasal rubbing and airway inflammation. Nanoparticle (chitosan-based) and glycosylated forms (EMIQ) markedly enhanced efficacy. | Positive | High (enhanced forms)/Moderate (standard quercetin) | [46,47,49,51,52,162] |
| Preclinical (in vitro) | Human and murine mast cells, airway epithelial cells | Mast-cell activation, angiogenesis, cytokine release | ↓ Degranulation and Ca2+ influx, inhibition of Lyn/PLCγ/IP3R signaling; ↓ VEGF, IL-6, IL-8 secretion. Findings elucidate quercetin’s inhibition of mast-cell-driven inflammation and angiogenesis. | Positive | Moderate | [46,49,160] |
| Study Type | Model/Population | Target Condition | Main Outcomes | Effect Direction | Quality | References |
|---|---|---|---|---|---|---|
| Clinical | Adults with seasonal allergic rhinitis (pilot studies); patients with atopic dermatitis (topical formulations); healthy volunteers (safety and pharmacokinetics) | Allergic rhinitis, atopic dermatitis, safety/bioavailability | Reduction in nasal and ocular symptoms and inflammatory parameters in small trials; topical EGCG reduced pruritus and lesion severity; moderate doses (100–600 mg/day) well tolerated; ≥800 mg/day fasting associated with hepatotoxicity; low oral bioavailability improved by novel formulations (nanoemulsions, liposomes, phytosomes) | Positive but limited | Moderate—preliminary efficacy data; high-quality safety evidence | [60,176,186,187] |
| Preclinical (in vivo) | Mice (OVA-induced asthma, allergic rhinitis); murine models of atopic dermatitis | Asthma, allergic rhinitis, atopic dermatitis | ↓ IgE, ↓ IL-4, IL-5, IL-13; reduced eosinophil and mast-cell infiltration; ↓ airway hyperresponsiveness and bronchial remodeling; ↓ TSLP; improved skin-barrier integrity; reduced sneezing and rhinorrhea; inhibition of NF-κB and ERK pathways | Positive | High—consistent animal studies with robust anti-allergic effects | [59,180,181] |
| Preclinical (in vitro) | Human mast cells; lipidomic studies of mast-cell activation | Mast-cell activation, mediator release | Inhibition of degranulation; ↓ histamine and TNF-α release; reprogramming of mast-cell lipid profile; ↓ IL-4, IL-5 secretion; modulation of pro-inflammatory signaling | Positive | High—mechanistic evidence supporting biological plausibility | [56,57,58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafrilla, P.; Ballester, P.; Victoria-Montesinos, D.; Cerdá, B.; Marhuenda, J.; Arcusa, R.; García-Muñoz, A.M. Dietary Bioactive Compounds and Their Role in Allergy Prevention: A Comprehensive Review. Nutrients 2025, 17, 3506. https://doi.org/10.3390/nu17223506
Zafrilla P, Ballester P, Victoria-Montesinos D, Cerdá B, Marhuenda J, Arcusa R, García-Muñoz AM. Dietary Bioactive Compounds and Their Role in Allergy Prevention: A Comprehensive Review. Nutrients. 2025; 17(22):3506. https://doi.org/10.3390/nu17223506
Chicago/Turabian StyleZafrilla, Pilar, Pura Ballester, Desirée Victoria-Montesinos, Begoña Cerdá, Javier Marhuenda, Raúl Arcusa, and Ana María García-Muñoz. 2025. "Dietary Bioactive Compounds and Their Role in Allergy Prevention: A Comprehensive Review" Nutrients 17, no. 22: 3506. https://doi.org/10.3390/nu17223506
APA StyleZafrilla, P., Ballester, P., Victoria-Montesinos, D., Cerdá, B., Marhuenda, J., Arcusa, R., & García-Muñoz, A. M. (2025). Dietary Bioactive Compounds and Their Role in Allergy Prevention: A Comprehensive Review. Nutrients, 17(22), 3506. https://doi.org/10.3390/nu17223506

